Homoclinic orbits for a class of \boldsymbol{p}-Laplacian systems with periodic assumption

Xingyong Zhang *
Department of Mathematics, Faculty of Science, Kunming University of Science and Technology,
Kunming, Yunnan, 650500, P.R. China

Abstract

In this paper, by using a linking theorem, some new existence criteria of homoclinic orbits are obtained for the p-Laplacian system $d\left(|\dot{u}(t)|^{p-2} \dot{u}(t)\right) / d t+\nabla V(t, u(t))=f(t)$, where $p>1, V(t, x)=-K(t, x)+$ $W(t, x)$.

Keywords: p-Laplacian system; homoclinic orbit; critical point; linking theorem.

2010 Mathematics Subject Classification: 34C25, 37 J 45.

1. Introduction and main results

In this paper, we consider the p-Laplacian system

$$
\begin{equation*}
\frac{d}{d t}\left(|\dot{u}(t)|^{p-2} \dot{u}(t)\right)+\nabla V(t, u(t))=f(t) \tag{1.1}
\end{equation*}
$$

where $p>1, V(t, x)=-K(t, x)+W(t, x), K, W \in C^{1}\left(\mathbb{R} \times \mathbb{R}^{N}, \mathbb{R}\right)$ and $f: \mathbb{R} \rightarrow \mathbb{R}^{N}$ is a continuous and bounded function. A solution $u(t)$ is nontrivial homoclinic (to 0) if $u(t) \not \equiv 0, u(t) \rightarrow 0$ and $\dot{u}(t) \rightarrow 0$ as $t \rightarrow \pm \infty$. Let $q>1$ and $\frac{1}{p}+\frac{1}{q}=1$.

When $p=2$, system (1.1) reduces to the second order Hamiltonian system

$$
\begin{equation*}
\ddot{u}(t)+\nabla V(t, u(t))=f(t) \tag{1.2}
\end{equation*}
$$

[^0]Since 1978, lots of contributions on the existence and multiplicity of homoclinic solutions for system (1.2) have been presented (for example, see $[1,2,3,4,5,6,7,8,9,11$, $13,14,15,16,18]$ and references therein). Most of them considered the following system:

$$
\begin{equation*}
\ddot{u}(t)-L(t) u(t)+\nabla W(t, u(t))=0, \tag{1.3}
\end{equation*}
$$

where $L(t)$ is a symmetric matrix value function and W satisfies the following ARcondition:
(W1) there exists $\mu>2$ such that

$$
\begin{equation*}
0<\mu W(t, x) \leq(\nabla W(t, x), x), \quad \forall(t, x) \in \mathbb{R} \times\left(\mathbb{R}^{N} /\{0\}\right) . \tag{1.4}
\end{equation*}
$$

In 2005, Izydorek and Janczewska [14] considered system (1.2), more general than system(1.3), and obtained the following result:

Theorem A Assume that V and f satisfy (W1) and the following conditions:
(V) $V(t, x)=-K(t, x)+W(t, x)$, where $K, W: \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ are C^{1}-maps, T-periodic with respect to $t, T>0$;
(K1) there are constants $b_{1}, b_{2}>0$ such that for all $(t, x) \in \mathbb{R} \times \mathbb{R}^{N}$,

$$
b_{1}|x|^{2} \leq K(t, x) \leq b_{2}|x|^{2} ;
$$

(K2) for all $(t, x) \in \mathbb{R} \times \mathbb{R}^{N}, K(t, x) \leq(x, \nabla K(t, x)) \leq 2 K(t, x)$;
(W2) $\nabla W(t, x)=o(|x|)$, as $|x| \rightarrow 0$ uniformly with respect to t;
(f) $\bar{b}_{1}:=\min \left\{1,2 b_{1}\right\}>2 M$ and $\|f\|_{L^{2}(\mathbb{R}, \mathbb{R})}<\frac{\bar{b}_{1}-2 M}{2 C^{*}}$, where

$$
\begin{equation*}
M=\sup _{t \in[0, T],|x|=1} W(t, x) \tag{1.5}
\end{equation*}
$$

and C^{*} is a positive constant that depends on T. When $T \geq 1 / 2, C^{*}=1 / 2$. Then system (1.2) possesses a nontrivial homoclinic solution.

