Boundary Value Problems for Doubly Perturbed First Order Ordinary Differential Systems

Mouffak Benchohra¹, Smail Djebali² and Toufik Moussaoui²

¹ Laboratoire de Mathématiques, Université de Sidi Bel Abbès, BP 89, 22000, Sidi Bel Abbès, Algérie.

e-mail: benchohra@univ-sba.dz

² Département de Mathématiques, E.N.S. B.P. 92 Kouba, Alger, Algérie. e-mail: djebali@ens-kouba.dz,moussaoui@ens-kouba.dz

Abstract

The aim of this paper is to present new results on existence theory for perturbed BVPs for first order ordinary differential systems. A nonlinear alternative for the sum of a contraction and a compact mapping is used.

2000 Mathematics Subject Classifications: 34A34, 34B15. Key words: Perturbed BVPs, Ordinary differential systems, Nonlinear alternative.

1 INTRODUCTION

This paper is devoted to the question of existence of solutions for a doubly perturbed boundary value problem (BVP) associated with first order ordinary differential systems of the form:

$$x'(t) = A(t)x(t) + F(t, x(t)) + G(t, x(t)), \quad a.e. \quad t \in [0, 1];$$
(1)

$$Mx(0) + Nx(1) = \eta.$$
 (2)

Here the functions $F, G : [0, 1] \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$ are Carathéodory, A(.) is a continuous $(n \times n)$ matrix function, M and N are constant $(n \times n)$ matrices, and $\eta \in \mathbb{R}^n$. Problem (1)-(2) encompasses second order differential equation with periodic condition or Sturm-Liouville nonlinear problem (see the example in Section 3). We shall denote by ||x|| the norm of any element x of the euclidian space \mathbb{R}^n and by ||A|| the norm of any matrix A. The notation := means throughout to be equal to. In this paper, we shall prove the existence of solutions for Problem (1)-(2) under suitable conditions on the nonlinearities F and G. Our approach will be based, for the existence of solutions, on a fixed point theorem for the sum of a contraction map and a completely continuous map due to Ntouyas and Tsamatos [7] which we recall hereafter; it can be seen as a generalization of Burton and Kirk's Alternative [3]:

 $^{^{1}}$ Corresponding author

Theorem 1.1 [7] Let $(X, \|\cdot\|)$ be a Banach space, B_1 , B_2 be operators from X into X such that B_1 is a γ -contraction, and B_2 is completely continuous. Assume also that

(H) There exists a sphere B(0,r) in X with center 0 and radius r such that for every $y \in B(0,r)$, $r(1-\gamma) \ge ||B_10 + B_2y||$. Then either

- (a) the operator equation $x = (B_1 + B_2)x$ has a solution with $||x|| \leq r$, or
- (b) there exists a point $x_0 \in \partial B(0,r)$ and $\lambda \in (0,1)$ such that $x_0 = \lambda B_1\left(\frac{x_0}{\lambda}\right) + \lambda B_2 x_0$.

Mappings which are equal to the sum of a contraction and a completely continuous function play an important role in fixed point theory (see [6]). Through Hamerstein operators, one can construct compact mapping and then apply Theorem 1.1 to BVPs associated with second order ODEs (see [2, 4, 6, 8]). In this paper, we extend those results to the case of systems doubly perturbed with contraction and Carathéodory functions satisfying specific growth.

2 Preliminaries

In this section, we introduce notations, and preliminaries used throughout this paper. Recall that $C([0, 1], \mathbb{R}^n)$ is the Banach space of all continuous functions from [0, 1] into \mathbb{R}^n with the norm

$$||x||_0 = \sup \{ ||x(t)|| : 0 \le t \le 1 \}.$$

Let $AC((0,1), \mathbb{R}^n)$ be the space of differentiable functions $x: (0,1) \to \mathbb{R}^n$, which are absolutely continuous.

We denote by $L^1([0,1], \mathbb{R}^n)$ the Banach space of measurable functions $x: [0,1] \longrightarrow \mathbb{R}^n$ which are Lebesgue integrable normed by

$$||x||_{L^1} = \int_0^1 ||x(t)|| dt$$
 for all $x \in L^1([0,1], \mathbb{R}^n).$

Recall the following.

