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AN APPLICATION OF THE ANTIMAXIMUM

PRINCIPLE FOR A FOURTH ORDER PERIODIC

PROBLEM

P. AMSTER AND P. DE NÁPOLI

Abstract. We study the existence of solutions for a periodic
fourth order problem. We prove an associated uniform antimaxi-
mum principle and develop a method of upper and lower solutions
in reversed order. Furthermore, by the quasilinearization method
we construct an iterative sequence that converges quadratically to
a solution.

1. Introduction

In this work, we study the fourth order problem

(1.1) u(4) + g(t, u, u′′) = 0

under periodic conditions

(1.2) u(j)(0) = u(j)(T ) for j = 0, 1, 2, 3.

In the last years there has been an increasing interest on higher
order problems, both because of their intrinsic mathematical interest
and their applications to different problems in Mathematical Physics
(for example, in multi-ion electrodiffussion problems [17], beam theory
[10] and quantum models for semiconductors [11]).

In order to study the existence of solutions of problem (1.1)-(1.2),
we shall apply method of upper and lower solutions and the so-called
quasilinearization technique.

The method of upper and lower solutions is one of the most ex-
tensively used tools in nonlinear analysis, both for ODE’s and PDE’s
problems. There exists a vast literature on this subject (see for exam-
ple [7] for a survey). It is worth to mention that this method has been
applied mostly to second order equations, since it relies on the maxi-
mum principle associated to the problem (see however [9]). Recently,
the case where the upper and lower solutions are in the reversed order

Key words and phrases. Fourth order periodic problems - Antimaximum princi-
ple - Quasilinearization method - Upper and lower solutions.
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has also received some attention (see e.g. [2, 3, 4]). In this case, an
antimaximum principle is required.

The antimaximum principle was originally derived by P. Clemént
and L. Peletier [6], for the Dirichlet problem

(1.3)

{

−∆u = λu + f(x) in Ω
u = 0 on ∂Ω

in the following form: given f ∈ L∞(Ω) with f > 0 a.e. and f 6≡ 0,
there exists δ = δ(f) such that if u is a solution of (1.3) with λ1 < λ <
λ1 + δ then u < 0 in Ω. Here λ1 denotes the first eigenvalue of −∆
with Dirichlet boundary condition. After their pioneering work, the
antimaximum principle was extended to other situations, like parabolic
problems and problems involving the p-Laplacian.

For our purposes, we are interested in the case where the uniform
antimaximum principle holds, i.e. where δ can be chosen independently
of f . This situation is rather exceptional (see [8]). In our case, we derive
a uniform antimaximum principle for fourth order equations with the
aid of the Green’s function (see Theorem 2.2). As an application, we
develop the method of upper and lower solutions for (1.1)-(1.2) in the
following “reversed order” cases:

(1) α′′ + kα ≥ β ′′ + kβ for some k such that 0 < k <
(

π
2T

)2
.

(2) α′′ − kα ≤ β ′′ − kβ for some k such that 0 < k <
(

π
2T

)2
.

(3) α′′ + kα ≤ β ′′ + kβ for some k such that 0 < k <
(

π
2T

)2
.

Here α and β are respectively a lower and an upper solution according
to the definition given in section 3.

We remark that the proof of the antimaximum principle does not
apply to linear differential operators involving odd order derivatives;
for this reason we cannot allow the nonlinearity g in problem (1.1)-
(1.2) to depend on u′ and u′′′.

Finally, assuming a convexity condition on g, we construct a se-
quence that converges quadratically to a solution of the problem by
the quasilinearization method.

The quasilinearization method has been developed by Bellman and
Kalaba [1], and generalized by Lakshmikantham [19, 20] (see also the
monograph [16]). It has been applied to different nonlinear problems
in the presence of an ordered couple of a lower and an upper solution.
In the recent work [12] it has been successfully applied for a second
order Neumann problem in the reversed order case. Quasilinearization
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method for first order periodic boundary problems has been considered
in [14], [15]; for higher order periodic problems see [5], [18].

This paper is organized as follows. In section 2 we prove a version
of the antimaximum principle fourth order problems. In section 3, we
apply this antimaximum principle to obtain existence results for (1.1)-
(1.2) by the method of upper and lower solutions. Finally, in section 4
we apply the method of quasilinearization to our problem, and obtain a
quadratically convergent iterative scheme for constructing approximate
solutions.