Since then, several results for system (1.2) in this direction have been obtained (see [11] and [18]). When $p>1$, the following result can be seen in [17]:

Theorem B Assume that V and f satisfy assumptions (V) and the following conditions: (I1) there exist constants $b>0$ and $\gamma \in(1, p]$ such that

$$
K(t, 0)=0, \quad K(t, x) \geq b|x|^{\gamma}, \quad \text { for all }(t, x) \in \mathbb{R} \times \mathbb{R}^{N} ;
$$

(I2) there is a constant $\theta \geq p$ such that

$$
K(t, x) \leq(\nabla K(t, x), x) \leq \theta K(t, x), \quad \text { for all }(t, x) \in \mathbb{R} \times \mathbb{R}^{N} ;
$$

(I3) $W(t, 0) \equiv 0$ and $\nabla W(t, x)=o\left(|x|^{p-1}\right)$, as $|x| \rightarrow 0$ uniformly with respect to t;
(I4) there are two constants $\mu>\theta$ and $\nu \in[0, \mu-\theta)$ such that

$$
0<\mu W(t, x) \leq(\nabla W(t, x), x)+\nu b|x|^{\gamma}, \quad \text { for all }(t, x) \in \mathbb{R} \times \mathbb{R}^{N} /\{0\}
$$

$$
\begin{equation*}
\liminf _{|x| \rightarrow \infty} \frac{W(t, x)}{|x|^{\theta}}>\frac{\pi^{p}}{p T^{p}}+m_{1} \quad \text { uniformly with respect to } t, \tag{I5}
\end{equation*}
$$

where

$$
m_{1}=\sup \left\{K(t, x)\left|t \in[0, T], x \in \mathbb{R}^{N},|x|=1\right\}\right.
$$

$$
\begin{equation*}
\int_{\mathbb{R}}|f(t)|^{q} d t<\left(\frac{1}{C^{p-1}} \min \left\{\frac{\delta^{p-1}}{p},\left(1-\frac{\nu}{\mu-\gamma}\right) b \delta^{\gamma-1}-M \delta^{\mu-1}\right\}\right)^{q} \tag{I6}
\end{equation*}
$$

where M is determined by (1.5), $\frac{1}{p}+\frac{1}{q}=1, C=2^{\frac{p-1}{p}}\left(1+\left[\frac{1}{2 T}\right]\right)^{1 / p}$ and $\delta \in(0,1]$ such that

$$
\left(1-\frac{\nu}{\mu-\gamma}\right) b \delta^{\gamma-1}-M \delta^{\mu-1}=\max _{x \in[0,1]}\left(\left(1-\frac{\nu}{\mu-\gamma}\right) b x^{\gamma-1}-M x^{\mu-1}\right) .
$$

Then system (1.1) possesses a nontrivial homoclinic solution.
For the p-Laplacian system (1.1) with $f(t) \equiv 0$ and $K(t, x) \equiv 0$ (or $K(t, x)=$ $\left(L(t)|x|^{p-2} x, x\right)$, where $L \in C\left(\mathbb{R}, \mathbb{R}^{N^{2}}\right)$ is a positive definite symmetric matrix), recently, under different assumptions, some results on the existence and multiplicity of periodic solutions, subharmonic solutions and homoclinic solutions have been obtained (for example, see $[21,22,23,24,25,26]$). In [21], the authors considered the existence of subharmonic solutions for system (1.1) with $f(t) \equiv 0$ and $K(t, x)=\left(L(t)|x|^{p-2} x, x\right)$, where $L \in C\left(\mathbb{R}, \mathbb{R}^{N^{2}}\right)$ is a positive definite symmetric matrix. Under some reasonable assumptions, they obtained that the system has a sequence of distinct periodic solutions with period $k_{j} T$ satisfying $k_{j} \in \mathbb{N}$ and $k_{j} \rightarrow \infty$ as $j \rightarrow \infty$. In [22], the authors considered the existence of homoclinic solutions for system (1.1) with $f(t) \equiv 0$. They assumed that W is asymptotically p-linear at infinity, K satisfies (K1) and W and K are not periodic in t. In [23]-[26], the authors considered the existence and multiplicity of periodic solutions
for system (1.1) with $f(t) \equiv 0$ and $K(t, x) \equiv 0$. Motivated by [11, 14, 17, 18], in this paper, we consider the existence of homoclinic orbits for system (1.1) and present some new existence criteria. Next, we state our main results.

