Attractors for a Class of Doubly Nonlinear Parabolic Systems*

Hamid El Ouardi \& Abderrahmane El Hachimi

Abstract

In this paper, we establish the existence and boundedness of solutions of a doubly nonlinear parabolic system. We also obtain the existence of a global attractor and the regularity property for this attractor in $\left[L^{\infty}(\Omega)\right]^{2}$ and $\prod_{i=1}^{2} B_{\infty}^{1+\sigma_{i}, p_{i}}(\Omega)$.

1 Introduction

This paper deals with the doubly nonlinear parabolic system of the form

Where Ω is a bounded and open subset in $\mathbb{R}^{N},(N \geq 1)$ with a smooth boundary $\partial \Omega, T>0$. The operator $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the p-Laplacian.

Monotone operators, in particular the ones that are subdifferentials of convex functions, like p-Laplacian, appear frequently in equations modeling the behaviour of viscoelastic materials (see [16] for instance), reaction-diffusion (see [17], and references therein) and in mathematical glaciology.

Here, we study the existence of solutions for a class of doubly nonlinear systems including the p-Laplacian as the principal part of the operator, and we use the general setting of attractors (see [19]) to prove that all the solutions converge to a set \mathcal{A}, which is called the global attractor. In fact, few papers consider the question in such situations. For instance, Marion [17] considered the problem of solutions of reaction-diffusion systems in which $b_{i}(s)=s$ and $p_{1}=p_{2}=2$. L.Dung $[13,14]$ treated a system involving the p-Laplacian and

[^0]$b_{i}(s)=s$, and proved that weak L^{q} dissipativity implies strong L^{∞} one for solutions of degenerate nonlinear diffusion systems and gives the existence of global attractors to which all solutions converge in uniform norm. We mention that to our knowledge, the doubly nonlinear parabolic system for the p-Laplacian operator has never been studied, not even in the case $b_{i}(s) \neq s$. In the classical setting, i.e with $p_{1}=p_{2}=2$, the system with b_{i} has been previously considered, for example in [9] and [10]. We follow the approach of [10], generalizing some results to the case $p_{i}>1$ and we extend the results of [11] to nonlinear system (S). In the first section of this paper, we give some assumptions and preliminaries, in section 2 and section 3, we prove the existence of an absorbing set and the existence of the attractor, in section 4 , we present the regularity of the attractor and obtain the asymptotic behaviour of the solutions in the framework of dynamical systems associated to the system (S).

2 Preliminaries, Existence and Uniqueness

2.1 Notations and Assumptions

Let $b_{i},(i=1,2)$ be a continuous function with $b_{i}(0)=0$. For $t \in \mathbb{R}$, define, $\Psi_{i}(t)=\int_{0}^{t} b_{i}(s) d s$. The Legendre transform Ψ_{i}^{*} of Ψ_{i} is defined as $\Psi_{i}^{*}(\tau)=$ $\sup _{s \in \mathbb{R}}\left\{\tau s-\Psi_{i}(s)\right\}$. We shall assume throughout the paper that Ω is a regular open bounded subset of \mathbb{R}^{N} and for any $T>0$, we set $Q_{T}=\Omega \times(0, T)$ and $S_{T}=\partial \Omega \times(0, T)$, with $\partial \Omega$ the boundary of Ω. The norm in a space X will be denoted by : $\|\cdot\|_{r}$ if $X=L^{r}(\Omega)$ for all $\mathrm{r}: 1 \leq r \leq+\infty$. $\|\cdot\|_{1, q}$ if $X=W^{1, q}(\Omega)$ for all $\mathrm{q}: 1 \leq q \leq+\infty,\|\cdot\|_{X}$ otherwise and $\langle., .\rangle_{X, X^{\prime}}$ will denote the duality product between X and its dual X^{\prime}. We use the standard notation for Sobolev spaces $W_{0}^{1, r}(\Omega), 1<r<+\infty$, and their duals $W^{-1, r^{\prime}}(\Omega)$, where $r^{\prime}=r /(r-1)$. The following lemma are useful and frequently used :

Lemma 2.1 (Ghidaghia lemma, cf [19])
Let y be a positive absolutely continuous function on ($0, \infty$) which satisfies

$$
y^{\prime}+\mu y^{q} \leq \lambda,
$$

with $q>1, \mu>0, \lambda \geq 0$. Then for $t>0$

$$
y(t) \leq\left(\frac{\lambda}{\mu}\right)^{\frac{1}{q}}+[\mu(q-1) t]^{\frac{-1}{q-1}} .
$$

Lemma 2.2 (Uniform Gronwall's lemma, cf [19]) Let y and h be locally integrable functions such that:

$$
\exists r>0, a_{1}>0, a_{2}>0, \tau>0, \forall t \geq \tau
$$

$$
\int_{t}^{t+r} y(s) d s \leq a_{1}, \quad \int_{t}^{t+r}|h(s)| d s \leq a_{2}, \quad y^{\prime} \leq h
$$

Then

$$
y(t+r) \leq \frac{a_{1}}{r}+a_{2}, \quad \forall t \geq \tau
$$

We start by introducing our assumptions and making precise the meaning of solution of (S).

We shall assume that the following hypotheses are satisfied :
(H1) $\left(\varphi_{1}, \psi_{1}\right) \in\left[L^{2}(\Omega)\right]^{2}$.
(H2) $b_{i} \in C^{1}(\mathbb{R}), b_{i}(0)=0$, and there exist positive constants γ_{i} and M_{i} such that

$$
\left|b_{i}\right| \leq \gamma_{i}|s|+M_{i}, \quad \forall s \in \mathbb{R}, \quad i=1,2
$$

(H3) $\quad f_{i} \in C^{1}(\Omega \times \mathbb{R} \times \mathbb{R})$.
(H4) a) There exists positive constants $c_{1}>0, c_{2}>0, c_{3}>0$ and $\alpha_{1}>$ $\sup \left(2, p_{1}\right)$ such that for any $\xi \in \mathbb{R}$ any $N>0$ we have for any u_{2} : $\left|u_{2}\right|<N$
$\left\{\begin{array}{c}\operatorname{sign}(\xi) f_{1}\left(x, t, \xi, u_{2}\right) \geq c_{1}\left|b_{1}(\xi)\right|^{\alpha_{1}-1}-c_{2}, \\ \lim _{t \rightarrow 0^{+}} \sup \left|f_{1}\left(x, t, \xi, u_{2}\right)\right| \leq c_{3}\left(|\xi|^{\alpha_{1}-1}+1\right) \\ \left|f_{1}\left(x, t, \xi, u_{2}\right)\right| \leq a_{1}(|\xi|) \quad \text { almost everywhere in } \Omega \times \mathbb{R}^{+} \\ \text {where } a_{1}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+} \text {is an increasing function. }\end{array}\right.$
b) There exists positive constants $c_{4}>0, c_{5}>0, c_{6}>0$ and $\alpha_{2}>$ $\sup \left(2, p_{2}\right)$ such that for any $\xi \in \mathbb{R}$ any $M>0$ we have for any u_{1} : $\left|u_{1}\right|<M$

$$
\left\{\begin{array}{c}
\operatorname{sign}(\xi) f_{2}\left(x, t, u_{1}, \xi\right) \geq c_{4}\left|b_{2}(\xi)\right|^{\alpha_{2}-1}-c_{5}, \\
\lim _{t \rightarrow 0^{+}} \sup \left|f_{2}\left(x, t, u_{1}, \xi\right)\right| \leq c_{6}\left(|\xi|^{\alpha_{2}-1}+1\right) \\
\left|f_{2}\left(x, t, u_{1}, \xi\right)\right| \leq a_{2}(|\xi|) \text { almost everywhere in } \Omega \times \mathbb{R}^{+} \\
\text {where } a_{2}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+} \text {is an increasing function. }
\end{array}\right.
$$

