Boundary Value Problems for Doubly Perturbed First Order Ordinary Differential Systems

Mouffak Benchohra ${ }^{1}$, Smail Djebali ${ }^{2}$ and Toufik Moussaoui ${ }^{2}$
${ }^{1}$ Laboratoire de Mathématiques, Université de Sidi Bel Abbès, BP 89, 22000, Sidi Bel Abbès, Algérie.
e-mail: benchohra@univ-sba.dz
${ }^{2}$ Département de Mathématiques, E.N.S. B.P. 92 Kouba, Alger, Algérie.
e-mail: djebali@ens-kouba.dz,moussaoui@ens-kouba.dz

Abstract

The aim of this paper is to present new results on existence theory for perturbed BVPs for first order ordinary differential systems. A nonlinear alternative for the sum of a contraction and a compact mapping is used.

2000 Mathematics Subject Classifications: 34A34, 34B15.
Key words: Perturbed BVPs, Ordinary differential systems, Nonlinear alternative.

1 INTRODUCTION

This paper is devoted to the question of existence of solutions for a doubly perturbed boundary value problem (BVP) associated with first order ordinary differential systems of the form:

$$
\begin{gather*}
x^{\prime}(t)=A(t) x(t)+F(t, x(t))+G(t, x(t)), \quad \text { a.e. } \quad t \in[0,1] ; \tag{1}\\
M x(0)+N x(1)=\eta . \tag{2}
\end{gather*}
$$

Here the functions $F, G:[0,1] \times \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ are Carathéodory, $A($.$) is a continuous$ $(n \times n)$ matrix function, M and N are constant $(n \times n)$ matrices, and $\eta \in \mathbb{R}^{n}$. Problem (1)-(2) encompasses second order differential equation with periodic condition or Sturm-Liouville nonlinear problem (see the example in Section 3). We shall denote by $\|x\|$ the norm of any element x of the euclidian space \mathbb{R}^{n} and by $\|A\|$ the norm of any matrix A. The notation $:=$ means throughout to be equal to. In this paper, we shall prove the existence of solutions for Problem (1)-(2) under suitable conditions on the nonlinearities F and G. Our approach will be based, for the existence of solutions, on a fixed point theorem for the sum of a contraction map and a completely continuous map due to Ntouyas and Tsamatos [7] which we recall hereafter; it can be seen as a generalization of Burton and Kirk's Alternative [3]:

[^0]Theorem 1.1 [7] Let $(X,\|\cdot\|)$ be a Banach space, B_{1}, B_{2} be operators from X into X such that B_{1} is a γ-contraction, and B_{2} is completely continuous. Assume also that
(H) There exists a sphere $B(0, r)$ in X with center 0 and radius r such that for every $y \in B(0, r), r(1-\gamma) \geq\left\|B_{1} 0+B_{2} y\right\|$. Then either
(a) the operator equation $x=\left(B_{1}+B_{2}\right) x$ has a solution with $\|x\| \leq r$, or
(b) there exists a point $x_{0} \in \partial B(0, r)$ and $\lambda \in(0,1)$ such that $x_{0}=\lambda B_{1}\left(\frac{x_{0}}{\lambda}\right)+\lambda B_{2} x_{0}$.

Mappings which are equal to the sum of a contraction and a completely continuous function play an important role in fixed point theory (see [6]). Through Hamerstein operators, one can construct compact mapping and then apply Theorem 1.1 to BVPs associated with second order ODEs (see $[2,4,6,8]$). In this paper, we extend those results to the case of systems doubly perturbed with contraction and Carathéodory functions satisfying specific growth.

2 Preliminaries

In this section, we introduce notations, and preliminaries used throughout this paper. Recall that $C\left([0,1], \mathbb{R}^{n}\right)$ is the Banach space of all continuous functions from $[0,1]$ into \mathbb{R}^{n} with the norm

$$
\|x\|_{0}=\sup \{\|x(t)\|: 0 \leq t \leq 1\}
$$

Let $A C\left((0,1), \mathbb{R}^{n}\right)$ be the space of differentiable functions $x:(0,1) \rightarrow \mathbb{R}^{n}$, which are absolutely continuous.

