# Global Solutions for a Nonlinear Wave Equation with the $p$-Laplacian Operator * 

Hongjun Gao<br>Institute of Applied Physics and Computational Mathematics<br>100088 Beijing, China<br>To Fu Ma<br>Departamento de Matemática - Universidade Estadual de Maringá 87020-900 Maringá-PR, Brazil


#### Abstract

We study the existence and asymptotic behaviour of the global solutions of the nonlinear equation $$
u_{t t}-\Delta_{p} u+(-\Delta)^{\alpha} u_{t}+g(u)=f
$$ where $0<\alpha \leq 1$ and $g$ does not satisfy the sign condition $g(u) u \geq 0$.


Key words: Quasilinear hyperbolic equation, asymptotic behaviour, small data.
AMS Subject Classification: 35B40, 35L70.

## 1. Introduction

The study of global existence and asymptotic behaviour for initial-boundary value problems involving nonlinear operators of the type

$$
u_{t t}-\sum_{i=1}^{n}\left\{\sigma_{i}\left(u_{x_{i}}\right)\right\}_{x_{i}}-\Delta u_{t}=f(t, x) \quad \text { in }(0, T) \times \Omega
$$

goes back to Greenberg, MacCamy \& Mizel [3], where they considered the one-dimensional case with smooth data. Later, several papers have appeared in that direction, and some of its important results can be found in, for

[^0]example, Ang \& Pham Ngoc Dinh [1], Biazutti [2], Nakao [8], Webb [10] and Yamada [11]. In all of the above cited papers, the damping term $-\Delta u_{t}$ played an essential role in order to obtain global solutions. Our objective is to study this kind of equations under a weaker damping given by $(-\Delta)^{\alpha} u_{t}$ with $0<\alpha \leq 1$. This approach was early considered by Medeiros and Milla Miranda [6] to Kirchhoff equations. We also consider the presence of a forcing term $g(x, u)$ that does not satisfy the sign condition $g(x, u) u \geq 0$. Our study is based on the pseudo Laplacian operator
$$
-\Delta_{p} u=-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\left|\frac{\partial u}{\partial x_{i}}\right|^{p-2} \frac{\partial u}{\partial x_{i}}\right)
$$
which is used as a model for several monotone hemicontinuous operators.
Let $\Omega$ be a bounded domain in $\mathbb{R}^{n}$ with smooth boundary $\partial \Omega$. We consider the nonlinear initial-boundary value problem
\[

\left\{$$
\begin{array}{l}
u_{t t}-\Delta_{p} u+(-\Delta)^{\alpha} u_{t}+g(x, u)=f(t, x) \quad \text { in } \quad(0, T) \times \Omega  \tag{1.1}\\
u=0 \text { on }(0, T) \times \partial \Omega \\
u(0, x)=u_{0} \quad \text { and } \quad u_{t}(0, x)=u_{1} \quad \text { in } \quad \Omega
\end{array}
$$\right.
\]

where $0<\alpha \leq 1$ and $p \geq 2$. We prove that, depending on the growth of $g$, problem (1.1) has a global weak solution without assuming small initial data. In addition, we show the exponential decay of solutions when $p=2$ and algebraic decay when $p>2$. The global solutions are constructed by means of the Galerkin approximations and the asymptotic behaviour is obtained by using a difference inequality due to M. Nakao [7]. Here we only use standard notations. We often write $u(t)$ instead $u(t, x)$ and $u^{\prime}(t)$ instead $u_{t}(t, x)$. The norm in $L^{p}(\Omega)$ is denoted by $\|\cdot\|_{p}$ and in $W_{0}^{1, p}(\Omega)$ we use the norm

$$
\|u\|_{1, p}^{p}=\sum_{j=1}^{n}\left\|u_{x_{j}}\right\|_{p}^{p}
$$

For the reader's convenience, we recall some of the basic properties of the operators used here. The degenerate operator $-\Delta_{p}$ is bounded, monotone and hemicontinuous from $W_{0}^{1, p}(\Omega)$ to $W^{-1, q}(\Omega)$, where $p^{-1}+q^{-1}=1$. The powers for the Laplacian operator is defined by

$$
(-\Delta)^{\alpha} u=\sum_{j=1}^{\infty} \lambda_{j}^{\alpha}\left(u, \varphi_{j}\right) \varphi_{j}
$$

where $0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots$ and $\varphi_{1}, \varphi_{2}, \varphi_{3}, \cdots$ are, respectively, the sequence of the eigenvalues and eigenfunctions of $-\Delta$ in $H_{0}^{1}(\Omega)$. Then

$$
\|u\|_{D\left((-\Delta)^{\alpha}\right)}=\left\|(-\Delta)^{\alpha} u\right\|_{2} \quad \forall u \in D\left((-\Delta)^{\alpha}\right)
$$

EJQTDE, 1999 No. 11, p. 2
and $D\left((-\Delta)^{\alpha}\right) \subset D\left((-\Delta)^{\beta}\right)$ compactly if $\alpha>\beta \geq 0$. In particular, for $p \geq 2$ and $0<\alpha \leq 1, W_{0}^{1, p}(\Omega) \hookrightarrow D\left((-\Delta)^{\alpha / 2}\right) \hookrightarrow L^{2}(\Omega)$.