Theorem 1.1. Assume that $f \neq 0, W$ and K satisfy (V) and the following conditions: (H1) there exist $\gamma \in(1, p)$ and $a>0$ such that

$$
K(t, x) \geq a|x|^{\gamma}, \quad \text { for all }(t, x) \in[0, T] \times \mathbb{R}^{N} ;
$$

(H2) $K(t, 0) \equiv 0, \quad(x, \nabla K(t, x)) \leq p K(t, x), \quad$ for all $(t, x) \in[0, T] \times \mathbb{R}^{N}$;
(H3) (i) there exist $r \in(0,1]$ and $0<b<a$ such that

$$
\begin{equation*}
W(t, x) \leq b|x|^{p}, \quad \forall|x| \leq r ; \tag{1.6}
\end{equation*}
$$

or (ii) there exist $r>1$ and $0<b<a r^{\gamma-p}$ such that (1.6) holds;
(H_{4})

$$
\lim _{|x| \rightarrow+\infty} \frac{W(t, x)}{|x|^{p}}>\frac{\pi^{p}}{p T^{p}}+A_{0} \quad \text { uniformly for all } t \in[0, T],
$$

where

$$
A_{0}=\max _{|x|=1, t \in[0, T]} K(t, x) ;
$$

(H5) there exist positive constants ξ, η and $\nu \in[0, \gamma-1)$ such that

$$
0 \leq\left(p+\frac{1}{\xi+\eta|x|^{\nu}}\right) W(t, x) \leq(\nabla W(t, x), x) \text { for all }(t, x) \in[0, T] \times \mathbb{R}^{N} ;
$$

(H6) $f \in L^{q}\left(\mathbb{R}, \mathbb{R}^{N}\right) \cap f \in L^{\frac{p-\nu}{p-\nu-1}}\left(\mathbb{R}, \mathbb{R}^{N}\right)$ and
(i) $\|f\|_{L^{q}\left(\mathbb{R}, \mathbb{R}^{N}\right)}<\frac{r^{p-1}}{C_{0}^{p-1}} \min \left\{\frac{1}{p}, a-b\right\}$, when $r \in(0,1]$,
(ii) $\|f\|_{L^{q}\left(\mathbb{R}, \mathbb{R}^{N}\right)}<\frac{r^{p-1}}{C_{0}^{p-1}} \min \left\{\frac{1}{p}, \frac{a}{r^{p-\gamma}}-b\right\}$, when $r \in(1,+\infty)$,
where

$$
C_{0}=\left[\max \left\{\frac{1}{2 T}+\frac{p}{2 q}, \frac{1}{2}\right\}\right]^{1 / p}, \text { when } p \neq 2
$$

and

$$
C_{0}=\sqrt{\frac{1+\sqrt{1+4 T^{2}}}{4 T}}, \text { when } p=2 \text {. }
$$

Then system (1.1) possesses a nontrivial homoclinic solution.

Next, we present an example of K and W, which satisfies (H1)-(H5) but does not satisfy those conditions in $[11,14,17,18]$.

Example 1.1. Let $p=5$,

$$
K(t, x)=\ln \left(\frac{1}{2^{5}}+2\right)|x|^{4}+|x|^{5}, \quad W(t, x)=|x|^{5} \ln \left(|x|^{5}+1\right) .
$$

Choose $\gamma=4$ and $a=\ln \left(\frac{1}{2^{5}}+2\right)$. Then it is easy to verify that (H1) and (H2) hold. If one chooses $r=\frac{1}{2}$, then

$$
W(t, x) \leq \ln \left(\frac{1}{2^{5}}+1\right)|x|^{5}, \quad \forall|x| \leq r
$$

Choose $b=\ln \left(\frac{1}{2^{5}}+1\right)$. Then (H3)(i) holds. Obviously,

$$
\lim _{|x| \rightarrow+\infty} \frac{W(t, x)}{|x|^{5}}=+\infty \text { uniformly for all } t \in[0, T]
$$

(H4) holds. Moreover, note that

$$
5 \xi|x|^{5} \geq \ln \left(|x|^{5}+1\right) \text { and } 5 \eta|x|^{2} \geq \ln \left(|x|^{5}+1\right), \text { for all } x \in \mathbb{R}^{N}
$$

when we choose sufficiently large ξ and η. Hence

$$
\begin{aligned}
& 5 \xi|x|^{5}+5 \eta|x|^{7} \geq \ln \left(|x|^{5}+1\right)+\ln \left(|x|^{5}+1\right)|x|^{5} \\
\Longleftrightarrow & 5\left(\xi+\eta|x|^{2}\right)|x|^{5} \geq \ln \left(|x|^{5}+1\right)\left(|x|^{5}+1\right) \\
\Longleftrightarrow & 5\left(\xi+\eta|x|^{2}\right)|x|^{10} \geq|x|^{5} \ln \left(|x|^{5}+1\right)\left(|x|^{5}+1\right) \\
\Longleftrightarrow & \frac{5|x|^{10}}{|x|^{5}+1} \geq \frac{|x|^{5} \ln \left(|x|^{5}+1\right)}{\xi+\eta|x|^{2}} \\
\Longleftrightarrow & (\nabla W(t, x), x)-5 W(t, x) \geq \frac{W(t, x)}{\xi+\eta|x|^{2}}, \text { for all } x \in \mathbb{R}^{N}
\end{aligned}
$$