Definition 2.1 A function $F: [0,1] \times \mathbb{R}^n \to \mathbb{R}^n$ is said to be Carathéodory if

- (i) $t \mapsto F(t, y)$ is measurable for each $y \in \mathbb{R}^n$, and
- (ii) $y \mapsto F(t, y)$ is continuous for almost each $t \in [0, 1]$.

Definition 2.2 Given a Banach space X, we say that a mapping $T : X \to X$ is totally bounded if it maps each bounded subset of X into a relatively compact subset. If, further it is continuous, it is called completely continuous.

3 EXISTENCE OF SOLUTIONS

In this section, we are concerned with the existence of solutions to Problem (1)-(2). We first state an auxiliary result from linear differential systems theory [1].

Lemma 3.1 Consider the following linear mixed boundary value problem

$$x'(t) = A(t)x(t) + h(t), \quad a.e. \quad t \in (0,1),$$
(3)

$$Mx(0) + Nx(1) = 0.$$
 (4)

Let $\Phi(t)$ be a fundamental matrix solution of x'(t) = A(t)x(t), such that $\Phi(0) = I$, the $(n \times n)$ identity matrix. We can easily show that if $det(M + N\Phi(1)) \neq 0$, then the linear inhomogeneous problem (3)-(4) has a unique solution given by

$$x(t) = \int_0^1 k(t,s)h(s)ds$$

where k(t,s) is the Green function defined by

$$k(t,s) = \begin{cases} \Phi(t)J(s), & 0 \le t \le s, \\ \Phi(t)\Phi(s)^{-1} + \Phi(t)J(s), & s \le t \le 1 \end{cases}$$

and

$$J(t) = -(M + N\Phi(1))^{-1}N\Phi(1)\Phi(t)^{-1}.$$

As for the inhomogeneous boundary conditions, the following Lemma is easily verified:

Lemma 3.2 Consider the following inhomogeneous linear boundary value problem

$$x'(t) = A(t)x(t) + h(t), \quad a.e. \ t \in (0,1),$$
(5)

$$Mx(0) + Nx(1) = \eta.$$
 (6)

Let x_h be the solution of the homogeneous boundary value problem (3)-(4). Keeping the same notations as in Lemma 3.1, the solution of Problem (5)-(6) reads

$$x(t) = x_h(t) + \Phi(t) \left(M + N\Phi(1) \right)^{-1} \eta.$$

Next, we transform BVP (1)-(2) into a fixed point problem. Consider the Banach space $X = C([0, 1], \mathbb{R}^n)$ endowed with the sup-norm. Let the operator $T : X \longrightarrow X$ be defined by

$$Tx(t) = \int_0^1 k(t,s) [F(s,x(s)) + G(s,x(s))] \, ds$$

It is clear that fixed points of T are solutions for BVP (1)-(2). Let us introduce the following hypotheses which are assumed hereafter:

• (H1) The function $F: [0,1] \times \mathbb{R}^n \to \mathbb{R}^n$ is Carathéodory and satisfies:

$$\exists l \in L^1([0,1], \mathbf{IR}_+), \ \|F(t,y_1) - F(t,y_2)\| \le l(t)\|y_1 - y_2\|$$

for almost each $t \in [0, 1]$ and all $y_1, y_2 \in \mathbb{R}^n$.

• (H2) The function G is continuous and there exist a function $q \in L^1([0, 1], \mathbb{R})$ with q(t) > 0 for almost each $t \in [0, 1]$ and a continuous nondecreasing function $\psi : \mathbb{R}^+ \longrightarrow (0, \infty)$ such that

$$||G(t,y)|| \le q(t)\psi(||y||)$$
 a.e $t \in [0,1]$ and for all $y \in \mathbb{R}^n$.