## 2. Existence of Global Solutions

Let $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function satisfying the growth condition

$$
\begin{equation*}
|g(x, u)| \leq a|u|^{\sigma-1}+b \quad \forall(x, u) \in \Omega \times \mathbb{R} \tag{2.1}
\end{equation*}
$$

where $a, b$ are positive constants, $1<\sigma<p n /(n-p)$ if $n>p$ and $1<\sigma<\infty$ if $n \leq p$.

Theorem 2.1 Let us assume condition (2.1) with $\sigma<p$. Then given $u_{0} \in$ $W_{0}^{1, p}(\Omega), u_{1} \in L^{2}(\Omega)$ and $f \in L^{2}\left(0, T ; L^{2}(\Omega)\right)$, there exists a function $u$ : $(0, T) \times \Omega \rightarrow \mathbb{R}$ such that

$$
\begin{gather*}
u \in L^{\infty}\left(0, T ; W_{0}^{1, p}(\Omega)\right),  \tag{2.2}\\
u^{\prime} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; D\left((-\Delta)^{\frac{\alpha}{2}}\right)\right),  \tag{2.3}\\
u(0)=u_{0} \quad \text { and } \quad u^{\prime}(0)=u_{1} \quad \text { a.e. in } \quad \Omega  \tag{2.4}\\
u_{t t}-\Delta_{p} u+(-\Delta)^{\alpha} u_{t}+g(x, u)=f \quad \text { in } \quad L^{2}\left(0, T ; W^{-1, q}(\Omega)\right), \tag{2.5}
\end{gather*}
$$

where $p^{-1}+q^{-1}=1$.

Next we consider an existence result when $\sigma \geq p$. In this case, the global solution is obtained with small initial data. For each $m \in \mathbb{N}$ we put

$$
\gamma_{m}=\frac{1}{2}\left\|u_{1 m}\right\|_{2}^{2}+\frac{3}{2 p}\left\|u_{0 m}\right\|_{1, p}^{p}+\frac{a C_{\sigma}}{\sigma}\left\|u_{0 m}\right\|_{1, p}^{\sigma}+\frac{2\left(\sqrt[p]{2} b C_{1}\right)^{q}}{q}
$$

where $C_{k}>0$ is the Sobolev constant for the inequality $\|u\|_{k} \leq C_{k}\|u\|_{1, p}$, when $W_{0}^{1, p}(\Omega) \hookrightarrow L^{k}(\Omega)$. We also define the polynomial $Q$ by

$$
Q(z)=\frac{1}{2 p} z^{p}-\frac{a C_{\sigma}}{\sigma} z^{\sigma}
$$

which is increasing in $\left[0, z_{0}\right]$, where

$$
z_{0}=\left(2 a C_{\sigma}\right)^{\frac{-1}{\sigma-p}}
$$

is its unique local maximum. We will assume that

$$
\begin{equation*}
\left\|u_{0}\right\|_{1, p}<z_{0} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma+\frac{1}{4 \lambda_{1}^{\alpha}} \int_{0}^{T}\|f(t)\|_{2}^{2} d t<Q\left(z_{0}\right) \tag{2.7}
\end{equation*}
$$

where $\gamma=\lim _{m \rightarrow \infty} \gamma_{m}$.

Theorem 2.2 Suppose that condition (2.1) holds with $\sigma>p$. Suppose in addition that inital data satisfy (2.6) and (2.7). Then there exists a function $u:(0, T) \times \Omega \rightarrow \mathbb{R}$ satisfying $(2.2)-(2.5)$.

Proof of Theorem 2.1: Let $r$ be an integer for which $H_{0}^{r}(\Omega) \hookrightarrow W_{0}^{1, p}(\Omega)$ is continuous. Then the eigenfunctions of $-\Delta^{r} w_{j}=\alpha_{j} w_{j}$ in $H_{0}^{r}(\Omega)$ yields a "Galerkin" basis for both $H_{0}^{r}(\Omega)$ and $L^{2}(\Omega)$. For each $m \in \mathbb{N}$, let us put $V_{m}=\operatorname{Span}\left\{w_{1}, w_{2}, \cdots, w_{m}\right\}$. We search for a function