which implies that (H5) holds.
Theorem 1.2. Assume that $f \neq 0, W$ and K satisfy (V), (H1)-(H5) and the following conditions:
$(H 6)^{\prime} f \in L^{1}\left(\mathbb{R}, \mathbb{R}^{N}\right)$ and
(i) $\|f\|_{L^{1}\left(\mathbb{R}, \mathbb{R}^{N}\right)}<\frac{r^{p-1}}{C_{0}^{p}} \min \left\{\frac{1}{p}, a-b\right\}$, when $r \in(0,1]$,
(ii) $\|f\|_{L^{1}\left(\mathbb{R}, \mathbb{R}^{N}\right)}<\frac{r^{p-1}}{C_{0}^{p}} \min \left\{\frac{1}{p}, \frac{a}{r^{p-\gamma}}-b\right\}$, when $r \in(1,+\infty)$.

Then system (1.1) possesses a nontrivial homoclinic solution.
Theorem 1.3. Assume that $f \neq 0, W$ and K satisfy (V), (H2), (H4), (H5) and the following conditions:
(H1)' there exists $a>0$ such that

$$
K(t, x) \geq a|x|^{p} \quad \text { for all }(t, x) \in[0, T] \times \mathbb{R}^{N} ;
$$

(H3)' there exist $r>0$ and $0<b<a$ such that

$$
W(t, x) \leq b|x|^{p}, \quad \forall|x| \leq r ;
$$

$(H 6)^{\prime \prime} f \in L^{q}\left(\mathbb{R}, \mathbb{R}^{N}\right) \cap f \in L^{\frac{p-\nu}{p-\nu-1}}\left(\mathbb{R}, \mathbb{R}^{N}\right)$ and

$$
\|f\|_{L^{q}\left(\mathbb{R}, \mathbb{R}^{N}\right)}<\frac{r^{p-1}}{C_{0}^{p-1}} \min \left\{\frac{1}{p}, a-b\right\} .
$$

Then system (1.1) possesses a nontrivial homoclinic solution.
Theorem 1.4. Assume that $f \neq 0, W$ and K satisfy (V), (H1)', (H2), (H3)', (H4), (H5) and the following condition:
$(H 6)^{\prime \prime \prime} f \in L^{1}\left(\mathbb{R}, \mathbb{R}^{N}\right)$ and

$$
\|f\|_{L^{1}\left(\mathbb{R}, \mathbb{R}^{N}\right)}<\frac{r^{p-1}}{C_{0}^{p}} \min \left\{\frac{1}{p}, a-b\right\} .
$$

Then system (1.1) possesses a nontrivial homoclinic solution.
Remark 1.1. Theorem 1.3 and Theorem 1.4 show that f can be large when r is large, which is different from Theorem A and Theorem B. Moreover, in Theorem 1.1 and Theorem 1.2, if $r \in(1,+\infty)$, it is also possible that f can be large.

Theorem 1.5. Assume that $f \equiv 0, W$ and K satisfy (H1), (H4) and the following conditions:
$(H 2)^{\prime} K(t, 0) \equiv 0, \quad K(t, x) \leq(x, \nabla K(t, x)) \leq p K(t, x) \quad$ for all $(t, x) \in[0, T] \times \mathbb{R}^{N} ;$
(H3)" there exist $r>0$ and $0<b<a r^{\gamma-p}$ such that

$$
W(t, x) \leq b|x|^{p}, \quad \forall|x| \leq r ;
$$

$(H 5)^{\prime}$ there exist positive constants ξ, η and $\nu \in[0, \gamma)$ such that

$$
0 \leq\left(p+\frac{1}{\xi+\eta|x|^{\nu}}\right) W(t, x) \leq(\nabla W(t, x), x), \quad \text { for all }(t, x) \in[0, T] \times \mathbb{R}^{N}
$$

(H7) $Y(0)<\min \{1, a\}$, where the function $Y:[0,+\infty) \rightarrow[0,+\infty)$ is defined by

$$
Y(s)=\max _{\substack{t \in[0, T] \\ 0<|x| \leq s}} \frac{(\nabla W(t, x), x)}{|x|^{p}}
$$

for $s>0$ and

$$
Y(0)=\lim _{s \rightarrow 0^{+}} Y(s)=\lim _{s \rightarrow 0^{+}} \max _{\substack{t \in[0, T] \\ 0<x \mid \leq \leq s}} \frac{(\nabla W(t, x), x)}{|x|^{p}}
$$

Then system (1.1) possesses a nontrivial homoclinic solution.
Theorem 1.6. Assume that $f \equiv 0, W$ and K satisfy (H1)', (H2)', (H3)', (H4), (H7) and the following conditions:
(H5) " there exist positive constants ξ, η and $\nu \in[0, p)$ such that

$$
0 \leq\left(p+\frac{1}{\xi+\eta|x|^{\nu}}\right) W(t, x) \leq(\nabla W(t, x), x) \text { for all }(t, x) \in[0, T] \times \mathbb{R}^{N}
$$

Then system (1.1) possesses a nontrivial homoclinic solution.