• (H3) Set $k^* := \sup_{(t,s) \in [0,1] \times [0,1]} ||k(t,s)||$ and assume that

$$k^* \|l\|_{L^1} < 1.$$

• (H4) Set $F^* := \int_0^1 ||F(s,0)|| ds$ and assume there exists r > 0 such that

$$r > \frac{k^* \left(F^* + \|q\|_{L^1} \Psi(r)\right)}{1 - k^* \|l\|_{L^1}}.$$
(7)

Our main result is:

Theorem 3.1 Under hypotheses (H1)-(H4), BVP (1)-(2) has at least one solution $x \in AC([0, 1], \mathbb{R}^n)$.

Proof. Define the two operators B_1 and on B_2 on X by

$$B_1x(t) := \int_0^1 k(t,s)F(s,x(s))ds, \quad B_2x(t) := \int_0^1 k(t,s)G(s,x(s))\,ds.$$

We are going to show that the operators B_1 and B_2 satisfy all conditions of Theorem 1.1.

Claim 1. B_1 is a contraction.

Let $x, y \in X$ and $t \in [0, 1]$; then

$$\begin{aligned} \|B_1x(t) - B_1y(t)\| &= \|\int_0^1 k(t,s) \left[F(s,x(s)) - F(s,y(s))\right] ds\| \\ &\leq \int_0^1 \|k(t,s)\| \|F(s,x(s)) - F(s,y(s))\| \\ &\leq k^* \|l\|_{L^1} \|x - y\|_0 < \|x - y\|_0. \end{aligned}$$

Thus

$$||B_1x - B_1y||_0 \le ||x - y||_0$$

Claim 2. B_2 is continuous.

Let $x_n, x \in X$ such that $x_n \longrightarrow x$ in X, that is

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}^*, \quad (n \ge n_0 \Rightarrow ||x_n - x||_0 < \varepsilon).$$

For each $t \in [0, 1]$, we have

$$\begin{aligned} \|B_2 x_n(t) - B_2 x(t)\| &\leq \int_0^1 \|k(t,s)\| \cdot \|G(s,x_n(s)) - G(s,x(s))\| \, ds \\ &\leq k^* \int_0^1 \|G(s,x_n(s)) - G(s,x(s))\| \, ds. \end{aligned}$$

Since the convergence of a sequence implies its boundedness, there is a number L > 0 such that

$$||x_n(t)|| \le L, ||x(t)|| \le L, \forall t \in [0, 1].$$

Now, the function G is uniformly continuous on the compact set

$$\left\{ (t,x) \in \mathbb{R}^+ \times \mathbb{R}^n, \ t \in [0,1], \|x\| \le L \right\}.$$

It follows that

$$\|G(s, x_n(s)) - G(s, x(s))\| \le \frac{\varepsilon}{k^*}$$

Therefore, we infer that

$$||B_2x_n - B_2x||_0 \le \varepsilon, \ \forall n \ge n_0.$$

The continuity of B_2 is proved.

Claim 3. B_2 is totally bounded.

Consider the closed ball $C = \{x \in X; \|x\|_0 \leq M\}$. We prove that the image $B_2(C)$ is relatively compact in X. We have, by (H2)

$$||B_{2}x(t)|| = ||\int_{0}^{1} k(t,s)G(s,x(s))ds||$$

$$\leq k^{*}\int_{0}^{1} ||G(s,x(s))||ds$$

$$\leq k^{*}\int_{0}^{1} q(s)\psi(||x(s)||)ds$$

$$\leq k^{*}\psi(||x||_{0})||q||_{L^{1}}$$

$$\leq k^{*}\psi(M)||q||_{L^{1}}.$$

Then $B_2(C)$ is uniformly bounded. In addition, the following estimates hold true:

$$\begin{aligned} \|B_2 x(t_2) - B_2 x(t_1)\| &= \|\int_0^1 [k(t_2, s) - k(t_1, s)] G(s, x(s)) ds\| \\ &\leq \int_0^1 \|k(t_2, s) - k(t_1, s)\| q(s) \psi(M) ds \\ &\leq \psi(M) \int_0^1 q(s) \|k(t_2, s) - k(t_1, s)\| ds; \end{aligned}$$

the right-hand side term tends to 0 as $t_2 \longrightarrow t_2$ for any $x \in C$. Then, $B_2(C)$ is equicontinuous. By the Arzela-Ascoli Theorem, the mapping B_2 is completely continuous on X.