2. An antimaximum principle for fourth order problems

Throughout this work we shall denote by Hk
per(0, T ) the Sobolev

space of T -periodic functions, namely

Hk
per(0, T ) = {u ∈ Hk(0, T ) : u(j)(0) = u(j)(T ) for 0 6 j 6 k − 1}.

In order to obtain an antimaximum principle for our problem, let
us consider first the second order linear operator Lλ : H2

per(0, T ) →
L2(0, T ) given by Lλu = u′′ + λu. By standard results, if λ /∈

(

2π
T

N
)2

then for each ϕ ∈ L2(0, T ) the equation Lλu = ϕ admits a unique
T -periodic solution u, with

u(t) =

∫ T

0

Gλ(t, s)ϕ(s)ds.

Here Gλ denotes the Green’s function given by

(2.1) Gλ(t, s) =







1

2
√

|λ|
(aCλ(t − s) + Sλ(t − s)) if t ≥ s

1

2
√

|λ|
(aCλ(t − s) − Sλ(t − s)) if t < s

where

a =
Sλ(T )

1 − Cλ(T )

and the functions Cλ, Sλ are defined by

Cλ(t) =

{

cos(
√

λt) if λ > 0

cosh(
√

|λ|t) if λ < 0
Sλ(t) =

{

sin(
√

λt) if λ > 0

sinh(
√

|λ|t) if λ < 0.

If λ < 0, the classical maximum principle for the periodic problem

says that if Lλu ≥ 0 then u ≤ 0. On the other hand, if 0 < λ <
(

π
2T

)2
it

is straightforward to prove that Gλ ≥ 0. As a consequence, we have the
following antimaximum principle for the second order periodic problem:
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Theorem 2.1. Let 0 < λ <
(

π
2T

)2
and assume that u ∈ H2

per(0, T )
satisfies Lλu ≥ 0 a.e. in (0, T ). Then u ≥ 0.

Let us consider now the fourth order linear operator Lr,s : H4
per(0, T ) →

L2(0, T ) given by

Lr,su = u(4) + ru′′ + su.

We shall assume that r2 ≥ 4s 6= 0, then Lr,s factorizes as Lr,s =
Lλ+Lλ− , where

λ± =
r ±

√
r2 − 4s

2
.

In particular, if λ± /∈
(

2π
T

N
)2

then Lr,s is invertible, with

(2.2) L−1
r,s (ϕ)(t) =

∫ T

0

Gr,s(t, τ)ϕ(τ)dτ

and

Gr,s(t, τ) =

∫ T

0

Gλ+(t, σ)Gλ−(σ, τ)dσ.

If r ≤ 0 < s, then λ− ≤ λ+ < 0, and we obtain a “classical” maximum
principle for the fourth order problem: if u is T -periodic and satisfies
Lr,su ≥ 0 a.e. in (0, T ), then u′′ + λ±u ≤ 0 and u ≥ 0.

We are interested in the case in which this maximum principle does
not hold, namely when r > 0 or s < 0 (and hence λ+ > 0). A simple
computation shows that if

(2.3)

(

2T

π

)2

r < 1 + min

{

1,

(

2T

π

)4

s

}

,

then λ− ≤ λ+ <
(

π
2T

)2
. Thus, we have the following antimaximum

type result:

Theorem 2.2. Assume that r2 ≥ 4s 6= 0 and that (2.3) holds. If
u ∈ H4

per(0, T ) satisfies Lr,su ≥ 0 a.e. in (0, T ), then:

(1) If r, s > 0, then u′′ + λ±u ≥ 0 and u ≥ 0.
(2) If r ≤ 0 and s < 0, or if r ≥ 0 > s, then u′′ + λ+u ≤ 0 ≤

u′′ + λ−u and u ≤ 0.
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3. Upper and lower solutions in reversed order

In this section we prove some existence results based on the anti-
maximum result given in Theorem 2.2. For completeness, let us recall
the definition of upper and lower solutions for a fourth order periodic
problem.

Definition: we say that α, β ∈ H4
per(0, T ) are respectively a lower

solution and an upper solution for problem (1.1)-(1.2) if

α(4) + g(t, α, α′′) ≤ 0 ≤ β(4) + g(t, β, β ′′) a.e. in(0, T ).

For simplicity we shall assume that g is continuous and twice con-
tinuously differentiable with respect to u and u′′.

Then we have the following theorem:

Theorem 3.1. Assume that α and β are respectively a lower and an
upper solution as before, with

α′′ + kα ≥ β ′′ + kβ for some k such that 0 < k <
( π

2T

)2

.