$$
u_{m}(t)=\sum_{j=1}^{m} k_{j m}(t) w_{j}
$$

such that for any $v \in V_{m}, u_{m}(t)$ satisfies the approximate equation

$$
\begin{equation*}
\int_{\Omega}\left\{u_{m}^{\prime \prime}(t)-\Delta_{p} u_{m}(t)+(-\Delta)^{\alpha} u_{m}^{\prime}(t)+g\left(x, u_{m}(t)\right)-f(t, x)\right\} v d x=0 \tag{2.8}
\end{equation*}
$$

with the initial conditions

$$
u_{m}(0)=u_{0 m} \quad \text { and } \quad u_{m}^{\prime}(0)=u_{1 m}
$$

where $u_{0 m}$ and $u_{1 m}$ are chosen in $V_{m}$ so that

$$
\begin{equation*}
u_{0 m} \rightarrow u_{0} \text { in } W_{0}^{1, p}(\Omega) \quad \text { and } \quad u_{1 m} \rightarrow u_{1} \text { in } L^{2}(\Omega) \tag{2.9}
\end{equation*}
$$

Putting $v=w_{j}, j=1, \cdots, m$, we observe that (2.8) is a system of ODEs in the variable $t$ and has a local solution $u_{m}(t)$ in a interval $\left[0, t_{m}\right)$. In the next step we obtain the a priori estimates for the solution $u_{m}(t)$ so that it can be extended to the whole interval $[0, T]$.

A Priori Estimates: We replace $v$ by $u_{m}^{\prime}(t)$ in the approximate equation (2.8) and after integration we have

$$
\begin{aligned}
& \frac{1}{2}\left\|u_{m}^{\prime}(t)\right\|_{2}^{2}+\frac{1}{p}\left\|u_{m}(t)\right\|_{1, p}^{p}+\int_{0}^{t}\left\|(-\Delta)^{\frac{\alpha}{2}} u_{m}^{\prime}(s)\right\|_{2}^{2} d s+\int_{\Omega} G\left(x, u_{m}(t)\right) d x \\
& \quad \leq \int_{0}^{t}\|f(s)\|_{2}\left\|u_{m}^{\prime}(s)\right\|_{2} d s+\frac{1}{2}\left\|u_{1 m}\right\|_{2}^{2}+\frac{1}{p}\left\|u_{0 m}\right\|_{1, p}^{p}+\int_{\Omega} G\left(x, u_{0}\right) d x
\end{aligned}
$$

where $G(x, u)=\int_{0}^{u} g(x, s) d s$. Now from growth condition (2.1) and the Sobolev embedding, we have that

$$
\begin{equation*}
\int_{\Omega}\left|G\left(x, u_{m}(t)\right)\right| d x \leq \frac{a}{\sigma} C_{\sigma}\left\|u_{m}(t)\right\|_{1, p}^{\sigma}+b C_{1}\left\|u_{m}(t)\right\|_{1, p} \tag{2.10}
\end{equation*}
$$

But since $p>\sigma$, there exists a constant $\bar{C}>0$ such that

$$
\int_{\Omega}\left|G\left(x, u_{m}\right)\right| d x \leq \frac{1}{2 p}\left\|u_{m}(t)\right\|_{1, p}^{p}+\bar{C}
$$

and then we have

$$
\begin{aligned}
\frac{1}{2}\left\|u_{m}^{\prime}(t)\right\|_{2}^{2} & +\frac{1}{2 p}\left\|u_{m}(t)\right\|_{1, p}^{p}+\int_{0}^{t}\left\|(-\Delta)^{\frac{\alpha}{2}} u_{m}^{\prime}(s)\right\|_{2}^{2} d s \\
& \leq \int_{0}^{t}\|f(s)\|_{2}\left\|u_{m}^{\prime}(s)\right\|_{2} d s+\frac{1}{2}\left\|u_{1 m}\right\|_{2}^{2}+\frac{3}{2 p}\left\|u_{0 m}\right\|_{1, p}^{p}+2 \bar{C}
\end{aligned}
$$

Using the convergence (2.9) and the Gronwall's lemma, there exists a constant $C>0$ independent of $t, m$ such that

$$
\begin{equation*}
\left\|u_{m}^{\prime}(t)\right\|_{2}^{2}+\left\|u_{m}(t)\right\|_{1, p}^{p}+\int_{0}^{t}\left\|(-\Delta)^{\frac{\alpha}{2}} u_{m}^{\prime}(s)\right\|_{2}^{2} d s \leq C \tag{2.11}
\end{equation*}
$$

With this estimate we can extend the approximate solutions $u_{m}(t)$ to the interval $[0, T]$ and we have that

$$
\begin{gather*}
\left(u_{m}\right) \text { is bounded in } L^{\infty}\left(0, T ; W_{0}^{1, p}(\Omega)\right)  \tag{2.12}\\
\left(u_{m}^{\prime}\right) \text { is bounded in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right)  \tag{2.13}\\
\left(u_{m}^{\prime}\right) \text { is bounded in } L^{2}\left(0, T ; D\left((-\Delta)^{\frac{\alpha}{2}}\right)\right) \tag{2.14}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(-\Delta_{p} u_{m}\right) \quad \text { is bounded in } \quad L^{\infty}\left(0, T ; W^{-1, q}(\Omega)\right) . \tag{2.15}
\end{equation*}
$$