(H5) $\frac{\partial f_{i}}{\partial t}(x, t, \eta, \zeta)$ exist and for all $L>0$, there exists $C_{L}>0$ such that: if $|\eta|+|\zeta| \leq L$ then $\left|\frac{\partial f_{i}}{\partial t}(x, t, \eta, \zeta)\right| \leq C_{L}$, for almost every $(x, t) \in \Omega \times \mathbb{R}^{+}$.
(H6) a) There exist $\delta_{1}>0$ such that for almost every $(x, t) \in \Omega \times \mathbb{R}^{+}$and for any $N>0$ and any $u_{2}:\left|u_{2}\right|<N$ then

$$
\xi \rightarrow f_{1}\left(x, t, \xi, u_{2}\right)+\delta_{1} b_{1}(\xi) \text { is increasing. }
$$

b) There exist $\delta_{2}>0$ such that for almost every $(x, t) \in \Omega \times R^{+}$and for any $M>0$ and any $u_{1}:\left|u_{1}\right|<M$ then

$$
\xi \rightarrow f_{2}\left(x, t, u_{1}, \xi\right)+\delta_{2} b_{2}(\xi) \text { is increasing } .
$$

(H7) $\exists \varepsilon>0: b_{i}^{\prime}(s) \geq \varepsilon$, for all $s \in \mathbb{R}$.
Definition 2.1 By a weak solution of (\mathbf{S}), we mean an element $w=\left(u_{1}, u_{2}\right)$:

$$
\begin{gathered}
u_{i} \in L^{p_{i}}\left(0, T ; W_{0}^{1, p_{i}}(\Omega)\right) \cap L^{\alpha_{i}}\left(Q_{T}\right) \cap L^{\infty}\left(\tau, T ; L^{\infty}(\Omega)\right) \text { for all } \tau>0, \\
\frac{\partial b_{i}\left(u_{i}\right)}{\partial t} \in L^{p_{i}^{\prime}}\left(0, T ; W^{-1, p_{i}^{\prime}}(\Omega)\right)+L^{\alpha_{i}^{\prime}}\left(Q_{T}\right)
\end{gathered}
$$

and for all $\phi_{i} \in L^{p_{i}}\left(0, T ; W_{0}^{1, p_{i}}(\Omega)\right) \cap L^{\infty}\left(0, T ; L^{\infty}(\Omega)\right)$
$\int_{0}^{T}\left\langle\frac{\partial b_{i}\left(u_{i}\right)}{\partial t}, \phi_{i}\right\rangle_{X_{i}, X_{i}^{\prime}} d t+\int_{0}^{T} \int_{\Omega} F_{i}\left(\nabla u_{i}\right) \nabla \phi_{i} d x d t=-\int_{0}^{T} \int_{\Omega} f_{i}(x, w) \phi_{i} d x d t$ and if $\frac{\partial \phi_{i}}{\partial t} \in L^{2}\left(0, T ; L^{2}(\Omega)\right), \phi_{i}(T)=0$ then

$$
\int_{0}^{T}\left\langle\frac{\partial b_{i}\left(u_{i}\right)}{\partial t}, \phi_{i}\right\rangle_{X_{i}, X_{i}^{\prime}} d t=-\int_{0}^{T} \int_{\Omega}\left(b_{i}\left(u_{i}\right)-b_{i}\left(u_{i}(., 0)\right)\right) \frac{\partial \phi_{i}}{\partial t} d x d t
$$

where $X_{i}=L^{\infty}(\Omega) \cap W_{0}^{1, p_{i}}(\Omega), X_{i}^{\prime}=L^{1}(\Omega)+W^{-1, p_{i}^{\prime}}(\Omega)$ and $F_{i}(\xi)=|\xi|^{p_{i}-2} \xi$ for any $\xi \in \mathbb{R}^{N}$.

2.2 Existence

2.2.1 Existence

We have the following.
Theorem 2.1 Let the general assumptions (H1)-(H7) be satisfied, then for any $\tau>0$, the problem (\mathbf{S}) has a weak solution $\left(u_{1}, u_{2}\right)$ such that

$$
\begin{gathered}
u_{i} \in L^{p_{i}}\left(0, T ; W_{0}^{1, p_{i}}(\Omega)\right) \cap L^{\infty}\left(\tau, T ; W_{0}^{1, p_{i}}(\Omega) \cap L^{\infty}(\Omega)\right), \\
\text { and } b_{i}\left(u_{i}\right) \in L^{\alpha_{i}}\left(Q_{T}\right) \cap L^{\infty}\left(0, T ; L^{2}(\Omega)\right) .
\end{gathered}
$$

Proof. By the existence of theorem [11, theorem 3.1, p.3], there exists two functions u_{1}^{0}, u_{2}^{0} solutions of the problem

$$
\begin{gathered}
\left(P_{1,0}\right) \begin{cases}\frac{\partial b_{1}\left(u_{1}^{0}\right)}{\partial t}-\Delta_{p_{1}} u_{1}^{0}+f_{1}\left(x, t, u_{1}^{0}, 0\right)=0 & \text { in } Q_{T} \\
u_{1}^{0 t}=0 & \text { on } S_{T} \\
b_{1}\left(u_{1}^{0}(., 0)\right)=b_{1}\left(\varphi_{1}\right) & \text { in } \Omega\end{cases} \\
\left(P_{2,0}\right) \begin{cases}\frac{\partial b_{2}\left(u_{2}^{0}\right)}{\partial t}-\Delta_{p_{2}} u_{2}^{0}+f_{2}\left(x, t, 0, u_{2}^{0}\right)=0 & \text { in } Q_{T} \\
u_{2}^{0}=0 & \text { on } S_{T} \\
b_{2}\left(u_{2}^{0}(., 0)\right)=b_{2}\left(\psi_{1}\right) & \text { in } \Omega\end{cases}
\end{gathered}
$$

and $u_{i}^{0} \in L^{p_{i}}\left(0, T ; W_{0}^{1, p_{i}}(\Omega)\right) \cap L^{\infty}\left(\tau, T ; W_{0}^{1, p_{i}}(\Omega) \cap L^{\infty}(\Omega)\right), \forall \tau>0$. By $\left(u_{1}^{0}, u_{2}^{0}\right)$ we construct two sequences of functions $\left(u_{1}^{n}\right),\left(u_{2}^{n}\right)$ such that

$$
\left(P_{1, n}\right)\left\{\begin{array}{lc}
\frac{\partial b_{1}\left(u_{1}^{n}\right)}{\partial t}-\Delta_{p_{1}} u_{1}^{n}+f_{1}\left(x, t, u_{1}^{n}, u_{2}^{n-1}\right)=0 & \text { in } Q_{T} \tag{2.1}\\
u_{1}^{n}=0 & \text { in } S_{T} \\
b_{1}\left(u_{1}^{n}(., 0)\right)=b_{1}\left(\varphi_{1}\right) & \text { on } \Omega
\end{array}\right.
$$

And

$$
\left(P_{2, n}\right)\left\{\begin{array}{ccc}
\frac{\partial b_{2}\left(u_{2}^{n}\right)}{\partial t}-\Delta_{p_{2}} u_{2}^{n}+f_{2}\left(x, t, u_{1}^{n-1}, u_{2}^{n}\right)=0 & \text { in } Q_{T}, & (2.4) \\
u_{2}^{n}=0 & \text { in } S_{T}, & (2.5) \\
b_{2}\left(u_{2}^{n}(., 0)\right)=b_{2}\left(\psi_{1}\right) & \text { on } \Omega .
\end{array}\right.
$$

The existence of solutions will be shown via some a-priori L^{∞} estimates on $\left(u_{1}^{n}, u_{2}^{n}\right)$ and lemma 2.3 and lemma 2.4. In all this paper, we denote by c_{i} different constants independent of n and depending on p_{i}, Ω, T. Sometimes we shall refer to a constant depending on specific parameters : $c(\tau), c(T), c(\tau, T)$.