We denote by $L^{1}\left([0,1], \mathbb{R}^{n}\right)$ the Banach space of measurable functions $x:[0,1] \longrightarrow$ \mathbb{R}^{n} which are Lebesgue integrable normed by

$$
\|x\|_{L^{1}}=\int_{0}^{1}\|x(t)\| d t \quad \text { for all } \quad x \in L^{1}\left([0,1], \mathbb{R}^{n}\right)
$$

Recall the following.
Definition 2.1 A function $F:[0,1] \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is said to be Carathéodory if
(i) $t \longmapsto F(t, y)$ is measurable for each $y \in \mathbb{R}^{n}$, and
(ii) $y \longmapsto F(t, y)$ is continuous for almost each $t \in[0,1]$.

Definition 2.2 Given a Banach space X, we say that a mapping $T: X \rightarrow X$ is totally bounded if it maps each bounded subset of X into a relatively compact subset. If, further it is continuous, it is called completely continuous.

3 EXISTENCE OF SOLUTIONS

In this section, we are concerned with the existence of solutions to Problem (1)-(2). We first state an auxiliary result from linear differential systems theory [1].

Lemma 3.1 Consider the following linear mixed boundary value problem

$$
\begin{gather*}
x^{\prime}(t)=A(t) x(t)+h(t), \quad \text { a.e. } \quad t \in(0,1), \tag{3}\\
M x(0)+N x(1)=0 . \tag{4}
\end{gather*}
$$

Let $\Phi(t)$ be a fundamental matrix solution of $x^{\prime}(t)=A(t) x(t)$, such that $\Phi(0)=I$, the $(n \times n)$ identity matrix. We can easily show that if $\operatorname{det}(M+N \Phi(1)) \neq 0$, then the linear inhomogeneous problem (3)-(4) has a unique solution given by

$$
x(t)=\int_{0}^{1} k(t, s) h(s) d s
$$

where $k(t, s)$ is the Green function defined by

$$
k(t, s)= \begin{cases}\Phi(t) J(s), & 0 \leq t \leq s \\ \Phi(t) \Phi(s)^{-1}+\Phi(t) J(s), & s \leq t \leq 1\end{cases}
$$

and

$$
J(t)=-(M+N \Phi(1))^{-1} N \Phi(1) \Phi(t)^{-1} .
$$

As for the inhomogeneous boundary conditions, the following Lemma is easily verified:
Lemma 3.2 Consider the following inhomogeneous linear boundary value problem

$$
\begin{gather*}
x^{\prime}(t)=A(t) x(t)+h(t), \quad \text { a.e. } t \in(0,1), \tag{5}\\
M x(0)+N x(1)=\eta . \tag{6}
\end{gather*}
$$

Let x_{h} be the solution of the homogeneous boundary value problem (3)-(4). Keeping the same notations as in Lemma 3.1, the solution of Problem (5)-(6) reads

$$
x(t)=x_{h}(t)+\Phi(t)(M+N \Phi(1))^{-1} \eta .
$$

Next, we transform BVP (1)-(2) into a fixed point problem. Consider the Banach space $X=C\left([0,1], \mathbb{R}^{n}\right)$ endowed with the sup-norm. Let the operator $T: X \longrightarrow X$ be defined by

$$
T x(t)=\int_{0}^{1} k(t, s)[F(s, x(s))+G(s, x(s))] d s
$$

It is clear that fixed points of T are solutions for BVP (1)-(2). Let us introduce the following hypotheses which are assumed hereafter:

- (H1) The function $F:[0,1] \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is Carathéodory and satisfies:

$$
\exists l \in L^{1}\left([0,1], \mathbb{R}_{+}\right),\left\|F\left(t, y_{1}\right)-F\left(t, y_{2}\right)\right\| \leq l(t)\left\|y_{1}-y_{2}\right\|
$$

for almost each $t \in[0,1]$ and all $y_{1}, y_{2} \in \mathbb{R}^{n}$.