Now we are going to obtain an estimate for $\left(u_{m}^{\prime \prime}\right)$. Since our Galerkin basis was taken in the Hilbert space $H^{r}(\Omega) \subset W_{0}^{1, p}(\Omega)$, we can use the standard projection arguments as described in Lions [4]. Then from the approximate equation and the estimates (2.12)-(2.15) we get

$$
\begin{equation*}
\left(u_{m}^{\prime \prime}\right) \quad \text { is bounded in } \quad L^{2}\left(0, T ; H^{-r}(\Omega)\right) . \tag{2.16}
\end{equation*}
$$

Passage to the Limit: From (2.12)-(2.14), going to a subsequence if necessary, there exists $u$ such that

$$
\begin{gather*}
u_{m} \rightharpoonup u \quad \text { weakly star in } \quad L^{\infty}\left(0, T ; W_{0}^{1, p}(\Omega)\right)  \tag{2.17}\\
u_{m}^{\prime} \rightharpoonup u^{\prime} \quad \text { weakly star in } \quad L^{\infty}\left(0, T ; L^{2}(\Omega)\right)  \tag{2.18}\\
u_{m}^{\prime} \rightharpoonup u^{\prime} \quad \text { weakly in } \quad L^{2}\left(0, T ; D\left((-\Delta)^{\frac{\alpha}{2}}\right)\right. \tag{2.19}
\end{gather*}
$$

and in view of (2.15) there exists $\chi$ such that

$$
\begin{equation*}
-\Delta_{p} u_{m} \rightharpoonup \chi \quad \text { weakly star in } \quad L^{\infty}\left(0, T ; W^{-1, q}(\Omega)\right) \tag{2.20}
\end{equation*}
$$

By applying the Lions-Aubin compactness lemma we get from (2.12)-(2.13)

$$
\begin{equation*}
u_{m} \rightarrow u \quad \text { strongly in } \quad L^{2}\left(0, T ; L^{2}(\Omega)\right) \tag{2.21}
\end{equation*}
$$

and since $D\left((-\Delta)^{\frac{\alpha}{2}}\right) \hookrightarrow L^{2}(\Omega)$ compactly, we get from (2.14) and (2.16)

$$
\begin{equation*}
u_{m}^{\prime} \rightarrow u^{\prime} \quad \text { strongly in } \quad L^{2}\left(0, T ; L^{2}(\Omega)\right) \tag{2.22}
\end{equation*}
$$

Using the growth condition (2.1) and (2.21) we see that

$$
\int_{0}^{T} \int_{\Omega}\left|g\left(x, u_{m}(t, x)\right)\right|^{\frac{\sigma}{\sigma-1}} d x d t
$$

is bounded and

$$
g\left(x, u_{m}\right) \rightarrow g(x, u) \quad \text { a.e. in } \quad(0, T) \times \Omega
$$

Therefore from Lions [4] (Lemma 1.3) we infer that

$$
\begin{equation*}
g\left(x, u_{m}\right) \rightharpoonup g(x, u) \quad \text { weakly in } \quad L^{\frac{\sigma}{\sigma-1}}\left(0, T ; L^{\frac{\sigma}{\sigma-1}}(\Omega)\right) \tag{2.23}
\end{equation*}
$$

With these convergence we can pass to the limit in the approximate equation and then

$$
\begin{equation*}
\frac{d}{d t}\left(u^{\prime}(t), v\right)+\langle\chi(t), v\rangle+\left((-\Delta)^{\alpha} u^{\prime}(t), v\right)+(g(x, u(t)), v)=(f(t), v) \tag{2.24}
\end{equation*}
$$

for all $v \in W^{1, p}(\Omega)$, in the sense of distributions. This easily implies that (2.2)-(2.4) hold. Finally, since we have the strong convergence (2.22), we can use a standard monotonicity argument as done in Biazutti [2] or Ma \& Soriano [5] to show that $\chi=-\Delta_{p} u$. This ends the proof.