Lemma 2.3 Under the hypothesis (H1)-(H7), there exist $c_{i}>0$ such that for any $n \in \mathbb{N}$ and any $\tau>0$, the following estimate holds

$$
\begin{equation*}
\left\|u_{i}^{n}\right\|_{L^{\infty}\left(\tau, T ; L^{\infty}(\Omega)\right)} \leq c_{7}(\tau, T) \tag{2.7}
\end{equation*}
$$

Proof. The case $n=0$ has been observed. Assume that (2.7) is valid for ($n-1$) and let us derive the estimate for n. Now multiplying (2.1) by $\left|b_{1}\left(u_{1}^{n}\right)\right|^{k} b_{1}\left(u_{1}\right)$ and using the growth condition on b_{1}, and (H4) a) we deduce for all $\tau>0$

$$
\begin{gather*}
\frac{1}{k+2} \frac{d}{d t}\left\{\int_{\Omega}\left|b_{1}\left(u_{1}^{n}\right)\right|^{k+2} d x\right\}+c_{8} \int_{\Omega}\left|b_{1}\left(u_{1}^{n}\right)\right|^{k+\alpha_{1}} d x \leq \\
c_{9} \int_{\Omega}\left|b_{1}\left(u_{1}^{n}\right)\right|^{k+1} d x \tag{2.8}
\end{gather*}
$$

Setting $y_{k, n}(t)=\left\|b_{1}\left(u_{1}^{n}\right)\right\|_{L^{k+2}(\Omega)}$ and using Hölder inequality on both sides, there exists two constants $\lambda_{0}>0$ and $\mu_{0}>0$ such that

$$
\begin{equation*}
\frac{d y_{k, n}(t)}{d t}+\mu_{0} y_{k, n}^{\alpha_{1}-1}(t) \leq \lambda_{0} \tag{2.9}
\end{equation*}
$$

which implies from a lemma 2.1 that

$$
\begin{equation*}
y_{k}(t) \leq\left(\frac{\lambda_{0}}{\mu_{0}}\right)^{\frac{1}{q_{1}-1}}+\frac{1}{\left[\mu_{0}\left(\alpha_{1}-2\right) t\right]^{\frac{1}{\alpha_{1}-2}}}=c_{10}(t) \quad \forall t>0 \tag{2.10}
\end{equation*}
$$

As $k \rightarrow+\infty$, and for any all $t \geq \tau>0$, we have by (2.10) and (H2)

$$
\begin{equation*}
\left\|u_{1}^{n}(t)\right\|_{L^{\infty}(\Omega)} \leq c_{11}(\tau) \tag{2.11}
\end{equation*}
$$

The same holds for u_{2}^{n}

$$
\begin{equation*}
\left\|u_{2}^{n}(t)\right\|_{L^{\infty}(\Omega)} \leq c_{12}(\tau) \tag{2.12}
\end{equation*}
$$

Lemma 2.4 Under the hypothesis (H1)-(H7), for all $\tau>0$, there exists constants c_{j}, c_{τ} such that the following estimates hold

$$
\begin{equation*}
\left\|u_{i}^{n}\right\|_{L^{p_{i}}\left(0, T ; W_{0}^{1, p_{i}}(\Omega)\right)} \leq c_{13}(T), \tag{2.13}
\end{equation*}
$$

$$
\begin{gather*}
\left\|u_{i}^{n}\right\|_{L^{\infty}\left(\tau, T ; W_{0}^{1, p_{i}}(\Omega)\right)} \leq c_{14}(\tau, T) \tag{2.14}\\
\int_{\tau}^{T} \int_{\Omega} b_{i}^{\prime}\left(u_{i}^{n}\right)\left(\frac{\partial u_{i}^{n}}{\partial t}\right)^{2} d x d s \leq c_{15}(\tau, T) \tag{2.15}\\
\text { and } \int_{t}^{t+\tau} \int_{\Omega} b_{i}^{\prime}\left(u_{i}^{n}\right)\left(\frac{\partial u_{i}^{n}}{\partial t}\right)^{2} d x d s \leq c_{16}(\tau), \text { for any } t \geq \tau>0 \tag{2.16}
\end{gather*}
$$

Proof. Taking the scalar product of equation (2.1) by u_{1}^{n} and (2.4) by u_{2}^{n}, integrating on Ω and using hypothesis (H4), we get

$$
\begin{gather*}
\frac{d}{d t}\left[\sum_{i=1}^{2}\left\{\int_{\Omega} \Psi_{i}^{*}\left(b_{i}\left(u_{i}^{n}\right)\right) d x\right\}\right]+\sum_{i=1}^{2} \int_{\Omega}\left|\nabla u_{i}^{n}\right|^{p_{i}} d x \\
+c_{1} \sum_{i=1}^{2} \int_{\Omega}\left|u_{i}^{n}\right|^{\alpha_{i}} d x \leq c_{2} \tag{2.17}
\end{gather*}
$$

But $\left\|\varphi_{1}\right\|_{L^{2}(\Omega)}+\left\|\psi_{1}\right\|_{L^{2}(\Omega)} \leq c \Longrightarrow \int_{\Omega}\left(\Psi_{1}^{*}\left(b_{1}\left(\varphi_{1}\right)\right)+\Psi_{2}^{*}\left(b_{2}\left(\psi_{1}\right)\right)\right) d x \leq c$, where Ψ_{i}^{*} is the Legendre transform of $\Psi_{i}, \Psi_{i}(t)=\int_{0}^{t} b_{i}(s) d s$. So, integrating (2.17) from 0 to T we obtain

$$
\begin{equation*}
\sum_{i=1}^{2}\left(\int_{0}^{T} \int_{\Omega}\left|\nabla u_{i}^{n}\right|^{p_{i}}\right) d x d s+c_{17} \sum_{i=1}^{2}\left(\int_{0}^{T} \int_{\Omega}\left|u_{i}^{n}\right|^{\alpha_{i}}\right) d x d s \leq c_{17}(T) \tag{2.18}
\end{equation*}
$$

Hence (2.13) follows.
Taking the scalar product of equation (2.1) by $\frac{\partial u_{1}^{n}}{\partial t}$ and (2.4) by $\frac{\partial u_{2}^{n}}{\partial t}$ integrating on Ω, it follows by (H2),(H7) and lemma 2.1 that for any all $t \geq \tau>0$,

$$
\begin{gather*}
\sum_{i=1}^{2} \int_{\Omega} b_{i}^{\prime}\left(u_{i}^{n}\right)\left(\frac{\partial u_{i}^{n}}{\partial t}\right)^{2} d x+\frac{d}{d t} \sum_{i=1}^{2}\left[\frac{1}{p_{i}} \int_{\Omega}\left|\nabla u_{i}^{n}\right|^{p_{i}} d x\right]= \\
-\int_{\Omega} f_{1}\left(x, t, u_{1}^{n}, u_{2}^{n-1}\right) \frac{\partial u_{1}^{n}}{\partial t} d x-\int_{\Omega} f_{2}\left(x, t, u_{1}^{n-1}, u_{2}^{n}\right) \frac{\partial u_{2}^{n}}{\partial t} d x \\
\leq \frac{1}{2} \sum_{i=1}^{2} \int_{\Omega} b_{i}^{\prime}\left(u_{i}^{n}\right)\left(\frac{\partial u_{i}^{n}}{\partial t}\right)^{2} d x+c_{18}(\tau) \tag{2.19}
\end{gather*}
$$