Furthermore, assume that

k
∂g

∂u′′
(t, u, v) ≤ k2 +

∂g

∂u
(t, u, v)

for (t, u, v) ∈ C, where

C =

{

(t, u, v) ∈ [0, T ] × R
2 :

α′′(t) + kα(t) ≥ v + ku ≥ β ′′(t) + kβ(t)
α(t) ≥ u ≥ β(t)

}

.

Then there exists u solution of (1.1)-(1.2) such that (t, u(t), u′′(t)) ∈
C for 0 ≤ t ≤ T .

Proof. Set r < 0 such that r ≤ ∂g

∂u′′
(t, u, v) for every (t, u, v) ∈ C, and

s = k(r − k). Moreover, consider the convex subset K ⊂ C2([0, T ])
defined by

K = {u ∈ C2([0, T ]) : (t, u(t), u′′(t)) ∈ C for 0 ≤ t ≤ T}.
Next, define a fixed point operator T : K → C2([0, T ]) in the following
way: for u ∈ K, let v = Tu the unique solution of

v(4) + rv′′ + sv = ru′′ + su − g(t, u, u′′)

under periodic conditions

v(j)(0) = v(j)(T ) for j = 0, 1, 2, 3.
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From (2.2), Tu is given by

Tu(t) =

∫ T

0

Gr,s(t, τ)[ru′′(τ) + su(τ) − g(τ, u(τ), u′′(τ))]dτ.

By Arzelá-Ascoli Theorem it follows that T (K) is compact. More-
over, if w = Tu − β then

w(4) + rw′′ + sw = r(u − β)′′ + s(u − β) − g(t, u, u′′) − β(4)

≤
[

r − ∂g

∂u′′
(t, ξ)

]

(u − β)′′ +

[

s − ∂g

∂u
(t, ξ)

]

(u − β)

for some mean value ξ = (ξ1(t), ξ2(t)). From the choice of r and s, and
using the fact that (u − β)′′ ≥ −k(u − β), we conclude that

w(4) + rw′′ + sw ≤
(

−k2 − ∂g

∂u
(t, ξ) + k

∂g

∂u′′
(t, ξ)

)

(u − β) ≤ 0.

Hence, by Theorem 2.2 we deduce that (Tu)′′ + kTu ≥ β ′′ + kβ, and
Tu ≥ β. In the same way, (Tu)′′ + kTu ≤ α′′ + kα, and Tu ≤ α; thus,
T (K) ⊂ K and the proof follows from Schauder Theorem.

�

The following two results can be proved in an analogous way:

Theorem 3.2. Assume that α and β are respectively a lower and an
upper solution as before, with

α′′ − kα ≤ β ′′ − kβ for some k such that 0 < k <
( π

2T

)2

.

Furthermore, assume that

−k
∂g

∂u′′
(t, u, v) ≤ k2 +

∂g

∂u
(t, u, v)

and ∂g

∂u′′
(t, u, v) ≤ r <

(

π
2T

)2 − k for some nonnegative r and (t, u, v) ∈
C, where

C =

{

(t, u, v) ∈ [0, T ] × R
2 :

a′′(t) − kα(t) ≤ v − ku ≤ β ′′(t) − kβ(t)
α(t) ≥ u ≥ β(t)

}

.

Then there exists u solution of (1.1)-(1.2) such that (t, u(t), u′′(t)) ∈ C
for 0 ≤ t ≤ T .
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Theorem 3.3. Assume that α and β are respectively a lower and an
upper solution as before, with

α′′ + kα ≤ β ′′ + kβ for some k such that 0 < k <
( π

2T

)2

.

Furthermore, assume that

k
∂g

∂u′′
(t, u, v) ≥ k2 +

∂g

∂u
(t, u, v)

and ∂g

∂u′′
(t, u, v) ≤ r < k+

(

π
2T

)2
for some r > k and (t, u, v) ∈ C, where

C =

{

(t, u, v) ∈ [0, T ] × R
2 :

a′′(t) + kα(t) ≤ v + ku ≤ β ′′(t) + kβ(t)
α(t) ≤ u ≤ β(t)

}

.

Then there exists u solution of (1.1)-(1.2) such that (t, u(t), u′′(t)) ∈ C
for 0 ≤ t ≤ T .

4. A quasilinearization method

In this section, we apply the quasilinearization method to problem
(1.1)-(1.2). For simplicity, we consider only the situation of Theorem
3.1.