Proof of Theorem 2.2: We only show how to obtain the estimate (2.11). The remainder of the proof follows as before. We apply an argument made by L. Tartar [9]. From (2.10) we have

$$
\int_{\Omega}\left|G\left(x, u_{m}\right)\right| d x \leq \frac{a C_{\sigma}}{\sigma}\left\|u_{m}\right\|_{1, p}^{\sigma}+\frac{1}{2 p}\left\|u_{m}\right\|_{1, p}^{p}+\frac{\left(\sqrt[p]{2} b C_{1}\right)^{q}}{q}
$$

and therefore

$$
\begin{aligned}
\frac{1}{2}\left\|u_{m}^{\prime}(t)\right\|_{2}^{2}+Q\left(\left\|u_{m}(t)\right\|_{1, p}\right) & +\int_{0}^{t}\left\|(-\Delta)^{\frac{\alpha}{2}} u_{m}^{\prime}(s)\right\|_{2}^{2} d s \\
& \leq \gamma_{m}+\int_{0}^{t}\|f(s)\|_{2}\left\|u_{m}^{\prime}(s)\right\|_{2} d s
\end{aligned}
$$

Since

$$
\begin{equation*}
\left\|(-\Delta)^{\frac{\alpha}{2}} u_{m}^{\prime}(s)\right\|_{2} \geq \lambda_{1}^{\frac{\alpha}{2}}\left\|u_{m}^{\prime}(t)\right\|_{2}, \tag{2.25}
\end{equation*}
$$

where $\lambda_{1}$ is the first eigenvalue of $-\Delta$ in $H_{0}^{1}(\Omega)$, this implies that

$$
\begin{equation*}
\frac{1}{2}\left\|u_{m}^{\prime}(t)\right\|_{2}^{2}+Q\left(\left\|u_{m}(t)\right\|_{1, p}\right) \leq \gamma_{m}+\frac{1}{4 \lambda_{1}^{\alpha}} \int_{0}^{T}\|f(t)\|_{2}^{2} d t . \tag{2.26}
\end{equation*}
$$

We claim that there exists an integer $N$ such that

$$
\begin{equation*}
\left\|u_{m}(t)\right\|_{1, p}<z_{0} \quad \forall t \in\left[0, t_{m}\right) \quad m>N \tag{2.27}
\end{equation*}
$$

Suppose the claim is proved. Then $Q\left(\left\|u_{m}(t)\right\|_{1, p}\right) \geq 0$ and from (2.7) and (2.26), $\left\|u_{m}^{\prime}(t)\right\|_{2}$ is bounded and consequently (2.11) follows.

Proof of the Claim: Suppose (2.27) false. Then for each $m>N$, there exists $t \in\left[0, t_{m}\right)$ such that $\left\|u_{m}(t)\right\|_{1, p} \geq z_{0}$. We note that from (2.6) and (2.9) there exists $N_{0}$ such that

$$
\left\|u_{m}(0)\right\|_{1, p}<z_{0} \quad \forall m>N_{0} .
$$

Then by continuity there exists a first $t_{m}^{*} \in\left(0, t_{m}\right)$ such that

$$
\begin{equation*}
\left\|u_{m}\left(t_{m}^{*}\right)\right\|_{1, p}=z_{0} \tag{2.28}
\end{equation*}
$$

from where

$$
Q\left(\left\|u_{m}(t)\right\|_{1, p}\right) \geq 0 \quad \forall t \in\left[0, t_{m}^{*}\right] .
$$

Now from (2.7) and (2.26), there exist $N>N_{0}$ and $\beta \in\left(0, z_{0}\right)$ such that

$$
0 \leq \frac{1}{2}\left\|u_{m}^{\prime}(t)\right\|_{2}^{2}+Q\left(\left\|u_{m}(t)\right\|_{1, p}\right) \leq Q(\beta) \quad \forall t \in\left[0, t_{m}^{*}\right] \quad \forall m>N .
$$

Then the monotonicity of $Q$ in $\left[0, z_{0}\right]$ implies that

$$
0 \leq\left\|u_{m}(t)\right\|_{1, p} \leq \beta<z_{0} \quad \forall t \in\left[0, t_{m}^{*}\right]
$$

and in particular, $\left\|u_{m}\left(t_{m}^{*}\right)\right\|_{1, p}<z_{0}$, which is a contradiction to (2.28).
Remarks: From the above proof we have the following immediate conclusion: The smallness of initial data can be dropped if either condition (2.1) holds with $\sigma=p$ and coefficient $a$ is sufficiently small, or $\sigma>p$ and the sign condition $g(x, u) u \geq 0$ is satisfied.

## 3. Asymptotic Behaviour

Theorem 3.1 Let u be a solution of Problem (1.1) given by
(a) either Theorem 2.1 with the additional assumption: there exists $\rho>0$ such that

$$
\begin{equation*}
g(x, u) u \geq \rho G(x, u) \geq 0 \tag{3.1}
\end{equation*}
$$

(b) or Theorem 2.2.