- (H2) The function G is continuous and there exist a function $q \in L^{1}([0,1], \mathbb{R})$ with $q(t)>0$ for almost each $t \in[0,1]$ and a continuous nondecreasing function $\psi: \mathbb{R}^{+} \longrightarrow(0, \infty)$ such that

$$
\|G(t, y)\| \leq q(t) \psi(\|y\|) \quad \text { a.e } \quad t \in[0,1] \quad \text { and for all } \quad y \in \mathbb{R}^{n} .
$$

- (H3) Set $k^{*}:=\sup _{(t, s) \in[0,1] \times[0,1]}\|k(t, s)\|$ and assume that

$$
k^{*}\|l\|_{L^{1}}<1
$$

- (H4) Set $F^{*}:=\int_{0}^{1}\|F(s, 0)\| d s$ and assume there exists $r>0$ such that

$$
\begin{equation*}
r>\frac{k^{*}\left(F^{*}+\|q\|_{L^{1}} \Psi(r)\right)}{1-k^{*}\|l\|_{L^{1}}} \tag{7}
\end{equation*}
$$

Our main result is:
Theorem 3.1 Under hypotheses (H1)-(H4), BVP (1)-(2) has at least one solution $x \in A C\left([0,1], \mathbb{R}^{n}\right)$.

Proof. Define the two operators B_{1} and on B_{2} on X by

$$
B_{1} x(t):=\int_{0}^{1} k(t, s) F(s, x(s)) d s, \quad B_{2} x(t):=\int_{0}^{1} k(t, s) G(s, x(s)) d s
$$

We are going to show that the operators B_{1} and B_{2} satisfy all conditions of Theorem 1.1.

Claim 1. B_{1} is a contraction.
Let $x, y \in X$ and $t \in[0,1]$; then

$$
\begin{aligned}
\left\|B_{1} x(t)-B_{1} y(t)\right\| & =\left\|\int_{0}^{1} k(t, s)[F(s, x(s))-F(s, y(s))] d s\right\| \\
& \leq \int_{0}^{1}\|k(t, s)\|\|F(s, x(s))-F(s, y(s))\| \\
& \leq k^{*}\|l\|_{L^{1}}\|x-y\|_{0}<\|x-y\|_{0} .
\end{aligned}
$$

Thus

$$
\left\|B_{1} x-B_{1} y\right\|_{0} \leq\|x-y\|_{0} .
$$

Claim 2. B_{2} is continuous.
Let $x_{n}, x \in X$ such that $x_{n} \longrightarrow x$ in X, that is

$$
\forall \varepsilon>0, \exists n_{0} \in \mathbb{N}^{*}, \quad\left(n \geq n_{0} \Rightarrow\left\|x_{n}-x\right\|_{0}<\varepsilon\right) .
$$

For each $t \in[0,1]$, we have

$$
\begin{aligned}
\left\|B_{2} x_{n}(t)-B_{2} x(t)\right\| & \leq \int_{0}^{1}\|k(t, s)\| \cdot\left\|G\left(s, x_{n}(s)\right)-G(s, x(s))\right\| d s \\
& \leq k^{*} \int_{0}^{1}\left\|G\left(s, x_{n}(s)\right)-G(s, x(s))\right\| d s .
\end{aligned}
$$

Since the convergence of a sequence implies its boundedness, there is a number $L>0$ such that

$$
\left\|x_{n}(t)\right\| \leq L, \quad\|x(t)\| \leq L, \quad \forall t \in[0,1]
$$

Now, the function G is uniformly continuous on the compact set

$$
\left\{(t, x) \in \mathbb{R}^{+} \times \mathbb{R}^{n}, t \in[0,1],\|x\| \leq L\right\} .
$$

It follows that

$$
\left\|G\left(s, x_{n}(s)\right)-G(s, x(s))\right\| \leq \frac{\varepsilon}{k^{*}}
$$

Therefore, we infer that

$$
\left\|B_{2} x_{n}-B_{2} x\right\|_{0} \leq \varepsilon, \forall n \geq n_{0}
$$

The continuity of B_{2} is proved.

