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1 Introduction and statement of results:

For the definition of the iterated order of an entire function, we use the
same definition as in [9] , [2, p. 317] , [10, p. 129] . For all r ∈ R, we define
exp1 r := er and expp+1 r := exp

(

expp r
)

, p ∈ N. We also define for all r

sufficiently large log1 r := log r and logp+1 r := log
(

logp r
)

, p ∈ N. Moreover,
we denote by exp0 r := r, log0 r := r, log−1 r := exp1 r and exp−1 r := log1 r.

Definition 1.1 Let f be an entire function. Then the iterated p−order
σp (f) of f is defined by

σp (f) = lim
r→+∞

logpT (r, f)

log r
= lim

r→+∞

logp+1M (r, f)

log r
(p ≥ 1 is an integer) ,

(1.1)
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where T (r, f) is the Nevanlinna characteristic function of f and M (r, f) =
max|z|=r |f (z)| (see [7] , [13]) . For p = 1, this notation is called order and
for p = 2 hyper-order.

Definition 1.2 The finiteness degree of the order of an entire function f is
defined by

i (f) =















0, for f polynomial,
min {j ∈ N : σj (f) < ∞} , for f transcendental for which

some j ∈ N with σj (f) < ∞ exists,
∞, for f with σj (f) = ∞ for all j ∈ N.

(1.2)
Definition 1.3 Let f be an entire function. Then the iterated convergence
exponent of the sequence of distinct zeros of f (z) is defined by

λp (f) = lim
r→+∞

logp N
(

r, 1
f

)

log r
, (1.3)

where N
(

r, 1
f

)

is the counting function of distinct zeros of f (z) in {|z| < r}.

Thus λp (f − z) is an indication of oscillation of the fixed points of f (z) .

For k ≥ 2, we consider the linear differential equations

f (k) + Ak−1 (z) f (k−1) + ... + A1 (z) f
′

+ A0 (z) f = 0, (1.4)

f (k) + Ak−1 (z) f (k−1) + ... + A1 (z) f
′

+ A0 (z) f = F (z) , (1.5)

where A0 (z) , ..., Ak−1 (z) and F (z) /≡ 0 are entire functions. It is well-known
that all solutions of equations (1.4) and (1.5) are entire functions.

Extensive work in recent years has been concerned with the growth of
solutions of complex linear differential equations. Many results have been
obtained. Examples of such results are the following two theorems:

Theorem A [4]. Let A0 (z) , ..., Ak−1 (z) be entire functions such that there

exists one transcendental As (0 ≤ s ≤ k − 1) satisfying σ (Aj) ≤ σ (As) for

all j 6= s. Then equation (1.4) has at least one solution f that satisfies

σ2 (f) = σ (As) .
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Theorem B [4]. Let A0 (z) , ..., Ak−1 (z) satisfy the hypotheses of Theorem

A and F (z) /≡ 0 be an entire function with σ (F ) < +∞. Assume that f0

is a solution of (1.5) , and g1, ..., gk are a solution base of the corresponding

homogeneous equation (1.4) of (1.5) . Then there exists a gj (1 ≤ j ≤ k) ,
say g1, such that all the solutions in the solution subspace {cg1 + f0, c ∈ C}
satisfy σ2 (f) = λ2 (f) = σ (As) , with at most one exception.

The purpose of this paper is to extend the above two results by consid-
ering the iterated order. We will prove the following theorems:

Theorem 1.1 Let A0 (z) , ..., Ak−1 (z) be entire functions such that there

exists one transcendental As (0 ≤ s ≤ k − 1) satisfying σp (Aj) ≤ σp (As) <
+∞ for all j 6= s. Then equation (1.4) has at least one solution f that

satisfies i (f) = p + 1 and σp+1 (f) = σp (As) .

Theorem 1.2 Let A0 (z) , ..., Ak−1 (z) satisfy the hypotheses of Theorem

1.1 and F (z) /≡ 0 be an entire function with i (F ) = q. Assume that f0 is

a solution of (1.5) , and g1, ..., gk are a solution base of the corresponding

homogeneous equation (1.4) of (1.5) . If either i (F ) = q < p+1 or q = p+1
and σp+1 (F ) < σp (As) < +∞, then there exist a gj (1 ≤ j ≤ k) , say g1,
such that all the solutions in the solution subspace {cg1 + f0, c ∈ C} satisfy

i (f) = p+1 and σp+1 (f) = λp+1 (f) = σp (As) , with at most one exception.