Claim 4. Now, we prove that, under Assumption (7), the second alternative of Theorem 1.1 is not valid.

Consider the sphere B(0, r), r being defined by (H4). For $x \in B(0, r)$, we have

$$\begin{aligned} \|B_1 0 + B_2 x\|_0 &= \sup_{t \in [0,1]} \|\int_0^1 k(t,s) F(s,0) \, ds \, + \, \int_0^1 k(t,s) G(s,x(s)) \, ds \| \\ &\leq k^* F^* + k^* \|q\|_{L^1} \Psi(\|x\|_0) \\ &\leq k^* F^* + k^* \|q\|_{L^1} \Psi(r) \\ &< r(1-k^* \|l\|_{L^1}). \end{aligned}$$

Now, argue by contradiction and assume that there exist $\lambda \in (0,1)$ and $x \in \partial B(0,r)$ with $x = \lambda B_1\left(\frac{x}{\lambda}\right) + \lambda B_2 x$. Then x verifies the estimates

$$||x(t)|| \le k^* ||t||_{L^1} ||x||_0 + k^* F^* + k^* ||q||_{L^1} \Psi(||x||_0).$$

Hence

$$r = \|x\|_0 \le \frac{k^* \left(F^* + \|q\|_{L^1} \Psi(r)\right)}{1 - k^* \|l\|_{L^1}}$$

contradicting Assumption (7). We then conclude that Assertion (a) in Theorem 1.1 is satisfied, proving the claim of Theorem 3.1.

3.1 Example

Consider the second order boundary value Sturm-Liouville problem

$$-x'' + qx' + rx = f(t, x(t), x'(t)) + g(t, x(t), x'(t)), \ 0 < t < 1$$
(8)

$$a_0 x(0) - a_1 x'(0) = c_0 \tag{9}$$

$$b_0 x(1) + b_1 x'(1) = c_1 \tag{10}$$

where a_0, a_1 and b_0, b_1 are nonnegative real numbers satisfying $a_0 + a_1 > 0$, $b_0 + b_1 > 0$ and $(c_0, c_1) \in \mathbb{R}^2$. The functions $f, g: [0, 1] \times \mathbb{R}^2 \to \mathbb{R}$ are assumed Carathéodory; the function f satisfies Lipschitz condition with respect to the last two arguments while g verifies a growth condition as in Assumption (H2). The functions $q, r: [0, 1] \to \mathbb{R}$ are continuous.

 v^t being the transpose of the vector v, we adopt the notations x' = y, $X = (x, y)^t$

$$F = (0, -f)^t$$
 $G = (0, -g)^t$

as well as

$$A = \begin{pmatrix} 0 & 1 \\ r & q \end{pmatrix}, \quad M = \begin{pmatrix} a_0 & -a_1 \\ 0 & 0 \end{pmatrix}, \quad N = \begin{pmatrix} 0 & 0 \\ b_0 & b_1 \end{pmatrix},$$

and finally $c = (c_0, c_1)^t$.

Problem (8) - (10) is then rewritten under the matrix form

$$\begin{cases} X' = AX + F + G\\ MX(0) + NX(1) = c. \end{cases}$$

Under Assumption (H4) both with $det(M + N\Phi(1)) \neq 0$, Problem (8) – (10) has a solution x.

Remark 3.1 In case q, r are constant, notice that condition $det(M + N\Phi(1)) \neq 0$ is nothing but $a_0(a_1e^{r_2} + b_1r_2e^{r_2}) \neq b_0(a_1e^{r_2} + b_1r_re^{r_2})$ where r_1 and r_2 are the roots of the characteristic equation $-s^2 + qs + r = 0$.