Claim 3. B_{2} is totally bounded.

Consider the closed ball $C=\left\{x \in X ;\|x\|_{0} \leq M\right\}$. We prove that the image $B_{2}(C)$ is relatively compact in X. We have, by (H2)

$$
\begin{aligned}
\left\|B_{2} x(t)\right\| & =\left\|\int_{0}^{1} k(t, s) G(s, x(s)) d s\right\| \\
& \leq k^{*} \int_{0}^{1}\|G(s, x(s))\| d s \\
& \leq k^{*} \int_{0}^{1} q(s) \psi(\|x(s)\|) d s \\
& \leq k^{*} \psi\left(\|x\|_{0}\right)\|q\|_{L^{1}} \\
& \leq k^{*} \psi(M)\|q\|_{L^{1}} .
\end{aligned}
$$

Then $B_{2}(C)$ is uniformly bounded. In addition, the following estimates hold true:

$$
\begin{aligned}
\left\|B_{2} x\left(t_{2}\right)-B_{2} x\left(t_{1}\right)\right\| & =\left\|\int_{0}^{1}\left[k\left(t_{2}, s\right)-k\left(t_{1}, s\right)\right] G(s, x(s)) d s\right\| \\
& \leq \int_{0}^{1}\left\|k\left(t_{2}, s\right)-k\left(t_{1}, s\right)\right\| q(s) \psi(M) d s \\
& \leq \psi(M) \int_{0}^{1} q(s)\left\|k\left(t_{2}, s\right)-k\left(t_{1}, s\right)\right\| d s
\end{aligned}
$$

the right-hand side term tends to 0 as $t_{2} \longrightarrow t_{2}$ for any $x \in C$. Then, $B_{2}(C)$ is equicontinuous. By the Arzela-Ascoli Theorem, the mapping B_{2} is completely continuous on X.

Claim 4. Now, we prove that, under Assumption (7), the second alternative of Theorem 1.1 is not valid.

Consider the sphere $B(0, r), r$ being defined by (H4). For $x \in B(0, r)$, we have

$$
\begin{aligned}
\left\|B_{1} 0+B_{2} x\right\|_{0} & =\sup _{t \in[0,1]}\left\|\int_{0}^{1} k(t, s) F(s, 0) d s+\int_{0}^{1} k(t, s) G(s, x(s)) d s\right\| \\
& \leq k^{*} F^{*}+k^{*}\|q\|_{L^{1}} \Psi\left(\|x\|_{0}\right) \\
& \leq k^{*} F^{*}+k^{*}\|q\|_{L^{1}} \Psi(r) \\
& <r\left(1-k^{*}\|l\|_{L^{1}}\right)
\end{aligned}
$$

Now, argue by contradiction and assume that there exist $\lambda \in(0,1)$ and $x \in \partial B(0, r)$ with $x=\lambda B_{1}\left(\frac{x}{\lambda}\right)+\lambda B_{2} x$. Then x verifies the estimates

$$
\|x(t)\| \leq k^{*}\|l\|_{L^{1}}\|x\|_{0}+k^{*} F^{*}+k^{*}\|q\|_{L^{1}} \Psi\left(\|x\|_{0}\right) .
$$

Hence

$$
r=\|x\|_{0} \leq \frac{k^{*}\left(F^{*}+\|q\|_{L^{1}} \Psi(r)\right)}{1-k^{*}\|l\|_{L^{1}}}
$$

contradicting Assumption (7). We then conclude that Assertion (a) in Theorem 1.1 is satisfied, proving the claim of Theorem 3.1.