Then, we have

$$
\begin{equation*}
\sum_{i=1}^{2} \int_{\Omega} b_{i}^{\prime}\left(u_{i}^{n}\right)\left(\frac{\partial u_{i}^{n}}{\partial t}\right)^{2} d x+\frac{d}{d t} \sum_{i=1}^{2}\left[\frac{2}{p_{i}} \int_{\Omega}\left|\nabla u_{i}^{n}\right|^{p_{i}} d x\right] \leq c_{19}(\tau) \tag{2.20}
\end{equation*}
$$

Integrating (2.20) on $(t, t+\tau)$, then yields

$$
\sum_{i=1}^{2} \int_{t}^{t+\tau} \int_{\Omega} b_{i}^{\prime}\left(u_{i}^{n}\right)\left(\frac{\partial u_{i}^{n}}{\partial t}\right)^{2} d x+\sum_{i=1}^{2}\left[\frac{2}{p_{i}} \int_{\Omega}\left|\nabla u_{i}^{n}(t+\tau)\right|^{p_{i}} d x\right]=
$$

$$
\begin{equation*}
\sum_{i=1}^{2}\left[\frac{2}{p_{i}} \int_{\Omega}\left|\nabla u_{i}^{n}(\tau)\right|^{p_{i}} d x\right]+c_{\tau} \tag{2.21}
\end{equation*}
$$

Integrating (2.17) on $(t, t+\tau)$ and using lemma 2.3, we get

$$
\begin{equation*}
\sum_{i=1}^{2} \int_{t}^{t+\tau}\left[\frac{1}{p_{i}} \int_{\Omega}\left|\nabla u_{i}^{n}(s)\right|^{p_{i}} d x d s\right] \leq c_{\tau}, \forall t \geq \tau>0 \tag{2.22}
\end{equation*}
$$

By the uniform Gronwall's lemma 2.1, we obtain

$$
\sum_{i=1}^{2}\left[\int_{\Omega}\left|\nabla u_{i}^{n}(t)\right|^{p_{i}} d x\right] \leq c_{\tau}, \forall t \geq \tau>0, \forall n \in \mathbb{N}^{*}
$$

Integrating now (2.20) on $(t, t+\tau)$, we have

$$
\sum_{i=1}^{2} \int_{t}^{t+\tau} \int_{\Omega} b_{i}^{\prime}\left(u_{i}^{n}\right)\left(\frac{\partial u_{i}^{n}}{\partial t}\right)^{2} d x d s \leq c_{20}(\tau)
$$

which gives by (H2)

$$
\sum_{i=1}^{2} \int_{t}^{t+\tau} \int_{\Omega}\left(\frac{\partial b_{i} u_{i}^{n}}{\partial t}\right)^{2} d x d s \leq c_{21}(\tau)
$$

Passage to the limit in in the process $\quad\left(P_{1, n}\right)$ and $\left(P_{2, n}\right)$
By lemma 2.3 and lemma 2.4, there exist a subsequence (denoted again by u_{i}^{n}, $i=1,2)$ such that as $n \rightarrow+\infty: u_{i}^{n} \rightarrow u_{i}$ weak in $L^{p_{i}}\left(0, T ; W_{0}^{1, p_{i}}(\Omega)\right)$ and in $L^{\alpha_{i}}\left(Q_{T}\right), u_{i}^{n} \rightarrow u_{i}^{n}$ weak star in $L^{\infty}\left(\tau, T ; W_{0}^{1, p_{i}}(\Omega), \forall \tau>0, b_{i}\left(u_{i}^{n}\right) \rightarrow \eta_{i}\right.$ in $L^{2}\left(Q_{T}\right), \quad \frac{\partial b_{i}\left(u_{i}^{n}\right)}{\partial t}$ is bounded in $L^{2}\left(\tau, T ; W^{-1, p_{i}^{\prime}}(\Omega)\right)$ for any $\tau>0, \operatorname{div} F_{i}\left(\nabla u_{i}^{n}\right)$ $\rightarrow \chi_{i}$ in weak $L^{p_{i}^{\prime}}\left(0, T ; W^{-1, p_{i}^{\prime}}(\Omega)\right)$. Moreover standard monotonicity argument gives $\quad \chi_{i}=\operatorname{div} F_{i}(\nabla u), \eta_{i}=b_{i}\left(u_{i}\right)$. To conclude that $w=\left(u_{1}, u_{2}\right)$ is a weak solution of (\mathbf{S}) it is enough to observe that $f_{1}\left(x, t, u_{1}^{n}, u_{2}^{n-1}\right)$ converges to $f_{1}\left(x, t, u_{1}, u_{2}\right)$ and $f_{2}\left(x, t, u_{1}^{n-1}, u_{2}^{n}\right)$ converges to $f_{2}\left(x, t, u_{1}, u_{2}\right)$ strongly in $L^{1}\left(Q_{T}\right)$ and in $L^{s}\left(\tau, T ; L^{s}(\Omega)\right)$ for all $\tau>0$; and for all $s \geq 1$, thanks to Vitali's theorem. Whence $w=\left(u_{1}, u_{2}\right)$ is a solution of (\mathbf{S}).

2.2.2 Uniqueness

Proposition 2.1 The solution of (S) is unique. Moreover, if (u_{1}, u_{2}) and $\left(v_{1}, v_{2}\right)$ are two solutions, corresponding respectively to initial data $\left(\varphi_{1}, \psi_{1}\right)$ and $\left(\varphi_{2}, \psi_{2}\right)$ such that $\varphi_{1} \leq \psi_{1}$ and $\varphi_{2} \leq \psi_{2}$ then $u_{i} \leq v_{i}$.

Proof. Suppose that $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ are two solutions, corresponding respectively to initial data $\left(\varphi_{1}, \psi_{1}\right)$ and $\left(\varphi_{2}, \psi_{2}\right)$ such that $\varphi_{1} \leq \psi_{1}$ and $\varphi_{2} \leq \psi_{2}$. Following Diaz [5, p.269], we consider the following test function : $w_{i}=H_{n}\left(u_{i}-\right.$ $\left.v_{i}\right), n \geq 1,(i=1,2)$ by

$$
H_{n}(s)=\left\{\begin{array}{lr}
0 & \text { if } s \leq 0 \\
\frac{n^{2} s^{2}}{2} & 0<s \leq \frac{1}{n} \\
2 n s-\frac{n^{2} s^{2}}{2}-1 & \frac{1}{n}<s \leq \frac{2}{n} \\
1 & s>\frac{2}{n}
\end{array}\right.
$$

It is easy to see that

$$
\left\{\begin{array}{c}
0 \leq\left(H_{n}\right)^{\prime}(s) \leq n, \quad \lim _{n \rightarrow+\infty} s\left(H_{n}\right)^{\prime}(s)=0 \\
\left|H_{n}(s)\right| \leq 1, \lim _{n \rightarrow+\infty} H_{n}(s)=\operatorname{sign}_{+}(s) \\
\text { and } \lim _{n \rightarrow+\infty} s\left(H_{n}\right)(s)=s_{+}= \begin{cases}0 & s \leq 0 \\
s & s>0\end{cases}
\end{array}\right.
$$