Then there exists positive constants $C$ and $\theta$ such that

$$
\left\|u^{\prime}(t)\right\|_{2}^{2}+\|u(t)\|_{1, p}^{p} \leq C \exp (-\theta t) \quad \text { if } \quad p=2,
$$

or

$$
\left\|u^{\prime}(t)\right\|_{2}^{2}+\|u(t)\|_{1, p}^{p} \leq C(1+t)^{\frac{-p}{p-2}} \quad \text { if } \quad p>2 .
$$

The proof of Theorem 3.1 is based on the following difference inequality of M. Nakao [7].

Lemma 3.1 (Nakao) Let $\phi: \mathbf{R}^{+} \rightarrow \mathbf{R}$ be a bounded nonnegative function for which there exist constants $\beta>0$ and $\gamma \geq 0$ such that

$$
\sup _{t \leq s \leq t+1}(\phi(s))^{1+\gamma} \leq \beta(\phi(t)-\phi(t+1)) \quad \forall t \geq 0 .
$$

Then
(i) If $\gamma=0$, there exist positive constants $C$ and $\theta$ such that

$$
\phi(t) \leq C \exp (-\theta t) \quad \forall t \geq 0 .
$$

(ii) If $\gamma>0$, there exists a positive constant $C$ such that

$$
\phi(t) \leq C(1+t)^{\frac{-1}{\gamma}} \quad \forall t \geq 0 .
$$

Let us define the approximate energy of the system (1.1) by

$$
\begin{equation*}
E_{m}(t)=\frac{1}{2}\left\|u_{m}^{\prime}(t)\right\|_{2}^{2}+\frac{1}{p}\left\|u_{m}(t)\right\|_{1, p}^{p}+\int_{\Omega} G\left(x, u_{m}(t)\right) d x \tag{3.2}
\end{equation*}
$$

Then the following two lemmas hold.
Lemma 3.2 There exists a constant $k>0$ such that

$$
\begin{equation*}
k E_{m}(t) \leq\left\|u_{m}(t)\right\|_{1, p}^{p}+\int_{\Omega} g\left(x, u_{m}(t)\right) u_{m}(t) d x \tag{3.3}
\end{equation*}
$$

Proof. In the case $(a)$, condition (3.3) is a direct consequence of (3.1). In the case $(b)$ the result follows from (2.27). In fact, from assumption (2.1) with $b=0$ we have

$$
\int_{\Omega}\left|G\left(x, u_{m}\right)\right| d x \leq \frac{a C_{\sigma}}{\sigma}\left\|u_{m}\right\|_{1, p}^{\sigma} \text { and } \int_{\Omega}\left|g\left(x, u_{m}\right) u_{m}\right| d x \leq a C_{\sigma}\left\|u_{m}\right\|_{1, p}^{\sigma}
$$

Then given $\delta>0$,

$$
\begin{aligned}
\left\|u_{m}\right\|_{1, p}^{p} & +\int_{\Omega} g\left(x, u_{m}\right) u_{m} d x=\frac{\delta}{p}\left\|u_{m}\right\|_{1, p}^{p}+\delta \int_{\Omega} G\left(x, u_{m}\right) d x \\
& -\delta \int_{\Omega} G\left(x, u_{m}\right) d x+\left(1-\frac{\delta}{p}\right)\left\|u_{m}\right\|_{1, p}^{p}+\int_{\Omega} g\left(x, u_{m}\right) u_{m} d x
\end{aligned}
$$

implies that

$$
\begin{gathered}
\left\|u_{m}(t)\right\|_{1, p}^{p}+\int_{\Omega} g\left(x, u_{m}(t)\right) u_{m}(t) d x \geq \frac{\delta}{p}\left\|u_{m}(t)\right\|_{1, p}^{p}+\delta \int_{\Omega} G\left(x, u_{m}(t)\right) d x \\
+\left(1-\frac{\delta}{p}\right)\left\|u_{m}(t)\right\|_{1, p}^{p}-\left(1+\frac{\delta}{\sigma}\right) a C_{\sigma}\left\|u_{m}(t)\right\|_{1, p}^{\sigma} .
\end{gathered}
$$

Now, since $\left\|u_{m}(t)\right\|_{1, p} \leq\left(2 a C_{\sigma}\right)^{\frac{-1}{\sigma-p}}=z_{0}$ uniformly in $t, m$, we have that $\left\|u_{m}(t)\right\|_{1, p}^{\sigma-p} \leq\left(2 a C_{\sigma}\right)^{-1}$. Then taking $\delta \leq(\sigma p)(p+2 \sigma)^{-1}$, we conclude that

$$
\begin{aligned}
& \left(1-\frac{\delta}{p}\right)\left\|u_{m}(t)\right\|_{1, p}^{p}-\left(1+\frac{\delta}{\sigma}\right) a C_{\sigma}\left\|u_{m}(t)\right\|_{1, p}^{\sigma} \\
& \quad=\left[\left(1-\frac{\delta}{p}\right)-\left(1+\frac{\delta}{\sigma}\right) a C_{\sigma}\left\|u_{m}(t)\right\|_{1, p}^{\sigma-p}\right]\left\|u_{m}(t)\right\|_{1, p}^{p} \geq 0 .
\end{aligned}
$$