Set g (z) = f (z) − z. Then clearly λp+1 (f − z) = λp+1 (g) and σp+1 (g) =
σp+1 (f) . By Theorem 1.1 and Theorem 1.2, we can get the following corol-
laries.

Corollary 1 Under the hypotheses of Theorem 1.1, if A1 + zA0 /≡ 0, then

equation (1.4) has at least one solution f that satisfies i (f) = p + 1 and

λp+1 (f − z) = σp+1 (f) = σp (As) .

Corollary 2 Under the hypotheses of Theorem 1.2, if F−A1−zA0 /≡ 0, then

every solution f of (1.5) with i (f) = p+1 and σp+1 (f) = λp+1 (f) = σp (As)
satisfies λp+1 (f − z) = σp (As) .

EJQTDE, 2006 No. 9, p. 3



2 Preliminary Lemmas

Our proofs depend mainly upon the following lemmas.

Lemma 2.1 ([3] , [11]) . Let f (z) =
∞
∑

n=0

an zn be an entire with σp+1 (f) = σ,

let µ (r) be the maximum term, i.e., µ (r) = max{|an| rn; n = 0, 1, ...} and

let νf (r) be the central index of f , i.e., νf (r) = max{m, µ (r) = |am| rm}.
Then

lim
r→∞

logp+1 νf (r)

log r
= σ. (2.1)

Lemma 2.2 (Wiman-Valiron, [8] , [12]) . Let f (z) be a transcendental en-

tire function, and let z be a point with |z| = r at which |f (z)| = M (r, f).
Then the estimation

f (k) (z)

f (z)
=

(

νf (r)

z

)k

(1 + o (1)) (k is an integer), (2.2)

holds for all |z| outside a set E2 of r of finite logarithmic measure lm (E2) =
∫ +∞

1

χ
E2

(t)

t
dt, where χ

E2
is the characteristic function of E2.

Lemma 2.3 (See Remark 1.3 of [9]) . If f is a meromorphic function with

i (f) = p ≥ 1, then σp (f) = σp

(

f
′
)

.

Lemma 2.4 ([5]) . Let f1, ..., fk be linearly independent meromorphic solu-

tions of the differential equation

f (k) + Ak−1 (z) f (k−1) + ... + A1 (z) f
′

+ A0 (z) f = 0, (2.3)

with meromorphic coefficients A0 (z) , ...Ak−1 (z). Then

m (r, Aj) = O

{

log

(

max
1≤n≤k

T (r, fn)

)}

(j = 0, ..., k − 1) . (2.4)

Lemma 2.5 ([9]) . Let f be a meromorphic function for which i (f) = p ≥ 1
and σp (f) = σ, and let k ≥ 1 be an integer. Then for any ε > 0,

m

(

r,
f (k)

f

)

= O
(

expp−2

{

rσ+ε
})

, (2.5)

EJQTDE, 2006 No. 9, p. 4



outside of a possible exceptional set E3 of finite linear measure.

To avoid some problems caused by the exceptional set we recall the
following Lemma.

Lemma 2.6 ([1, p. 68] , [9]) . Let g : [0, +∞) → R and h : [0, +∞) → R
be monotone non-decreasing functions such that g (r) ≤ h (r) outside of an

exceptional set E of finite linear measure. Then for any α > 1, there exists

r0 > 0 such that g (r) ≤ h (αr) for all r > r0.

3 Proof of Theorem 1.1

Suppose that f is a solution of (1.4) . We can rewrite (1.4) as

f (k)

f
+ Ak−1 (z)

f (k−1)

f
+ ... + As+1 (z)

f (s+1)

f
+ As (z)

f (s)

f

+As−1 (z)
f (s−1)

f
+ ... + A1 (z)

f ′

f
+ A0 (z) = 0. (3.1)

By Lemma 2.2, there exists a set E2 ⊂ (1, +∞) with logarithmic measure
lm (E2) < +∞ and we can choose z satisfying |z| = r /∈ [0, 1] ∪ E2 and
|f (z)| = M (r, f), such that (2.2) holds. For given small ε > 0 and sufficiently
large r, we have

|Aj (z)| ≤ expp

{

rσp(As)+ε
}

(j = 0, 1, ..., k − 1) . (3.2)

Substituting (2.2) into (3.1), we obtain by using (3.2)

(

νf (r)

|z|

)k

|1 + o (1)| ≤ k

(

νf (r)

|z|

)k−1

|1 + o (1)| expp

{

rσp(As)+ε
}

, (3.3)