Considering the systems (S) verified by $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$, we get

$$
\begin{align*}
& \sum_{i=1}^{2} \int_{0}^{t} \int_{\Omega}\left[b_{i}\left(u_{i}\right)-b_{i}\left(v_{i}\right)\right]_{t} H_{n}\left(u_{i}-v_{i}\right)+ \\
& \sum_{i=1}^{2} \int_{0}^{t} \int_{\Omega}\left[\left|\nabla u_{i}\right|^{p_{i}-2} \nabla u_{i}-\left|\nabla v_{i}\right|^{p_{i}-2} \nabla v_{i}\right]\left(\nabla u_{i}-\nabla v_{i}\right)\left(H_{n}\right)^{\prime}\left(u_{i}-v_{i}\right)+ \\
& \quad \sum_{i=1}^{2} \int_{0}^{t} \int_{\Omega}\left[f_{i}\left(x, u_{1}, u_{2}\right)-f_{i}\left(x, v_{1}, v_{2}\right)\right] H_{n}\left(u_{i}-v_{i}\right) . \tag{2.23}
\end{align*}
$$

Since $\left(H_{n}\right)^{\prime}(s) \geq 0$, we deduce that
$\lim _{n \rightarrow+\infty} \sum_{i=1}^{2} \int_{0}^{t} \int_{\Omega}\left[\left|\nabla u_{i}\right|^{p_{i}-2} \nabla u_{i}-\left|\nabla v_{i}\right|^{p_{i}-2} \nabla v_{i}\right]\left(\nabla u_{i}-\nabla v_{i}\right)\left(H_{n}\right)^{\prime}\left(u_{i}-v_{i}\right) \geq 0$.
By (H7) and (2.24), (2.23) becomes
$\sum_{i=1}^{2} \int_{0}^{t} \int_{\Omega}\left[b_{i}\left(u_{i}\right)-b_{i}\left(v_{i}\right)\right]_{t} \operatorname{sign}_{+}\left(u_{i}-v_{i}\right) \leq k_{1} \sum_{i=1}^{2} \int_{0}^{t} \int_{\Omega}\left[b_{i}\left(u_{i}(., s)\right)-b_{i}\left(v_{i}(., s)\right]_{+}\right.$,
by Gronwall's lemma, we get
$\sum_{i=1}^{2} \int_{0}^{t} \int_{\Omega}\left[b_{i}\left(u_{i}(., t)\right)-b_{i}\left(v_{i}(., t)\right)\right]_{+} \leq e^{k_{1} t} \sum_{i=1}^{2} \int_{\Omega}\left[b_{i}\left(\varphi_{i}\right)-b_{i}\left(\psi_{i}\right)\right]_{+}, \forall t \in[0, T]$.
Since the second term vanishes and recalling that $\varphi_{1} \leq \psi_{1}$ and $\varphi_{2} \leq \psi_{2}$, this means that $b_{i}\left(u_{i}\right) \leq b_{i}\left(v_{i}\right)$, and by monotonicity of b_{i}, we obtain $u_{i} \leq v_{i}$. Uniqueness is now an obvious consequence.

Remark. i) Our calculations above are formal. We may assume that the solutions are smooth enough to have all estimates we need. Such assumptions
can be justified by working with regularized problem

$$
\frac{\partial b_{i}\left(u_{i}\right)}{\partial t}-\operatorname{div}\left[\left\{\left|\nabla u_{i}\right|^{2}+\varepsilon\right\}^{\frac{p_{i}-2}{2}} \nabla u_{i}\right]+f_{i}(x, u)=0
$$

whose solutions are smooth so that the following argument can be carried out rigorously. One can see that the estimates obtained are independent of the parameter ε, so that, by taking the limit, they also hold for (\mathbf{S}).
ii) Assume that hypothesis (H1) to (H7) are satisfied and f_{i} does not depend on $t: f_{i}\left(x, t, u_{1}, u_{2}\right)=f_{i}\left(x, u_{1}, u_{2}\right)$, then theorem 2.1 establishes the existence of dynamical system $\{S(t)\}_{t \geq 0}$ which maps $\left[L^{2}(\Omega)\right]^{2}$ into $\left[L^{2}(\Omega)\right]^{2}$ such that $S(t)\left(\varphi_{1}, \psi_{2}\right)=\left(u_{1}(t), u_{2}(t)\right)$.

3 Global attractor

Proposition 3.1 Assume that (H1)-(H7) hold and f_{i} does not depend on t, the semi-group $S(t)$ associated with problem (S) is such that
(i) There exist absorbing sets in $L^{\sigma_{i}}(\Omega)$, for $1 \leq \sigma_{i} \leq+\infty$.
(ii) There exist absorbing sets in $W_{0}^{1, p_{1}}(\Omega) \times W_{0}^{1, p_{2}}(\Omega)$.

Proof. Let u_{i} be solution of (S) and u_{i}^{n} solution of $\left(P_{i, n}\right)$ such that $u_{i}^{n} \rightarrow u_{i}$. Then for fixed $t \geq \tau>0$, lemma 2.3, lemma 2.4 and Sobolev's injection theorem imply

$$
\begin{gathered}
\left\|u_{i}^{n}(t)\right\|_{L^{\sigma_{i}(\Omega)}} \leq c_{\tau}, \\
\text { and } \quad\left\|u_{i}^{n}(t)\right\|_{\left.W_{0}^{1, p_{i}}(\Omega)\right)} \leq c_{\tau}, \quad \forall t \geq \tau .
\end{gathered}
$$

As $n \rightarrow+\infty$, we get

$$
\begin{gathered}
\left\|u_{i}(t)\right\|_{L^{\infty}(\Omega)} \leq c_{\tau} \\
\text { and } \quad\left\|u_{i}(t)\right\|_{\left.W_{0}^{1, p_{i}}(\Omega)\right)} \leq c_{\tau}, \quad \forall t \geq \tau .
\end{gathered}
$$

Remark. By proposition 3.1 we deduce that the assumptions (1.1),(1.4) and (1.12) in theorem 1.1 [19] p23 are satisfied with $U=\left[L^{2}(\Omega)\right]^{2}$. So, by means of the uniform compactness lemma in [7, p. 111], we get the following result.

Theorem 3.1 Assume that (H1)-(H7) are satisfied and that f_{i} does not depend on time. Then the semi-group $S(t)$ associated with the boundary value problem (S) possesses a maximal attractor A which is bounded in $\left[W_{0}^{1, p_{1}}(\Omega) \times W_{0}^{1, p_{2}}(\Omega)\right] \cap$ $\left[L^{\infty}(\Omega)\right]^{2}$, compact and connected in $\left[L^{2}(\Omega)\right]^{2}$. Its domain of attraction is the whole space $\left[L^{2}(\Omega)\right]^{2}$.

4 A regularity property of the attractor

In this section we shall show supplementary regularity estimates on the solution of problem (\mathbf{S}) and by use of them, we shall obtain more regularity on the attractor obtained in section 3. We shall assume that there exist positive constants $\delta_{i}>0$ and a function H from \mathbb{R}^{N+2} to \mathbb{R} such that:

$$
(H 8)\left\{\begin{array}{c}
f_{i}(x, u)=g_{i}(u)-h_{i}(x)=\delta_{i} \frac{\partial H}{\partial u_{i}} ; \\
f_{i} \text { satisfy (H3),(H4),(H5) and (H6),} \\
\text { and } h_{i} \in L^{\infty}(\Omega)
\end{array}\right.
$$

(H9) $b_{i} \in C^{2}(\mathbb{R})$ and $\exists \gamma_{i}, M_{i}>0$ such that $\gamma_{i} \leq b_{i}^{\prime}(s) \leq M_{i}, \forall s \in \mathbb{R}$. We shall denote : $E_{i}(\xi)=|\xi|^{\left(p_{i}-2\right) / 2} \xi$, for all $\xi \in \mathbb{R}^{N}$. The following lemmas are used in the proof of the main results of this section.