3.1 Example

Consider the second order boundary value Sturm-Liouville problem

$$
\begin{gather*}
-x^{\prime \prime}+q x^{\prime}+r x=f\left(t, x(t), x^{\prime}(t)\right)+g\left(t, x(t), x^{\prime}(t)\right), 0<t<1 \tag{8}\\
a_{0} x(0)-a_{1} x^{\prime}(0)=c_{0} \tag{9}\\
b_{0} x(1)+b_{1} x^{\prime}(1)=c_{1} \tag{10}
\end{gather*}
$$

where a_{0}, a_{1} and b_{0}, b_{1} are nonnegative real numbers satisfying $a_{0}+a_{1}>0, b_{0}+b_{1}>0$ and $\left(c_{0}, c_{1}\right) \in \mathbb{R}^{2}$. The functions $f, g:[0,1] \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ are assumed Carathéodory; the function f satisfies Lipschitz condition with respect to the last two arguments while g verifies a growth condition as in Assumption (H2). The functions $q, r:[0,1] \rightarrow \mathbb{R}$ are continuous.
v^{t} being the transpose of the vector v, we adopt the notations $x^{\prime}=y, X=(x, y)^{t}$

$$
F=(0,-f)^{t} \quad G=(0,-g)^{t}
$$

as well as

$$
A=\left(\begin{array}{cc}
0 & 1 \\
r & q
\end{array}\right), \quad M=\left(\begin{array}{cc}
a_{0} & -a_{1} \\
0 & 0
\end{array}\right), \quad N=\left(\begin{array}{cc}
0 & 0 \\
b_{0} & b_{1}
\end{array}\right),
$$

and finally $c=\left(c_{0}, c_{1}\right)^{t}$.
Problem (8) - (10) is then rewritten under the matrix form

$$
\left\{\begin{array}{r}
X^{\prime}=A X+F+G \\
M X(0)+N X(1)=c .
\end{array}\right.
$$

Under Assumption (H4) both with $\operatorname{det}(M+N \Phi(1)) \neq 0$, Problem (8) - (10) has a solution x.

Remark 3.1 In case q, r are constant, notice that condition $\operatorname{det}(M+N \Phi(1)) \neq 0$ is nothing but $a_{0}\left(a_{1} e^{r_{2}}+b_{1} r_{2} e^{r_{2}}\right) \neq b_{0}\left(a_{1} e^{r_{2}}+b_{1} r_{r} e^{r_{2}}\right)$ where r_{1} and r_{2} are the roots of the characteristic equation $-s^{2}+q s+r=0$.

4 Existence of Extremal Solutions

In this section we shall prove the existence of maximal and minimal solutions of BVP (1)-(2) under suitable monotonicity conditions on the functions involved in it. We define the usual co-ordinate-wise order relation \leq in \mathbb{R}^{n} as follows. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ be any two elements. Then by $x \leq y$, we mean $x_{i} \leq y_{i}$ for all $i=1, \ldots, n$. We equip the space $X=C\left([0,1], \mathbb{R}^{n}\right)$ with the order relation \leq induced by the natural positive cone \mathcal{C} in X, that is,

$$
\mathcal{C}=\{x \in X \mid x(t) \geq 0, \forall t \in[0,1]\} .
$$

It is known that the cone \mathcal{C} is normal in X. Cones and their properties are detailed in [5]. Let $a, b \in X$ be such that $a \leq b$. Then, by an order interval $[a, b]$ we mean a set of points in X given by

$$
[a, b]=\{x \in X \mid a \leq x \leq b\} .
$$

Definition 4.1 Let X be an ordered Banach space. A mapping $T: X \rightarrow X$ is called isotone increasing if $T(x) \leq T(y)$ for any $x, y \in X$ with $x<y$. Similarly, T is called isotone decreasing if $T(x) \geq T(y)$ whenever $x<y$.