2. Preliminaries

Similar to $[11,14,17,18]$, we will obtain the homoclinic orbit of system (1.1) as a limit of solutions of a sequence of differential systems:

$$
\begin{equation*}
\frac{d}{d t}\left(|\dot{u}(t)|^{p-2} \dot{u}(t)\right)+\nabla V(t, u(t))=f_{k}(t) \tag{2.1}
\end{equation*}
$$

where $f_{k}: \mathbb{R} \rightarrow \mathbb{R}^{N}$ is a $2 k T$-periodic extension of restriction of f to the interval $[-k T, k T), k \in \mathbb{N}$.

For $p>1$, let $L_{2 k T}^{p}\left(\mathbb{R}, \mathbb{R}^{N}\right)$ denote the Banach space of $2 k T$-periodic functions on \mathbb{R} with values in \mathbb{R}^{N} and the norm defined by

$$
\|u\|_{L_{2 k T}^{p}}=\left(\int_{-k T}^{k T}|u(t)|^{p} d t\right)^{1 / p}
$$

Let $L_{2 k T}^{\infty}\left(\mathbb{R}, \mathbb{R}^{N}\right)$ denote a space of $2 k T$-periodic essential bounded (measurable) functions from \mathbb{R} to \mathbb{R}^{N} equipped with the norm

$$
\|u\|_{L_{2 k T}^{\infty}}=\operatorname{ess} \sup \{|u(t)|, t \in[-k T, k T]\} .
$$

For each $k \in \mathbb{N}$, define $E_{k}=W_{2 k T}^{1, p}$ by

$$
\begin{aligned}
W_{2 k T}^{1, p}= & \left\{u: \mathbb{R} \rightarrow \mathbb{R}^{N} \mid u(t) \text { is absolutely continuous on }[-k T, k T], u(t+2 k T)=u(t)\right. \\
& \text { and } \left.\dot{u} \in L^{p}\left([-k T, k T] ; \mathbb{R}^{N}\right)\right\} .
\end{aligned}
$$

On $W_{2 k T}^{1, p}$, we define the norm as follows:

$$
\|u\|_{E_{k}}=\left[\int_{-k T}^{k T}|u(t)|^{p} d t+\int_{-k T}^{k T}|\dot{u}(t)|^{p} d t\right]^{1 / p}, \quad u \in W_{2 k T}^{1, p} .
$$

Then $\left(W_{2 k T}^{1, p},\|\cdot\|_{E_{k}}\right)$ is a reflexive and uniformly convex Banach space (see [19], Theorem 3.3 and Theorem 3.6).

Lemma 2.1. Let $c>0$ and $u \in W^{1, p}\left(\mathbb{R}, \mathbb{R}^{N}\right)$. Then for every $t \in \mathbb{R}$, the following inequalities hold:

$$
\begin{gather*}
|u(t)| \leq(2 c)^{-1 / p}\left(\int_{t-c}^{t+c}|u(s)|^{p} d s\right)^{1 / p}+\frac{c^{1 / q}}{2^{1 / p}(q+1)^{1 / q}}\left(\int_{t-c}^{t+c}|\dot{u}(s)|^{p} d s\right)^{1 / p} \tag{2.2}\\
|u(t)| \leq 2^{-1 / p}\left(\int_{t-1}^{t+1}|u(s)|^{p} d s+\int_{t-1}^{t+1}|\dot{u}(s)|^{p} d s\right)^{1 / p} \tag{2.3}
\end{gather*}
$$

and

$$
\begin{equation*}
|u(t)| \leq\left(\int_{t-\frac{1}{2}}^{t+\frac{1}{2}}|u(s)|^{p} d s+\int_{t-\frac{1}{2}}^{t+\frac{1}{2}}|\dot{u}(s)|^{p} d s\right)^{1 / p} \tag{2.4}
\end{equation*}
$$