Lemma 4.1 Assume that (H1)-(H9) are satisfied, there exist constants $C=$ $C\left(\varphi_{1}, \psi_{1}\right)$, such that for any $T>0$

$$
\begin{align*}
\left\|u_{i}\right\|_{L^{\infty}\left(0, T, W_{0}^{\left.1, p_{i}(\Omega)\right)}\right.} & \leq C<\infty \tag{4.1}\\
\text { and }\left\|\frac{\partial u_{i}}{\partial t}\right\|_{L^{2}\left(Q_{T}\right)} & \leq C<\infty \tag{4.2}
\end{align*}
$$

Proof. Multiplying the equation $\frac{\partial b_{i}\left(u_{i}\right)}{\partial t}-\operatorname{div}\left[\left|\nabla u_{i}\right|^{p_{i}-2} \nabla u_{i}\right]+\delta_{i} \frac{\partial H}{\partial u_{i}}=0$ by $\frac{1}{\delta_{i}}\left(u_{i}\right)_{t}$ and we obtain

$$
\begin{gathered}
\sum_{i=1}^{2} \frac{1}{\delta_{i}} \int_{Q_{T}} b_{i}^{\prime}\left(u_{i}\right)\left(\frac{\partial u_{i}}{\partial t}\right)^{2} d x d t+\sum_{i=1}^{2} \frac{1}{p_{i} \delta_{i}} \int_{\Omega}\left|\nabla u_{i}(., T)\right|^{p_{i}} d x= \\
\int_{\Omega}\left[-H\left(., u_{1}(T), u_{2}(T)\right)+H\left(., \varphi_{1}, \psi_{1}\right] d x=\frac{1}{p_{1} \delta_{1}} \int_{\Omega}\left|\nabla \varphi_{1}\right|^{p_{1}} d x+\frac{1}{p_{2} \delta_{2}} \int_{\Omega}\left|\nabla \psi_{1}\right|^{p_{2}} d x .\right.
\end{gathered}
$$

H is continuous and $\left(u_{1}, u_{2}\right)$ is bounded, we then obtain

$$
\begin{equation*}
\sum_{i=1}^{2} \frac{\gamma_{i}}{\delta_{i}} \int_{Q_{T}}\left(\frac{\partial u_{i}}{\partial t}\right)^{2} d x d t+\sum_{i=1}^{2} \frac{1}{p_{i} \delta_{i}} \int_{\Omega}\left|\nabla u_{i}(., T)\right|^{p_{i}} d x \leq C\left(\varphi_{1}, \psi_{1}\right) \tag{4.4}
\end{equation*}
$$

hence (4.1) and (4.2).
Lemma 4.2 Let $\left.p_{i} \in\right] 1,2[$, then we have the following estimate

$$
\begin{equation*}
\sum_{i=1}^{2} \int_{\Omega}\left|\nabla u_{i}^{\prime}\right|^{p_{i}} d x \leq c_{22} \sum_{i=1}^{2} \int_{\Omega}\left|\nabla u_{i}\right|^{p_{i}} d x+\sum_{i=1}^{2} \frac{2\left(p_{i}-1\right)}{p_{i}^{2}} \int_{\Omega}\left|\left(E_{i}\left(\nabla u_{i}\right)\right)^{\prime}\right|^{2} d x, \tag{4.5}
\end{equation*}
$$

with a constant $c_{22}>0$.

Proof. Straigthforward calculations see [9] give

$$
\int_{\Omega}\left(F_{i}\left(\nabla w_{i}\right)\right)^{\prime} . \nabla w_{i}^{\prime} d x \geq\left(p_{i}-1\right)\left(\frac{2}{p_{i}}\right)^{2} \int_{\Omega}\left|\left(E_{i}\left(\nabla w_{i}\right)\right)^{\prime}\right|^{2} d x
$$

As $E_{i}\left(\nabla w_{i}\right)=\left|\nabla w_{i}\right|^{\frac{p_{i}-2}{2}} \nabla w_{i}$, we get $\left|\nabla w_{i}\right|=\left|E_{i}\left(\nabla w_{i}\right)\right|^{\frac{2}{p_{i}}}$ and $\nabla w_{i}=\mid E_{i}\left(\left.\nabla w_{i}\right|^{\frac{2-p_{i}}{2}} E\left(\nabla w_{i}\right)\right.$ Hence

$$
\left(\nabla w_{i}\right)^{\prime}=\frac{2}{p_{i}}\left|E_{i}\left(\nabla w_{i}\right)\right|^{\frac{2-p_{i}}{p_{i}}}\left(E_{i}\left(\nabla w_{i}\right)\right)^{\prime}
$$

which yields

$$
\left|\nabla w_{i}^{\prime}\right|^{p_{i}}=\left(\frac{2}{p_{i}}\right)^{p_{i}}\left|E_{i}\left(\nabla w_{i}\right)\right|^{2-p_{i}}\left|\left(E_{i}\left(\nabla w_{i}\right)\right)^{\prime}\right|^{p_{i}}
$$

So that, the Hölder inequality can be applied to give

$$
\begin{aligned}
& \int_{\Omega}\left|\nabla w_{i}^{\prime}\right|^{p_{i}} d x \leq c_{23} \int_{\Omega}\left|E_{i}\left(\nabla w_{i}\right)\right|^{2-p_{i}}\left|\left(E_{i}\left(\nabla w_{i}\right)\right)^{\prime}\right|^{p_{i}} d x \\
\leq & \frac{c_{24}}{2} \int_{\Omega}\left|E_{i}\left(\nabla w_{i}\right)\right|^{2} d x+\frac{2\left(p_{i}-1\right)}{p_{i}^{2}}\left(\int_{\Omega}\left|\left(E_{i}\left(\nabla w_{i}\right)\right)^{\prime}\right|^{2} d x\right.
\end{aligned}
$$

then yields (4.5). For stating the next theorem we introduce the hypothesis

$$
\text { (H10) } \quad N=1 \quad \text { and } \quad 1<p_{i}<2 \quad \text { or } \quad N \geq 2 \quad \text { and } \quad \frac{3 N}{N+2} \leq p_{i}<2
$$

Theorem 4.1 Let f_{i}, b_{i} and p_{i} satisfies hypothesis (H1) to (H10).
Let $r(t)=\sum_{i=1}^{2} \int_{\Omega} b_{i}^{\prime}\left(u_{i}\right)\left(u_{i}^{\prime}\right)^{2} d x$. Then

$$
\begin{equation*}
r(t) \leq c_{25}(\tau), \quad \forall t \geq \tau>0 \tag{4.6}
\end{equation*}
$$

where c_{25} is a positive constant depending on τ.
Proof. Differentiating equation $\frac{\partial b_{i}\left(u_{i}\right)}{\partial t}-\operatorname{div}\left[\left|\nabla u_{i}\right|^{p_{i}-2} \nabla u_{i}\right]+g_{i}(x, u)=h_{i}(x)$ with respect to t, we get

$$
\begin{equation*}
b_{i}^{\prime}\left(u_{i}\right) u_{i}^{\prime \prime}+b_{i}^{\prime \prime}\left(u_{i}\right)\left(u_{i}^{\prime}\right)^{2}-\operatorname{div}\left(\left(F_{i}\left(\nabla u_{i}\right)\right)^{\prime}\right)+\sum_{j=1}^{2} \frac{\partial g_{i}(u)}{\partial u_{j}} u_{j}^{\prime}=0 \tag{4.7}
\end{equation*}
$$