(r /∈ [0, 1] ∪ E2) . By Lemma 2.1, Lemma 2.6 and (3.3) , we obtain that i (f) ≤
p + 1 and

σp+1 (f) = lim
r→∞

logp+1 νf (r)

log r
≤ σp (As) + ε. (3.4)

Since ε > 0 is arbitrary, then σp+1 (f) ≤ σp (As) .
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Assume that {f1, ..., fk} is a solution base of (1.4). Then by Lemma 2.4

m (r, As) ≤ M log

(

max
1≤n≤k

T (r, fn)

)

. (3.5)

We assert that there exists a set E ⊂ (0, +∞) of infinite linear measure such
that

lim
r→∞
r∈E

logp m (r, As)

log r
= σp (As) . (3.6)

In fact, there exists a sequence {rn} (rn → ∞) such that

lim
rn→∞

logp m (rn, As)

log rn

= σp (As) . (3.7)

We take E =
∞
∪

n=1
[rn, 2rn]. Then on E, (3.6) holds obviously. Now by

setting En = {r : r ∈ E and m (r, As) ≤ M log T (r, fn) (n = 1, ..., k)}, we

have
k
∪

n=1
En =E. It is easy to see that there exists at least one En, say E1,

which has an infinite linear measure and on which

lim
r→∞
r∈E1

logp m (r, As)

log r
= σp (As) , (3.8)

and

m (r, As) ≤ M log T (r, f1) (r ∈ E1) . (3.9)

From (3.8) and (3.9) we have i (f1) ≥ p + 1 and σp+1 (f1) ≥ σp (As) . This
and the fact that i (f1) ≤ p + 1 and σp+1 (f1) ≤ σp (As) yield i (f1) = p + 1
and σp+1 (f1) = σp (As). The proof of Theorem 1.1 is complete.

4 Proof of Theorem 1.2

Assume that f is a solution of (1.5) and g1, ..., gk are k entire solutions of the
corresponding homogeneous equation (1.4) . Then by the proof of Theorem
1.1, we know that i (gj) ≤ p + 1, σp+1 (gj) ≤ σp (As) (j = 1, 2, 3..., k) and
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there exists a gj, say g1, satisfying i (g1) = p + 1, σp+1 (g1) = σp (As) . Thus
by variation of parameters, f can be expressed in the form

f (z) = B1 (z) g1 (z) + ... + Bk (z) gk (z) , (4.1)

where B1 (z) , ..., Bk (z) are determined by

B
′

1 (z) g1 (z) + ... + B
′

k (z) gk (z) = 0

B
′

1 (z) g
′

1 (z) + ... + B
′

k (z) g
′

k (z) = 0

.....................................................

B
′

1 (z) g
(k−1)

1 (z) + ... + B
′

k (z) g
(k−1)

k (z) = F. (4.2)

Noting that the Wronskian W (g1, g2, ..., gk) is a differential polynomial in
g1, g2, ..., gk with constant coefficients, it follows that

σp+1 (W ) ≤ max {σp+1 (gj) : j = 1, ..., k} ≤ σp (As) .

Set

Wj =

∣

∣

∣

∣

∣

∣

∣

∣

∣

g1, ...,
(j)

0 , ..., gk

...

...

g
(k−1)
1 , ..., F, ..., g

(k−1)
k

∣

∣

∣

∣

∣

∣

∣

∣

∣

= F.Gj (j = 1, ..., k) , (4.3)

where Gj (g1, g2, ..., gk) are differential polynomials in g1, g2, ..., gk and of their
derivatives with constant coefficients. So

σp+1 (Gj) ≤ max {σp+1 (gj) : j = 1, ..., k} ≤ σp (As) (j = 1, ..., k) ,

B
′

j =
Wj

W
=

F.Gj

W
(j = 1, ..., k) . (4.4)

Since i (F ) = q < p + 1 or i (F ) = p + 1, σp+1 (F ) < σp (As), then by Lemma
2.3, we obtain

σp+1 (Bj) = σp+1

(

B
′

j

)

≤ max (σp+1 (F ) , σp (As)) = σp (As) (j = 1, ..., k) .