Proof. Fix $t \in \mathbb{R}$. Then for every $\tau \in \mathbb{R}$,

$$
\begin{equation*}
u(t)=u(\tau)+\int_{\tau}^{t} \dot{u}(s) d s \tag{2.5}
\end{equation*}
$$

Set

$$
\phi(s)= \begin{cases}s-t+c, & t-c \leq s \leq t \\ t+c-s, & t \leq s \leq t+c\end{cases}
$$

Integrating (2.5) on $[t-c, t+c]$ and using the Hölder's inequality, we have

$$
\begin{aligned}
2 c|u(t)| & \leq \int_{t-c}^{t+c}|u(\tau)| d \tau+\int_{t-c}^{t+c} \int_{\tau}^{t}|\dot{u}(s)| d s d \tau \\
& \leq \int_{t-c}^{t+c}|u(\tau)| d \tau+\int_{t-c}^{t} \int_{\tau}^{t}|\dot{u}(s)| d s d \tau+\int_{t}^{t+c} \int_{t}^{\tau}|\dot{u}(s)| d s d \tau \\
& \leq \int_{t-c}^{t+c}|u(\tau)| d \tau+\int_{t-c}^{t}(s-t+c)|\dot{u}(s)| d s+\int_{t}^{t+c}(t+c-s)|\dot{u}(s)| d s
\end{aligned}
$$

$$
\begin{align*}
& =\int_{t-c}^{t+c}|u(\tau)| d \tau+\int_{t-c}^{t+c} \phi(s)|\dot{u}(s)| d s \\
& \leq(2 c)^{1 / q}\left(\int_{t-c}^{t+c}|u(\tau)|^{p} d \tau\right)^{1 / p}+\left(\int_{t-c}^{t+c}[\phi(s)]^{q} d s\right)^{1 / q}\left(\int_{t-c}^{t+c}|\dot{u}(s)|^{p} d s\right)^{1 / p} \\
& =(2 c)^{1 / q}\left(\int_{t-c}^{t+c}|u(\tau)|^{p} d \tau\right)^{1 / p}+\frac{2^{1 / q} c^{(q+1) / q}}{(q+1)^{1 / q}}\left(\int_{t-c}^{t+c}|\dot{u}(s)|^{p} d s\right)^{1 / p} . \tag{2.6}
\end{align*}
$$

So (2.2) holds. Let $c=1$ and $c=1 / 2$, respectively. Then (2.3) and (2.4) hold.
Remark 2.1. When $p=2$, Lemma 2.1 reduces to Lemma 2.2 in [12] and (2.4) improved Lemma 2.2 in [17].

The following (2.8) and its proof have been given in [11] (see [11], Lemma 2.2). Here, for readers' convenience, we also present it. In our Lemma 2.2, our main aim is to present the following (2.7) which generalizes Lemma 2.2 in [11] in some sense.

Lemma 2.2. For every $k \in \mathbb{N}$, if $p>1$ and $u \in E_{k}$, then

$$
\begin{equation*}
\|u\|_{L_{2 k T}^{\infty}} \leq\left[\max \left\{\frac{1}{2 k T}+\frac{p-1}{2}, \frac{1}{2}\right\}\right]^{1 / p}\left(\int_{-k T}^{k T}|u(s)|^{p} d s+\int_{-k T}^{k T}|\dot{u}(s)|^{p} d s\right)^{1 / p} \tag{2.7}
\end{equation*}
$$

If $p=2$ and $u \in E_{k}$, then the following better result holds:

$$
\begin{equation*}
\|u\|_{L_{2 k T}^{\infty}} \leq \sqrt{\frac{1+\sqrt{1+4(k T)^{2}}}{4 k T}}\left(\int_{-k T}^{k T}|u(s)|^{2} d s+\int_{-k T}^{k T}|\dot{u}(s)|^{2} d s\right)^{1 / 2} \tag{2.8}
\end{equation*}
$$

Proof. Let $\bar{t} \in[-k T, k T]$ and $t^{*} \in[\bar{t}, \bar{t}+2 k T]$ such that

$$
|u(\bar{t})|^{p}=\frac{1}{2 k T} \int_{-k T}^{k T}|u(s)|^{p} d s \text { and }\left|u\left(t^{*}\right)\right|=\max _{t \in[-k T, k T]}|u(t)| .
$$

Then

$$
\begin{equation*}
\left|u\left(t^{*}\right)\right|^{p}=|u(\bar{t})|^{p}+p \int_{\bar{t}}^{t^{*}}\left(|u(s)|^{p-2} u(s), \dot{u}(s)\right) d s \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|u\left(t^{*}-2 k T\right)\right|^{p}=|u(t)|^{p}-p \int_{t^{*}-2 k T}^{\bar{t}}\left(|u(s)|^{p-2} u(s), \dot{u}(s)\right) d s \tag{2.10}
\end{equation*}
$$