Definition 4.2 [5] We say that $x \in X$ is the least fixed point of G in X if $x=G x$ and $x \leq y$ whenever $y \in X$ and $y=G y$. The greatest fixed point of G in X is defined similarly by reversing the inequality. If both least and greatest fixed point of G in X exist, we call them extremal fixed point of G in X.

The following fixed point theorem is due to Heikkila and Lakshmikantham:

Theorem 4.1 [5] Let $[a, b]$ be an order interval in an order Banach space X and let $Q:[a, b] \rightarrow[a, b]$ be a nondecreasing mapping. If each sequence $\left(Q x_{n}\right) \subset Q([a, b])$ converges, whenever $\left(x_{n}\right)$ is a monotone sequence in $[a, b]$, then the sequence of Q-iteration of a converges to the least fixed point x_{*} of Q and the sequence of Q-iteration of b converges to the greatest fixed point x^{*} of Q. Moreover

$$
x_{*}=\min \{y \in[a, b], y \geq Q y\} \text { and } x^{*}=\max \{y \in[a, b], y \leq Q y\}
$$

As a consequence, Dhage and Henderson have proved the following
Theorem 4.2 [4]. Let K be a cone in the Banach space X and let $[a, b]$ be an order interval in a Banach space and let $B_{1}, B_{2}:[a, b] \rightarrow X$ be two functions satisfying
(a) B_{1} is a contraction,
(b) B_{2} is completely continuous,
(c) B_{1} and B_{2} are strictly monotone increasing, and
(d) $B_{1}(x)+B_{2}(x) \in[a, b], \forall x \in[a, b]$.

Further if the cone K in X is normal, then the equation $x=B_{1}(x)+B_{2}(x)$ has a least fixed point x_{*} and a greatest fixed point $x^{*} \in[a, b]$. Moreover $x_{*}=\lim _{n \rightarrow \infty} x_{n}$ and $x^{*}=\lim _{n \rightarrow \infty} y_{n}$, where $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are the sequences in $[a, b]$ defined by

$$
x_{n+1}=B_{1}\left(x_{n}\right)+B_{2}\left(x_{n}\right), x_{0}=a \text { and } y_{n+1}=B_{1}\left(y_{n}\right)+B_{2}\left(y_{n}\right), y_{0}=b .
$$

We need the following definitions in the sequel.
Definition 4.3 A function $v \in A C\left([0,1], \mathbb{R}^{n}\right)$ is called a strict lower solution of $B V P$ (1)-(2) if $v^{\prime}(t) \leq A(t) v(t)+F(t, v(t))+G(t, v(t))$ a.e. $t \in[0,1], M v(0)+N v(1) \leq \eta$. Similarly a strict upper solution w of $B V P$ (1)-(2) is defined by reversing the order of the above inequalities.

Definition 4.4 A solution x_{M} of $B V P$ (1)-(2) is said to be maximal if for any other solution x of $B V P(1)-(2)$ on $[0,1]$, we have that $x(t) \leq x_{M}(t)$ for each $t \in[0,1]$.
Similarly a minimal solution of $B V P$ (1)-(2) is defined by reversing the order of the inequalities.

Definition 4.5 A function $F(t, x)$ is called strictly monotone increasing in x almost everywhere for $t \in J$, if $F(t, x) \leq F(t, y)$ a.e. $t \in J$ for all $x, y \in \mathbb{R}^{n}$ with $x<y$. Similarly $F(t, x)$ is called strictly monotone decreasing in x almost everywhere for $t \in J$, if $F(t, x) \geq F(t, y)$ a.e. $t \in J$ for all $x, y \in \mathbb{R}^{n}$ with $x<y$.