We shall define recursively a sequence of functions as follows. Let
u0 = β, and assume that un is known and verifies: α′′+kα ≥ u′′

n+kun ≥
β ′′ + kβ. Next, define un+1 as a T -periodic solution (not necessarily
unique) of the quasilinear problem:

(4.1) u(4) + ru′′ + su = rQn(t, u, u′′) + sPn(t, u) − [g(t, un, u
′′
n)

+
∂g

∂u
(t, un, u′′

n)(Pn(t, u) − un) +
∂g

∂u′′
(t, un, u

′′
n)(Qn(t, u, u′′) − u′′

n)]

where r and s are chosen as in the proof of Theorem 3.1, and

Pn(t, u) =







α(t) if u > α(t)
un(t) if u < un(t)
u otherwise,

Qn(t, u, v) =







α′′(t) + k(α − Pn(t, u)) if v + kPn(t, u) > α′′(t) + kα(t)
u′′

n(t) + k(un − Pn(t, u)) if v + kPn(t, u) < u′′
n(t) + kun(t)

v otherwise

Note that the right-hand term of (4.1) is bounded, and hence the exis-
tence of un+1 follows from Schauder Theorem by standard arguments.
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In order to prove the convergence of {un}, we shall assume that the
Hessian of g respect to u and u′′ given by

Hg(t, u, v)(η1, η2) =
∂2g

∂u2
(t, u, v)η2

1+2
∂2g

∂u∂u′′
(t, u, v)η1η2+

∂2g

∂u′′2
(t, u, v)η2

2

is nonnegative definite.

Theorem 4.1. Let the assumptions of Theorem 3.1 hold. Furthermore,
assume that Hg ≥ 0 on C. Then the sequence given by the quasilin-
earization method (4.1) is well defined and converges to a solution u of
problem (1.1)-(1.2) such that α ≥ u ≥ β. Moreover, the convergence
un → u is quadratic for the C2-norm.

Proof. Let us prove first that u1 is an upper solution of the problem,
with α′′ + kα ≥ u′′

1 + ku1 ≥ u′′
0 + ku0. Indeed, we have that

u
(4)
1 + ru′′

1 + su1 = rQ0(t, u1, u
′′
1) + sP0(t, u1) − g(t, u0, u

′′
0)

−∂g

∂u
(t, u0, u

′′
0)(P0(t, u1) − u0) −

∂g

∂u′′
(t, u0, u

′′
0)(Q0(t, u1, u

′′
1) − u′′

0)

= ru′′
0 + su0 − g(t, u0, u

′′
0) +

[

s − ∂g

∂u
(t, ξ)

]

(P0(t, u1) − u0)

+

[

r − ∂g

∂u′′
(t, ξ)

]

(Q0(t, u1, u
′′
1) − u′′

0).

It is easy to see that Q0(t, u1, u
′′
1)− u′′

0 ≥ −k(P0(t, u1)− u0), then as in
Theorem 3.1 we conclude that

u
(4)
1 + ru′′

1 + su1 ≤ ru′′
0 + su0 − g(t, u0, u

′′
0) ≤ u

(4)
0 + ru′′

0 + su0.

It follows that u′′
1 + ku1 ≥ u′′

0 + ku0, and u1 ≥ u0. On the other hand,
consider the Taylor expansion

g(t, u, v) = g(t, u0, u
′′
0) +

∂g

∂u
(t, u0, u

′′
0)(u − u0)

+
∂g

∂u′′
(t, u0, u

′′
0)(v − u′′

0) + R(t, u, v)

where R(t, u, v) = 1
2
Hg(t, ξ)[u − u0, v − u′′

0] for some mean value ξ =
(ξ1(t), ξ2(t)). By hypothesis, if (t, u, v) ∈ C the remainder R is nonneg-
ative; hence, setting u = P0(t, u1), v = Q0(t, u1, u

′′
1) we obtain:

u
(4)
1 +ru′′

1+su1 ≥ rQ0(t, u1, u
′′
1)+sP0(t, u1)−g(t, P0(t, u1), Q0(t, u1, u

′′
1)).
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In the same way as before, for w = u1 − α, using the hypothesis and
the fact that Q0(t, u1, u

′′
1) − α′′ ≤ −k(P0(t, u1) − α) it follows that

w(4) + rw′′ + sw ≥ 0, and then u′′
1 + ku1 ≤ α′′ + kα, u1 ≤ α.