Now multiplying (4.7) by u_{i}^{\prime}, and integrating over Ω gives
$\frac{1}{2} r^{\prime}(t)+\frac{1}{2} \sum_{i=1}^{2} \int_{\Omega} b_{i}^{\prime \prime}\left(u_{i}\right)\left(u_{i}^{\prime}\right)^{3} d x+\sum_{i=1}^{2} \int_{\Omega}\left(F_{i}\left(\nabla u_{i}\right)\right)^{\prime} \nabla u_{i}^{\prime} d x+\int_{\Omega}\left(\sum_{i=1}^{2} \sum_{j=1}^{2} \frac{\partial g_{i}(u)}{\partial u_{j}} u_{j}^{\prime}\right) u_{i}^{\prime} d x=0$,
the L^{∞} estimate and hypothesis (H9) imply successively

$$
\begin{gather*}
\int_{\Omega}\left(\sum_{i=1}^{2} \sum_{j=1}^{2} \frac{\partial g_{i}(u)}{\partial u_{j}} u_{j}^{\prime}\right) u_{i}^{\prime} d x \leq M \sum_{i=1}^{2} \int_{\Omega}\left(u_{i}^{\prime}\right)^{2} d x \tag{4.9}\\
\gamma \sum_{i=1}^{2} \int_{\Omega}\left(u_{i}^{\prime}\right)^{2} d \leq r(t) \tag{4.10}
\end{gather*}
$$

On the other hand, by Gagliardo-Nirenberg's inequality, Young's inquality and (4.5), we obtain

$$
\begin{gather*}
-\frac{1}{2} \sum_{i=1}^{2} \int_{\Omega} b^{\prime \prime}\left(u_{i}\right)\left(u_{i}^{\prime}\right)^{3} d x \leq c_{25} \sum_{i=1}^{2}\left\|u_{i}^{\prime}\right\|_{2}^{3\left(1+q_{i}\right)}+c_{26} \sum_{i=1}^{2}\left\|\nabla u_{i}\right\|_{p_{i}}^{p_{i}}+ \\
\sum_{i=1}^{2} \frac{4\left(p_{i}-1\right)}{p_{i}^{2}} \int_{\Omega}\left|\left(E_{i}\left(\nabla u_{i}\right)\right)^{\prime}\right|^{2} d x \tag{4.11}
\end{gather*}
$$

where $q_{i}=\frac{N\left(3-p_{i}\right)}{3 N p_{i}+6 p_{i}-9 N}$.
By (4.9),(4.10),(4.11), (4.7) becomes

$$
\begin{gather*}
\frac{1}{2} r^{\prime}(t)+\sum_{i=1}^{2} \frac{\left(p_{i}-1\right)}{2}\left(\frac{2}{p_{i}}\right)^{2} \int_{\Omega}\left|\left(E_{i}\left(\nabla u_{i}\right)\right)^{\prime}\right|^{2} d x \leq c_{27} \sum_{i=1}^{2}\left\|u_{i}^{\prime}\right\|_{2}^{3\left(1+q_{i}\right)}+ \\
c_{128} \sum_{i=1}^{2}\left\|\nabla u_{i}\right\|_{p_{i}}^{p_{i}}+M \sum_{i=1}^{2}\left\|u_{i}^{\prime}\right\|_{2}^{2} \tag{4.12}
\end{gather*}
$$

Now (4.11) and estimate (2.13) give

$$
\begin{equation*}
\frac{1}{2} r^{\prime}(t)+\sum_{i=1}^{2} \frac{2\left(p_{i}-1\right)}{p_{i}^{2}} \int_{\Omega}\left|\left(E_{i}\left(\nabla u_{i}\right)\right)^{\prime}\right|^{2} d x \leq c_{29}(r(t))^{2}+c_{30} \text { for any } t \geq \tau>0 \tag{4.13}
\end{equation*}
$$

Using estimate (2.14) now gives

$$
\sum_{i=1}^{2}\left[\frac{1}{p_{i}} \int_{\Omega}\left|\nabla u_{i}^{n}\right|^{p_{i}} d x\right] \leq c_{31}(\tau), \forall t \geq \frac{\tau}{2} \text { for any } \tau>0
$$

integrating (2.20) on $\left[t, t+\frac{\tau}{2}\right]$, then yields

$$
\begin{equation*}
\sum_{i=1}^{2} \int_{t}^{t+\frac{\tau}{2}} \int_{\Omega} b_{i}^{\prime}\left(u_{i}\right)\left(u_{i}^{\prime}\right)^{2} d x d t \leq c_{32}(\tau), \text { for any } t \geq \frac{\tau}{2}>0 \tag{4.14}
\end{equation*}
$$

That is

$$
\begin{equation*}
\int_{t}^{t+\frac{\tau}{2}} r(s) d s \leq c_{33}(\tau), \text { for any } t \geq \frac{\tau}{2}>0 \tag{4.15}
\end{equation*}
$$

Coming back to (4.13) and using the uniform Gronwall's lemma 2.2 gives

$$
r\left(t+\frac{\tau}{2}\right) \leq c_{34}(\tau), \text { for any } t \geq \frac{\tau}{2}>0
$$

Hence

$$
r(t) \leq c_{\tau}, \text { for } \quad \text { any } \quad t \geq \tau>0
$$

By use of theorem 4.1, we shall now arrive to the aim result of this section.
Theorem 4.2 Let f_{i}, b_{i} and p_{i} satisfies hypothesis (H1) to (H10). Then, for any $\tau>0$, the solution of system (S) satisfies the following regularity estimates

$$
\begin{gather*}
\frac{\partial b_{i}\left(u_{i}\right)}{\partial t} \in L^{2}\left(\tau,+\infty ; L^{2}(\Omega)\right) \tag{4.16}\\
\text { and } \quad u_{i} \in L^{\infty}\left(\tau,+\infty ; B_{\infty}^{1+\sigma_{i}, p_{i}}(\Omega)\right) . \tag{4.17}
\end{gather*}
$$

Moreover, there exists a constant $c_{\tau}>0$ such that

$$
\begin{equation*}
\lim _{t \rightarrow+\infty}\left\|\left.\nabla u_{i}\right|^{\left(p_{i}-2\right) / 2} \frac{\partial \nabla u_{i}}{\partial t}\right\|_{L^{2}\left(t, t+1 ; L^{2}(\Omega)\right)} \leq c(\tau) \tag{4.18}
\end{equation*}
$$