It follows from (2.9), (2.10) and Young's inequality that

$$
\begin{aligned}
\left|u\left(t^{*}\right)\right|^{p}= & \frac{1}{2}\left[\left|u\left(t^{*}\right)\right|^{p}+\left|u\left(t^{*}-2 k T\right)\right|^{p}\right] \\
= & \frac{1}{2} \left\lvert\, u\left(\left.\bar{t}\right|^{p}+\frac{1}{2}|u(\bar{t})|^{p}+\frac{p}{2} \int_{\bar{t}}^{t^{*}}\left(|u(s)|^{p-2} u(s), \dot{u}(s)\right) d s\right.\right. \\
& -\frac{p}{2} \int_{t^{*}-2 k T}^{\bar{t}}\left(|u(s)|^{p-2} u(s), \dot{u}(s)\right) d s
\end{aligned}
$$

$$
\begin{align*}
& \leq|u(\bar{t})|^{p}+\frac{p}{2} \int_{\bar{t}}^{t^{*}}|u(s)|^{p-1}|\dot{u}(s)| d s+\frac{p}{2} \int_{t^{*}-2 k T}^{\bar{t}}|u(s)|^{p-1}|\dot{u}(s)| d s \\
& =|u(\bar{t})|^{p}+\frac{p}{2} \int_{t^{*}-2 k T}^{t^{*}}|u(s)|^{p-1}|\dot{u}(s)| d s \\
& =\frac{1}{2 k T} \int_{-k T}^{k T}|u(s)|^{p} d s+\frac{p}{2} \int_{-k T}^{k T}|u(s)|^{p-1}|\dot{u}(s)| d s \tag{2.11}\\
& \leq \frac{1}{2 k T} \int_{-k T}^{k T}|u(s)|^{p} d s+\frac{p}{2} \int_{-k T}^{k T}\left[\frac{|u(s)|^{p}}{q}+\frac{|\dot{u}(s)|^{p}}{p}\right] d s \\
& \leq \max \left\{\frac{1}{2 k T}+\frac{p}{2 q}, \frac{1}{2}\right\}\left[\int_{-k T}^{k T}|u(s)|^{p} d s+\int_{-k T}^{k T}|\dot{u}(s)|^{p} d s\right] \\
& =\max \left\{\frac{1}{2 k T}+\frac{p-1}{2}, \frac{1}{2}\right\}\left[\int_{-k T}^{k T}|u(s)|^{p} d s+\int_{-k T}^{k T}|\dot{u}(s)|^{p} d s\right]
\end{align*}
$$

When $p=2$, it follows from (2.11) and Young's inequality that

$$
\begin{aligned}
\left|u\left(t^{*}\right)\right|^{2} \leq & \frac{1}{2 k T} \int_{-k T}^{k T}|u(s)|^{2} d s+\int_{-k T}^{k T}|u(s)||\dot{u}(s)| d s \\
\leq & \frac{1}{2 k T} \int_{-k T}^{k T}|u(s)|^{2} d s+\frac{k T}{1+\sqrt{1+4(k T)^{2}}} \int_{-k T}^{k T}|u(s)|^{2} d s \\
& +\frac{1+\sqrt{1+4(k T)^{2}}}{4 k T} \int_{-k T}^{k T}|\dot{u}(s)|^{2} d s \\
= & \frac{1+\sqrt{1+4(k T)^{2}}}{4 k T}\left[\int_{-k T}^{k T}|u(s)|^{2} d s+\int_{-k T}^{k T}|\dot{u}(s)|^{2} d s\right] .
\end{aligned}
$$

Corollary 2.1. For every $k \in \mathbb{N}$, if $p>1$ and $u \in E_{k}$, then

$$
\begin{equation*}
\|u\|_{L_{2 k T}^{\infty}} \leq\left[\max \left\{\frac{1}{2 T}+\frac{p-1}{2}, \frac{1}{2}\right\}\right]^{1 / p}\left(\int_{-k T}^{k T}|u(s)|^{p} d s+\int_{-k T}^{k T}|\dot{u}(s)|^{p} d s\right)^{1 / p} \tag{2.12}
\end{equation*}
$$

If $p=2$ and $u \in E_{k}$, then the following better result holds:

$$
\begin{equation*}
\|u\|_{L_{2 k T}^{\infty}} \leq \sqrt{\frac{1+\sqrt{1+4 T^{2}}}{4 T}}\left(\int_{-k T}^{k T}|u(s)|^{2} d s+\int_{-k T}^{k T}|\dot{u}(s)|^{2} d s\right)^{1 / 2} \tag{2.13}
\end{equation*}
$$