This implies that

$$
\left\|u_{m}(t)\right\|_{1, p}^{p}+\int_{\Omega} g\left(x, u_{m}(t)\right) u_{m}(t) d x \geq \frac{\delta}{p}\left\|u_{m}(t)\right\|_{1, p}^{p}+\delta \int_{\Omega} G\left(x, u_{m}(t)\right) d x
$$

and therefore (3.3) holds.
Lemma 3.3 For any $t>0$,

$$
E_{m}(t) \geq \frac{1}{2}\left\|u_{m}^{\prime}(t)\right\|_{2}^{2}+\frac{1}{2 p}\left\|u_{m}(t)\right\|_{1, p}^{p} .
$$

Proof. In the case (a), the Lemma is a consequence of (3.1). In the case (b), we use again the smallness of the approximate solutions.

$$
\begin{aligned}
E_{m}(t) & \geq \frac{1}{2}\left\|u_{m}^{\prime}(t)\right\|_{2}^{2}+\frac{1}{p}\left\|u_{m}(t)\right\|_{1, p}^{p}-\frac{a C_{\sigma}}{\sigma}\left\|u_{m}(t)\right\|_{1, p}^{\sigma} \\
& =\frac{1}{2}\left\|u_{m}^{\prime}(t)\right\|_{2}^{2}+\frac{1}{2 p}\left\|u_{m}(t)\right\|_{1, p}^{p}-Q\left(\left\|u_{m}(t)\right\|_{1, p}\right) .
\end{aligned}
$$

Since $Q\left(\left\|u_{m}(t)\right\|_{1, p}\right) \geq 0$, the result follows.
Proof of Theorem 3.1: We first obtain uniform estimates for the approximate energy (3.2). Fix an arbitrary $t>0$, we get from the approximate problem (2.8) with $f=0$ and $v=u_{m}^{\prime}(t)$

$$
E_{m}(t)+\int_{0}^{t}\left\|(-\Delta)^{\frac{\alpha}{2}} u_{m}^{\prime}(s)\right\|_{2}^{2} d s=E_{m}(0)
$$

from where

$$
\begin{equation*}
E_{m}^{\prime}(t)+\left\|(-\Delta)^{\frac{\alpha}{2}} u_{m}^{\prime}(t)\right\|_{2}^{2}=0 . \tag{3.4}
\end{equation*}
$$

Integrating (3.4) from $t$ to $t+1$ and putting

$$
D_{m}^{2}(t)=E_{m}(t)-E_{m}(t+1)
$$

we have in view of (2.25)

$$
\begin{equation*}
D_{m}^{2}(t)=\int_{t}^{t+1}\left\|(-\Delta)^{\frac{\alpha}{2}} u_{m}^{\prime}(s)\right\|_{2}^{2} d s \geq \lambda_{1}^{\alpha} \int_{t}^{t+1}\left\|u_{m}^{\prime}(s)\right\|_{2}^{2} d s \tag{3.5}
\end{equation*}
$$

By applying the Mean Value Theorem in (3.5), there exist $t_{1} \in\left[t, t+\frac{1}{4}\right]$ and $t_{2} \in\left[t+\frac{3}{4}, t+1\right]$ such that

$$
\begin{equation*}
\left\|u_{m}^{\prime}\left(t_{i}\right)\right\|_{2} \leq \sqrt{2} \lambda_{1}^{-\frac{\alpha}{2}} D_{m}(t) \quad i=1,2 . \tag{3.6}
\end{equation*}
$$

Now, integrating the approximate equation with $v=u_{m}(t)$ over $\left[t_{1}, t_{2}\right]$, we infer from Lemma 3.2 that

$$
\begin{aligned}
& k \int_{t_{1}}^{t_{2}} E_{m}(s) d s \leq\left(u_{m}^{\prime}\left(t_{1}\right), u_{m}\left(t_{1}\right)\right)-\left(u_{m}^{\prime}\left(t_{2}\right), u_{m}\left(t_{2}\right)\right) \\
& \quad \quad+\int_{t_{1}}^{t_{2}}\left\|u_{m}^{\prime}(s)\right\|_{2}^{2} d s-\int_{t_{1}}^{t_{2}}\left((-\Delta)^{\frac{\alpha}{2}} u_{m}^{\prime}(s),(-\Delta)^{\frac{\alpha}{2}} u_{m}(s)\right) d s
\end{aligned}
$$

Then from Lemma 3.3, Hölder's inequality and Sobolev embeddings, we have in view of (3.5) and (3.6), there exist positive constants $C_{1}$ and $C_{2}$ such that

$$
\int_{t_{1}}^{t_{2}} E_{m}(s) d s \leq C_{1} D_{m}^{2}(t)+C_{2} D_{m}(t) E_{m}^{\frac{1}{p}}(t)
$$