4 Existence of Extremal Solutions

In this section we shall prove the existence of maximal and minimal solutions of BVP (1)-(2) under suitable monotonicity conditions on the functions involved in it. We define the usual co-ordinate-wise order relation \leq in \mathbb{R}^n as follows. Let $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$ be any two elements. Then by $x \leq y$, we mean $x_i \leq y_i$ for all i = 1, ..., n. We equip the space $X = C([0, 1], \mathbb{R}^n)$ with the order relation \leq induced by the natural positive cone \mathcal{C} in X, that is,

$$\mathcal{C} = \{ x \in X \mid x(t) \ge 0, \ \forall \ t \in [0, 1] \}.$$

It is known that the cone C is normal in X. Cones and their properties are detailed in [5]. Let $a, b \in X$ be such that $a \leq b$. Then, by an order interval [a, b] we mean a set of points in X given by

$$[a,b] = \{x \in X \mid a \le x \le b\}.$$

Definition 4.1 Let X be an ordered Banach space. A mapping $T : X \to X$ is called isotone increasing if $T(x) \leq T(y)$ for any $x, y \in X$ with x < y. Similarly, T is called isotone decreasing if $T(x) \geq T(y)$ whenever x < y.

Definition 4.2 [5] We say that $x \in X$ is the least fixed point of G in X if x = Gxand $x \leq y$ whenever $y \in X$ and y = Gy. The greatest fixed point of G in X is defined similarly by reversing the inequality. If both least and greatest fixed point of G in X exist, we call them extremal fixed point of G in X.

The following fixed point theorem is due to Heikkila and Lakshmikantham:

Theorem 4.1 [5] Let [a, b] be an order interval in an order Banach space X and let $Q: [a, b] \rightarrow [a, b]$ be a nondecreasing mapping. If each sequence $(Qx_n) \subset Q([a, b])$ converges, whenever (x_n) is a monotone sequence in [a, b], then the sequence of Q-iteration of a converges to the least fixed point x_* of Q and the sequence of Q-iteration of b converges to the greatest fixed point x^* of Q. Moreover

 $x_* = \min\{y \in [a, b], y \ge Qy\}$ and $x^* = \max\{y \in [a, b], y \le Qy\}$

As a consequence, Dhage and Henderson have proved the following

Theorem 4.2 [4]. Let K be a cone in the Banach space X and let [a, b] be an order interval in a Banach space and let $B_1, B_2: [a, b] \to X$ be two functions satisfying

- (a) B_1 is a contraction,
- (b) B_2 is completely continuous,
- (c) B_1 and B_2 are strictly monotone increasing, and
- (d) $B_1(x) + B_2(x) \in [a, b], \forall x \in [a, b].$

Further if the cone K in X is normal, then the equation $x = B_1(x) + B_2(x)$ has a least fixed point x_* and a greatest fixed point $x^* \in [a, b]$. Moreover $x_* = \lim_{n \to \infty} x_n$ and $x^* = \lim_{n \to \infty} y_n$, where $\{x_n\}$ and $\{y_n\}$ are the sequences in [a, b] defined by

$$x_{n+1} = B_1(x_n) + B_2(x_n), \ x_0 = a \text{ and } y_{n+1} = B_1(y_n) + B_2(y_n), \ y_0 = b.$$

We need the following definitions in the sequel.

Definition 4.3 A function $v \in AC([0,1], \mathbb{R}^n)$ is called a strict lower solution of BVP(1)-(2) if $v'(t) \leq A(t)v(t) + F(t,v(t)) + G(t,v(t))$ a.e. $t \in [0,1]$, $Mv(0) + Nv(1) \leq \eta$. Similarly a strict upper solution w of BVP(1)-(2) is defined by reversing the order of the above inequalities.

Definition 4.4 A solution x_M of BVP (1)-(2) is said to be maximal if for any other solution x of BVP (1)-(2) on [0,1], we have that $x(t) \leq x_M(t)$ for each $t \in [0,1]$. Similarly a minimal solution of BVP (1)-(2) is defined by reversing the order of the inequalities.

Definition 4.5 A function F(t, x) is called strictly monotone increasing in x almost everywhere for $t \in J$, if $F(t, x) \leq F(t, y)$ a.e. $t \in J$ for all $x, y \in \mathbb{R}^n$ with x < y. Similarly F(t, x) is called strictly monotone decreasing in x almost everywhere for $t \in J$, if $F(t, x) \geq F(t, y)$ a.e. $t \in J$ for all $x, y \in \mathbb{R}^n$ with x < y.