We consider the following assumptions in the sequel.
(H5) The functions $F(t, y)$ and $G(t, y)$ are strictly monotone nondecreasing in y for almost each $t \in[0,1]$.
(H6) The BVP (1)-(2) has a lower solution v and an upper solution w with $v \leq w$.
(H7) The kernel k preserves the order, that is $k(t, s) v(s) \geq 0$ whenever $v \geq 0$.
Remark 4.1 If we assume that there exist some constant vectors $\underline{y} \leq \bar{y}$ such that for each $t \in[0,1]$

$$
\begin{aligned}
& A(t) \underline{y}+F(t, \underline{y})+G(t, \underline{y}) \geq 0, \quad(M+N) \underline{y} \leq \eta \\
& A(t) \bar{y}+F(t, \bar{y})+G(t, \bar{y}) \leq 0, \quad(M+N) \bar{y} \geq \eta
\end{aligned}
$$

then \underline{y}, \bar{y} are respectively lower and upper solutions for Problem (1)-(2).
Theorem 4.3 Assume that Assumptions (H1)-(H6) hold true. Then BVP (1)-(2) has minimal and maximal solutions on $[0,1]$.

Proof. It can be shown, as in the proof of Theorem 3.1 that B_{1} and B_{2} are respectively a contraction and compact on $[a, b]$. We shall show that B_{1} and B_{2} are isotone increasing on $[a, b]$. Let $x, y \in[a, b]$ be such that $x \leq y, x \neq y$. Then by Assumptions (H5), (H7), we have for each $t \in[0,1]$

$$
\begin{aligned}
B_{1}(x)(t) & =\int_{0}^{1} k(t, s) F(s, x(s)) d s \\
& \leq \int_{0}^{1} k(t, s) F(s, y(s)) d s \\
& =B_{1}(y)(t)
\end{aligned}
$$

Similarly, $B_{2}(x) \leq B_{2}(y)$. Therefore B_{1} and B_{2} are isotone increasing on $[a, b]$. Finally, let $x \in[a, b]$ be any element. By Assumptions (H6), we deduce that

$$
a \leq B_{1}(a)+B_{2}(a) \leq B_{1}(x)+B_{2}(x) \leq B_{1}(b)+B_{2}(b) \leq b,
$$

which shows that $B_{1}(x)+B_{2}(x) \in[a, b]$ for all $x \in[a, b]$. Thus, the functions B_{1} and B_{2} satisfy all conditions of Theorem 4.2. It follows that BVP (1)-(2) has maximal and minimal solutions on $[0,1]$. This completes the proof of Theorem 4.3.

References

[1] G. Anichini and G. Conti, Boundary value problems for systems of differential equations, Nonlinearity 1, 1988, 1-10.
[2] S. Bernfeld and V. Lakshmikantham, An Introduction to Nonlinear Boundary Value Problems, Academic Press, New York, 1974.
[3] T.A. Burton and C. Kirk, A fixed point theorem of Krasnoselskii-Schaefer type, Math. Nachr., 189, 1998, 23-31.
[4] B.C. Dhage and J. Henderson, Existence theory for nonlinear functional boundary value problems, Electron. J. Qual. Theory Differ. Equ. 2004, No. 1, 15 pp.
[5] S. Heikkila and V. Lakshmikantham, Monotone Iterative Technique for Nonlinear Discontinuous Differential Equations, Marcel Dekker Inc., New York, 1994.
[6] M.A. Krasnoselskir, Topological Methods in the Theory of Nonlinear Integral Equations, Cambridge University Press, New York, 1964.
[7] S.K. Ntouyas and P.Ch. Tsamatos, A Fixed point theorem of KrasnoselskiiNonlinear alternative type with applications to functional integral equations, Diff. Eqn. Dyn. Syst. 7, 1999, N2, 139-146.
[8] E. Zeidler, Nonlinear Functional Analysis: Part I, Springer Verlag, New York, 1985.

[^0]: ${ }^{1}$ Corresponding author