Finally, as (t, u1, u
′′
1) ∈ C we deduce that u1 is a solution of the

following linear equation:

u
(4)
1 = −g(t, u0, u

′′
0) −

∂g

∂u
(t, u0, u

′′
0)(u1 − u0) −

∂g

∂u′′
(t, u0, u

′′
0)(u

′′
1 − u′′

0).

Using again the Taylor expansion and the fact that Hg is nonnegative

definite, we conclude that u
(4)
1 ≥ −g(t, u1, u

′′
1) and hence u1 is an upper

solution of the problem.
Repeating the procedure, we obtain a sequence {un} such that

β ′′ + kβ ≤ u′′
n + kun ≤ u′′

n+1 + kun+1 ≤ α′′ + kα

and

(4.2) u
(4)
n+1 = −g(t, un, u

′′
n) −

∂g

∂u
(t, un, u′′

n)(un+1 − un)

− ∂g

∂u′′
(t, un, u′′

n)(u
′′
n+1 − u′′

n).

Furthermore, β ≤ un ≤ un+1 ≤ α, and un converges pointwise to
some function u, β ≤ u ≤ α and hence u′′

n converges pointwise to some
function v. As {un} and {u′′

n} are clearly bounded, it follows that un

is bounded in H4
per(0, T ).

From the compact imbedding H4
per(0, T ) ↪→ C3[0, T ], there exists a

subsequence unk
such that unk

→ u in C3[0, T ]. We deduce that v = u′′;
moreover, if we consider any test function ϕ ∈ C4

per[0, T ], then
∫ T

0

u
(3)
n+1ϕ

′ dt =

∫ T

0

[g(t, un, u
′′
n)+

∂g

∂u
(t, un, u′′

n)(un+1−un)+
∂g

∂u′′
(t, un, u

′′
n)(u′′

n+1−u′′
n)]ϕ dt.

By dominated convergence, it follows that u is a weak solution of (1.1)-
(1.2) and hence, by standard regularity results, a classical solution.
Moreover, it is clear by construction that β ′′+kβ ≤ u′′+ku ≤ α′′+kα.

In order to prove that un → u quadratically for the C2-norm, let us
define the error term En := u − un. Then En is nonincreasing, En → 0
and E ′′

n ≥ −kEn. On the other hand,

E (4)
n+1 = −g(t, u, u′′) + g(t, un, u

′′
n) +

∂g

∂u
(t, un, u′′

n)(un+1 − un)
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+
∂g

∂u′′
(t, un, u′′

n)(u
′′
n+1 − u′′

n)

= −1

2
Hg(t, ξ)(En, E ′′

n) − ∂g

∂u
(t, un, u′′

n)En+1 −
∂g

∂u′′
(t, un, u′′

n)E ′′
n+1

for some ξ = (ξ1(t), ξ2(t)) between (un(t), u
′′
n(t)) and (u(t), u′′(t)). As

before, it follows that

E (4)
n+1 + rE ′′

n+1 + sEn+1 ≤ −1

2
Hg(t, ξ)(En, E ′′

n).

Denote by φ the unique T -periodic solution of

(4.3) φ(4) + rφ′′ + sφ = −1

2
Hg(t, ξ)(En, E ′′

n).

By Theorem 2.2,

E ′′
n+1 + kEn+1 ≤ φ′′ + kφ, En+1 ≤ φ.

On the other hand,

φ(t) = −1

2

∫ T

0

Gr,s(t, τ)Hg(τ, ξ)(En, E ′′
n) dτ.

Then

‖φ‖C([0,T ]) ≤ c
(

‖En‖2
C([0,T ]) + ‖E ′′

n‖2
C([0,T ])

)

for some constant c, and from (4.3) it follows that also

‖φ′′‖C([0,T ]) ≤ c
(

‖En‖2
C([0,T ]) + ‖E ′′

n‖2
C([0,T ])

)

for some constant c. Thus ‖En+1‖C([0,T ]) ≤ c‖En‖2
C2([0,T ]) for some con-

stant c. Moreover, as

−kEn+1 ≤ E ′′
n+1 ≤ φ′′ + k(φ − En+1),

we obtain that also

‖E ′′
n+1‖C([0,T ]) ≤ c‖En‖2

C2([0,T ])

for some constant c, and the proof is complete.
�

Remark 4.1. From equation (4.2) it turns out that each step of the
quasilinearization method is indeed equivalent to a Newton iteration,
once it is proved that α′′ + kα ≥ u′′

n+1 + kun+1 ≥ u′′
n + kun.

However, in general it is not possible to define directly a Newton
iteration since the linear differential operator in (4.2) is not necessarily
invertible.
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