We consider the following assumptions in the sequel.

- (H5) The functions F(t, y) and G(t, y) are strictly monotone nondecreasing in y for almost each $t \in [0, 1]$.
- (H6) The BVP (1)-(2) has a lower solution v and an upper solution w with $v \leq w$.
- (H7) The kernel k preserves the order, that is $k(t, s)v(s) \ge 0$ whenever $v \ge 0$.

Remark 4.1 If we assume that there exist some constant vectors $\underline{y} \leq \overline{y}$ such that for each $t \in [0, 1]$

$$A(t)\underline{y} + F(t,\underline{y}) + G(t,\underline{y}) \ge 0, \quad (M+N)\underline{y} \le \eta,$$

$$A(t)\overline{y} + F(t,\overline{y}) + G(t,\overline{y}) \le 0, \quad (M+N)\overline{y} \ge \eta,$$

then y, \overline{y} are respectively lower and upper solutions for Problem (1)-(2).

Theorem 4.3 Assume that Assumptions (H1)-(H6) hold true. Then BVP (1)-(2) has minimal and maximal solutions on [0, 1].

Proof. It can be shown, as in the proof of Theorem 3.1 that B_1 and B_2 are respectively a contraction and compact on [a, b]. We shall show that B_1 and B_2 are isotone increasing on [a, b]. Let $x, y \in [a, b]$ be such that $x \leq y, x \neq y$. Then by Assumptions (H5), (H7), we have for each $t \in [0, 1]$

$$B_{1}(x)(t) = \int_{0}^{1} k(t,s)F(s,x(s)) ds$$

$$\leq \int_{0}^{1} k(t,s)F(s,y(s)) ds$$

$$= B_{1}(y)(t).$$

Similarly, $B_2(x) \leq B_2(y)$. Therefore B_1 and B_2 are isotone increasing on [a, b]. Finally, let $x \in [a, b]$ be any element. By Assumptions (H6), we deduce that

$$a \leq B_1(a) + B_2(a) \leq B_1(x) + B_2(x) \leq B_1(b) + B_2(b) \leq b,$$

which shows that $B_1(x) + B_2(x) \in [a, b]$ for all $x \in [a, b]$. Thus, the functions B_1 and B_2 satisfy all conditions of Theorem 4.2. It follows that BVP (1)-(2) has maximal and minimal solutions on [0, 1]. This completes the proof of Theorem 4.3.

References

- [1] G. ANICHINI AND G. CONTI, Boundary value problems for systems of differential equations, Nonlinearity 1, 1988, 1-10.
- [2] S. BERNFELD AND V. LAKSHMIKANTHAM, An Introduction to Nonlinear Boundary Value Problems, Academic Press, New York, 1974.
- [3] T.A. BURTON AND C. KIRK, A fixed point theorem of Krasnoselskii-Schaefer type, Math. Nachr., 189, 1998, 23-31.
- [4] B.C. DHAGE AND J. HENDERSON, Existence theory for nonlinear functional boundary value problems, Electron. J. Qual. Theory Differ. Equ. 2004, No. 1, 15 pp.
- [5] S. HEIKKILA AND V. LAKSHMIKANTHAM, Monotone Iterative Technique for Nonlinear Discontinuous Differential Equations, Marcel Dekker Inc., New York, 1994.
- [6] M.A. KRASNOSELSKII, Topological Methods in the Theory of Nonlinear Integral Equations, Cambridge University Press, New York, 1964.
- [7] S.K. NTOUYAS AND P.CH. TSAMATOS, A Fixed point theorem of Krasnoselskii-Nonlinear alternative type with applications to functional integral equations, Diff. Eqn. Dyn. Syst. 7, 1999, N2, 139-146.
- [8] E. ZEIDLER, Nonlinear Functional Analysis: Part I, Springer Verlag, New York, 1985.

(Received December 11, 2005)