By the Mean Value Theorem, there exists $t^{*} \in\left[t_{1}, t_{2}\right]$ such that

$$
E_{m}\left(t^{*}\right) \leq C_{1} D_{m}^{2}(t)+C_{2} D_{m}(t) E_{m}^{\frac{1}{p}}(t)
$$

The monotonicity of $E_{m}$ implies that

$$
E_{m}(t+1) \leq C_{1} D_{m}^{2}(t)+C_{2} D_{m}(t) E_{m}^{\frac{1}{p}}(t)
$$

Since $E_{m}(t+1)=E_{m}(t)-D_{m}^{2}(t)$, we conclude that

$$
E_{m}(t) \leq\left(C_{1}+1\right) D_{m}^{2}(t)+C_{2} D_{m}(t) E_{m}^{\frac{1}{p}}(t)
$$

Using Young's inequality, there exist positive constants $C_{3}$ and $C_{4}$ such that

$$
\begin{equation*}
E_{m}(t) \leq C_{3} D_{m}^{2}(t)+C_{4} D_{m}^{\frac{p}{p-1}}(t) \tag{3.7}
\end{equation*}
$$

If $p=2$ then

$$
E_{m}(t) \leq\left(C_{3}+C_{4}\right) D_{m}^{2}(t)
$$

and since $E_{m}$ is decreasing, then from Lemma 3.1 there exist positive constants $C$ and $\theta$ (independent of $m$ ) such that

$$
\begin{equation*}
E_{m}(t) \leq C \exp (-\theta t) \quad \forall t>0 \tag{3.8}
\end{equation*}
$$

If $p>2$, then relation (3.7) and the boundedness of $D_{m}(t)$ show the existence of $C_{5}>0$ such that

$$
E_{m}(t) \leq C_{5} D_{m}^{\frac{p}{p-1}}(t)
$$

and then

$$
E_{m}^{\frac{2(p-1)}{p}}(t) \leq C_{5}^{\frac{2(p-1)}{p}} D_{m}^{2}(t) .
$$

Applying Lemma 3.1, with $\gamma=(p-2) / p$, there exists a constant $C>0$ (independent of $m$ ) such that

$$
\begin{equation*}
E_{m}(t) \leq C(1+t)^{\frac{-p}{p-2}} \quad \forall t \geq 0 . \tag{3.9}
\end{equation*}
$$

Finally we pass to the limit (3.8) and (3.9) and the proof is complete in view of Lemma 3.3.

Acknowledgement: The authors thank Professor J. E. Muñoz Rivera for his hospitality during their stay in LNCC/CNPq.

## References

[1] D. D. Ang \& A. Pham Ngoc Dinh; Strong solutions of a quasilinear wave equation with nonlinear damping, SIAM J. Math. Anal. 19, (1988), 337-347.
[2] A. C. Biazutti; On a nonlinear evolution equation and its applications, Nonlinear Anal. T. M. A. 24, (1995), 1221-1234 .
[3] J. Greenberg, R. C. MacCamy \& V. J. Mizel; On the existence, uniqueness and stability of solutions of the equation $\sigma^{\prime}\left(u_{x}\right) u_{x x}+\lambda u_{x t x}=$ $\rho_{0} u_{t t}$, J. Math. Mech. 17, (1968), 707-728 .
[4] J. L. Lions; Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod-Gauthier Villars, Paris, 1969.
[5] T. F. Ma \& J. A. Soriano; On weak solutions for an evolution equation with exponential nonlinearities, Nonlinear Anal. T. M. A. 37, (1999), 1029-1038.
[6] L. A. Medeiros \& M. Milla Miranda; On a nonlinear wave equation with damping, Rev. Mat. Univ. Complutense de Madrid 3, (1990), 213-231.
[7] M. Nakao; A difference inequality and its applications to nonlinear evolution equations, J. Math. Soc. Japan 30, (1978), 747-762 .
[8] M. Nakao; Energy decay for the quasilinear wave equation with viscosity, Math Z. 219, (1992), 289-299 .
[9] L. Tartar; Topics in Nonlinear Analysis, Publications Mathématiques d'Orsay, Université Paris-Sud, Orsay, 1978.
[10] G. F. Webb; Existence and asymptotic for a strongly damped nonlinear wave equation, Canadian J. Math. 32, (1980), 631-643.
[11] Y. Yamada; Some remarks on the equation $y_{t t}-\sigma\left(y_{x}\right) y_{x x}-y_{x t x}=f$, Osaka J. Math. 17, (1980), 303-323 .


[^0]:    *Work done while the authors were visiting LNCC/CNPq, Brazil.