(4.5)
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Then from (4.1) and (4.5) , we get i (f) ≤ p + 1 and

σp+1 (f) ≤ max {σp+1 (gj) , σp+1 (Bj) : j = 1, ..., k} ≤ σp (As) . (4.6)

Now we set

H = {fc = cg1 + f0, c ∈ C} , (4.7)

where f0 is a solution of (1.5) . Obviously, every fc in H is a solution of (1.5) .
Now we prove that for any two solutions fa and fb (a 6= b) in H , there is at
least one solution, say fa, among fa and fb satisfying i (fa) = p + 1 and
σp+1 (fa) = λp+1 (fa) = σp (As) . Since fa = (a − b) g1+ fb, then

T (r, g1) ≤ T (r, fa) + T (r, fb) + O (1) . (4.8)

Assume that the set E1 satisfies the condition as required in proof of Theorem
1.1. Then there exists at least one of fa and fb, say fa, such that there is a
subset E4 of E1 with infinite linear measure and

T (r, fb) ≤ T (r, fa) , for r ∈ E4. (4.9)

We get from (4.8) and (4.9)

T (r, g1) ≤ 2T (r, fa) + O (1) , for r ∈ E4. (4.10)

Thus, i (fa) ≥ p + 1 and σp+1 (fa) ≥ σp+1 (g1) = σp (As) and hence i (fa) =
p + 1, σp+1 (fa) = σp (As) = σ.

Now we prove that σp+1 (fa) = λp+1 (fa) = σ. By (1.5) , it is easy to see
that if fa has a zero at z0 of order α (> k), then F must have a zero at z0 of
order α − k. Hence,

n

(

r,
1

fa

)

≤ k n

(

r,
1

fa

)

+ n

(

r,
1

F

)

(4.11)

and

N

(

r,
1

fa

)

≤ k N

(

r,
1

fa

)

+ N

(

r,
1

F

)

. (4.12)

Now (1.5) can be rewritten as

1

fa

=
1

F

(

f
(k)
a

fa

+ Ak−1
f

(k−1)
a

fa

+ ... + A1
f

′

a

fa

+ A0

)

. (4.13)
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By (4.13), we have

m

(

r,
1

fa

)

≤

k
∑

j=1

m

(

r,
f

(j)
a

fa

)

+

k
∑

j=1

m (r, Ak−j) + m

(

r,
1

F

)

+ O (1) . (4.14)

Applying the Lemma 2.5, we have

m

(

r,
f

(j)
a

fa

)

= O
(

expp−1

{

rσ+ε
})

(j = 1, ..., k − 1) , (σp+1 (fa) = σ) ,

(4.15)
holds for all r outside a set E3 ⊂ (0, +∞) with a linear measure m (E3) =
δ < +∞. By (4.12) , (4.14) and (4.15), we get

T (r, fa) = T

(

r,
1

fa

)

+ O (1)

≤ kN

(

r,
1

fa

)

+

k
∑

j=1

T (r, Ak−j)+T (r, F )+O
(

expp−1

{

rσ+ε
})

(|z| = r /∈ E3) .

(4.16)
For sufficiently large r, we have

T (r, A0) + ... + T (r, Ak−1) ≤ k expp−1

{

rσ+ε
}

. (4.17)

If i (F ) = q < p + 1, then q − 1 ≤ p − 1 and

T (r, F ) ≤ expq−1

{

rσq(F )+ε
}

≤ expp−1

{

rσq(F )+ε
}

(σq (F ) < ∞) . (4.18)

Thus, by (4.16) − (4.18), we have

T (r, fa) ≤ k N

(

r,
1

fa

)

+ k expp−1

{

rσ+ε
}

+ expp−1

{

rσq(F )+ε
}

+ O
(

expp−1

{

rσ+ε
})

(|z| = r /∈ E3) . (4.19)

Hence for any fa with σp+1 (fa) = σ, by (4.19) and Lemma 2.6, we have
σp+1 (fa) ≤ λp+1 (fa). Therefore, λp+1 (fa) = σp+1 (fa) = σ.
If i (F ) = p + 1 and σp+1 (F ) < σp (As) = σ, then

T (r, F ) ≤ expp

{

rσp+1(F )+ε
}

≤ expp−1

{

rσ+ε
}

. (4.20)
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Thus, by (4.16) − (4.17) and (4.20), we have

T (r, fa) ≤ k N

(

r,
1

fa

)

+ k expp−1

{

rσ+ε
}

+ expp−1

{

rσ+ε
}

+ O
(

expp−1

{

rσ+ε
})

(|z| = r /∈ E3) . (4.21)

By using similar reasoning as above, we obtain from (4.21) and Lemma 2.6
that λp+1 (fa) = σp+1 (fa) = σ. The proof of Theorem 1.2 is complete.
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