Proof. By theorem 4.1 and hypothesis (H2), we get :
$\sum_{i=1}^{2} \int_{\Omega}\left(\frac{\partial b_{i}\left(u_{i}\right)}{\partial t}\right)^{2} d x \leq M r(t) \leq c(\tau)$ for any $\quad t \geq \tau>0$, then yields (4.16).
Integrating (4.13) on $[t, t+1]$, for any $t \geq \tau$ and using theorem 4.1 then yields:

$$
\begin{equation*}
\sum_{i=1}^{2} \int_{t}^{t+1} \int_{\Omega}\left|\left(E_{i}\left(\nabla u_{i}\right)\right)^{\prime}\right|^{2} d x d s \leq c(\tau), \text { for any } \tau>0 \tag{4.19}
\end{equation*}
$$

whence the estimate (4.18). On the other hand by (H10) there is some $\sigma_{i}^{\prime}, 0<$ $\sigma_{i}^{\prime}<1$, such that : $L^{2}(\Omega) \subset W^{-\sigma_{i}^{\prime}, p_{i}^{\prime}}(\Omega)$ where p_{i}^{\prime} is the conjugate of p_{i} : that is , $\frac{1}{p_{i}}+\frac{1}{p_{i}^{\prime}}=1$ Simon's regularity results [18], concerning the problem

$$
-\triangle_{p_{i}} u_{i}=-f_{i}(., u)-b_{i}\left(u_{i}\right)_{t} \in L^{\infty}\left(\tau,+\infty ; B_{\infty}^{-\sigma_{i}^{\prime}, p_{i}^{\prime}}(\Omega)\right) .
$$

Then give for any $t \geq \tau$,

$$
\left\|u_{i}(., t)\right\|_{B_{\infty}^{1+\left(1-\sigma_{i}^{\prime}\right)\left(1-p_{i}\right)^{2}, p_{i}}(\Omega)} \leq c_{35}\left\|f_{i}(., w)-b_{i}^{\prime}\left(u_{i}\right)\left(u_{i}\right)_{t}\right\|_{B_{\infty}^{-\sigma_{i}^{\prime}, p_{i}^{\prime}(\Omega)}}+c_{36}(\tau) .
$$

Hence estimate (4.17) follows.
For a solution $\left(u_{1}, u_{2}\right)$ of (\mathbf{S}), we define the ω - limit set by : $\omega\left(\varphi_{1}, \psi_{1}\right)=$ $\left\{\begin{array}{c|l}w=\left(w_{1}, w_{2}\right) \in\left(W_{0}^{1, p_{1}}(\Omega) \times L^{\infty}(\Omega)\right) \cap\left(W_{0}^{1, p_{2}}(\Omega) \times L^{\infty}(\Omega)\right) \\ \exists t_{n} \rightarrow+\infty & \begin{array}{l}u_{1}\left(., t_{n}\right) \rightarrow w_{1} \text { in } L^{p_{1}}(\Omega) \\ u_{2}\left(., t_{n}\right) \rightarrow w_{2} \text { in } L^{p_{2}}(\Omega)\end{array}\end{array}\right\}$

Corollary 4.1 Under the assumptions (H1) to (H10), we have $\omega\left(\varphi_{1}, \psi_{1}\right) \neq$ \emptyset and any $\left(w_{1}, w_{2}\right) \in \omega\left(\varphi_{1}, \psi_{1}\right)$ is a bounded weak solution of the stationary problem

$$
\left\{\begin{array}{c}
-\Delta_{p_{i}} w_{i}+f_{i}(x, w)=0 \quad \text { in } \Omega \\
w_{i}=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

Proof. From (4.19) we obtain $\omega\left(\varphi_{1}, \psi_{1}\right) \neq \emptyset$, letting $w_{i}=\lim _{n \rightarrow+\infty} u_{i}\left(., t_{n}\right)$ and $w=\left(w_{1}, w_{2}\right) \in \omega\left(\varphi_{1}, \psi_{1}\right)$, we get that w is a solution of the Dirichlet problem for elliptic system. The proof is analogous to DIAZ and DE THELIN [4] and is omitted.

References

[1] H.W. Alt, S. Luckhauss, Quasilinear Elliptic and Parabolic Differential Equations, Math.Z, 183(1983), pp311-341.
[2] A. Bamberger, étude d'une équation doublement non linéaire, J. Func.Ana. 24 (77) pp148-155.
[3] D. Blanchard, G. Francfort, Study of doubly nonlinear heat equation with no growth assumptions on the parabolic term. Siam. J. Anal. Math, vol9, $n^{\circ} 5$, sept 88 .
[4] J. I. Diaz, Nonlinear pde's and free boundaries, vol. 1, Elliptic Equations, Research Notes in Math. $n^{\circ} 106$, Pitman, London, 1985.
[5] J. I. Diaz, F. de Thelin, On a Nonlinear Parabolic Problem Arising in Some Models Related to Turbulent Flows,SiamJ.Math .Anal.vol.25, No.4, pp.1085-1111.
[6] B. Donghua, L. Yi, theorem of upper -lower solution for a class of nonlinear degenerate parabolic systems without quasi-monotony, J.Partial differential equations vol.2, N0.3 (89), p62-78.
[7] A. Eden,B. Michaux, J. Rakoston, Doubly Nonlinear Parabolic-Type Equations as Dynamical Systems, Journal of Dynamics and Differential Equations vol.3, No. 1 (1991).
[8] A. EL hachimi, F. de Thelin, Supersolutions and stabilisation nonlinear of the solution of the equation $u_{t}-\triangle_{p} u=f(x, u)$, Part I. Nonlinear Analysis T.M.A.12, N° (88), p1385-1398.
[9] A. EL hachimi, F. deThelin, Supersolutions and stabilisation nonlinearof the solution of the equation $u_{t}-\triangle_{p} u=f(x, u)$, Part II. Publicacions Matematiques, vol35 (1991), pp347-362.
[10] A. EL hachimi, H. EL ouardi, Existence and Attractors of Solutions for Doubly Nonlinear Parabolic Systems, Conférence Inernationale sur les Mathématiques Appliquées aux Sciences de l'ingénieur, CIMASI'2000.
[11] A. EL hachimi, H. EL ouardi, Existence and regularity of a global attractor for doubly nonlinear parabolic equations : Electron. J. Diff. Eqns., Vol. 2002(2002), No. 45, pp. 1-15.
[12] H. EL ouardi, F. de Thelin, Supersolutions and Stabilization of the Solutions of a Nonlinear Parabolic System. Publicacions Mathematiques, vol 33 (1989), p369-381.
[13] L. Dung, Ultimately Uniform Boundedness of Solutions and Gradients for Degenerate Parabolic Systems.Nonlinear Analysis T.M.A.1998, in press.
[14] L. Dung, Global attractors for a class of degenerate nonlinear parabolic systems, to appear in J.I.D.E.
[15] O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type. AMS Transl. Mongraph, 23 (1968).
[16] P. leTallec, Numerical Analysis of Viscoelastic Problems, RMA15, Masson, Springer Verlag, 1990.
[17] M. Marion, Attractors for reaction-diffusion equation: existence and estimate of their dimension, Applicable Analysis (25)(1987), 101-147.
[18] J. Simon, régularité de la solution d'un problème aux limites non linéaire, annales fac Sc Toulouse3, Série 5 (1981) p247-274.
[19] R.Temam, infinite dimensional dynamical systems in mechanics and physics.Applied Mathematical Sciences, $n^{\circ} 68$, springer-verlag (1988).

Hamid El Ouardi
Ecole Nationale Supérieure d'Electricité et de Mécanique
B.P. 8118 -Casablanca-Oasis, Maroc
and
UFR Mathématiques Appliquées et Industrielles
Faculté des Sciences, El Jadida - Maroc
E-mail adress: helou_di@yahoo.fr,elouardi@ensem - uh2c.ac.ma
Abderrahmane El Hachimi
UFR Mathématiques Appliquées et Industrielles
Faculté des Sciences
B.P. 20, El Jadida - Maroc

E-mail adress: elhachimi@ucd.ac.ma

[^0]: *Mathematics Subject Classifications: 35K55, 35K57, 35K65, 35B40, 35B45.
 Key words: parabolic systems, p-Laplacian, global attractor, asymptotic behaviour.