Remark 2.2. It is easy to verify that Corollary 2.1 improves Corollary 2.1 in [17].
Corollary 2.2. If $p>1$ and $u \in E_{k}$, then there exists $k_{0} \in \mathbb{N}$ such that for all $k \geq k_{0}$,

$$
\begin{equation*}
\|u\|_{L_{2 k T}^{\infty}} \leq C^{*}\left(\int_{-k T}^{k T}|u(s)|^{p} d s+\int_{-k T}^{k T}|\dot{u}(s)|^{p} d s\right)^{1 / p} \tag{2.14}
\end{equation*}
$$

where $C^{*}>\left[\max \left\{\frac{p-1}{2}, \frac{1}{2}\right\}\right]^{1 / p}$.

Proof. It follows from sequences $\left\{\left[\max \left\{\frac{1}{2 k T}+\frac{p-1}{2}, \frac{1}{2}\right\}\right]^{1 / p}\right\}$ and $\left\{\sqrt{\frac{1+\sqrt{1+4 k^{2} T^{2}}}{4 k T}}\right\}$ are decreasing and

$$
\left[\max \left\{\frac{1}{2 k T}+\frac{p-1}{2}, \frac{1}{2}\right\}\right]^{1 / p} \rightarrow\left[\max \left\{\frac{p-1}{2}, \frac{1}{2}\right\}\right]^{1 / p}, \quad \text { as } k \rightarrow \infty
$$

and

$$
\sqrt{\frac{1+\sqrt{1+4 k^{2} T^{2}}}{4 k T}} \rightarrow \frac{\sqrt{2}}{2}, \text { as } k \rightarrow \infty
$$

Remark 2.3. Corollary 2.2 generalizes (3.3) in [11].
Define $\eta: E_{k} \rightarrow[0,+\infty)$ by

$$
\eta_{k}(u)=\left(\int_{-k T}^{k T}\left[|\dot{u}(t)|^{p}+p K(t, u(t))\right] d t\right)^{1 / p}
$$

and $\varphi_{k}: E_{k} \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
\varphi_{k}(u) & =\int_{-k T}^{k T}\left[\frac{1}{p}|\dot{u}(t)|^{p}-V(t, u(t))\right] d t+\int_{-k T}^{k T}\left(f_{k}(t), u(t)\right) d t \\
& =\frac{1}{p} \eta_{k}^{p}(u)-\int_{-k T}^{k T} W(t, u(t)) d t+\int_{-k T}^{k T}\left(f_{k}(t), u(t)\right) d t
\end{aligned}
$$

It is easy to obtain that $\varphi \in C^{1}\left(E_{k}, \mathbb{R}\right)$ and for $u, v \in E_{k}$,

$$
\begin{aligned}
\left(\varphi_{k}^{\prime}(u), v\right)= & \int_{-k T}^{k T}\left[\left(|\dot{u}(t)|^{p-2} \dot{u}(t), \dot{v}(t)\right)-(\nabla V(t, u(t)), v(t))\right] d t+\int_{-k T}^{k T}\left(f_{k}(t), v(t)\right) d t \\
= & \int_{-k T}^{k T}\left[\left(|\dot{u}(t)|^{p-2} \dot{u}(t), \dot{v}(t)\right)+(\nabla K(t, u(t)), v(t))-(\nabla W(t, u(t)), v(t))\right] d t \\
& +\int_{-k T}^{k T}\left(f_{k}(t), v(t)\right) d t .
\end{aligned}
$$

By (H2) or (H2) ${ }^{\prime}$, for all $u \in E_{k}$, we obtain

$$
\begin{aligned}
\left(\varphi_{k}^{\prime}(u), u\right) \leq & \int_{-k T}^{k T}\left[|\dot{u}(t)|^{p-2}+p K(t, u(t))\right] d t-\int_{-k T}^{k T}(\nabla W(t, u(t)), u(t)) d t \\
& +\int_{-k T}^{k T}\left(f_{k}(t), u(t)\right) d t
\end{aligned}
$$

It is well known that critical points of φ correspond to solutions of system (1.1).
Different from [11, 14, 17], we shall use one linking method in [20] to obtain the critical points of φ (the details can be seen in [20]). Let $(E,\|\cdot\|)$ be a Banach space. Define the
continuous map $\Gamma:[0,1] \times E \rightarrow E$ by $\Gamma(t, x)=\Gamma(t) x$, where $\Gamma(t)$ satisfies the following conditions:

1) $\Gamma(0)=I$, the identity map.
2) For each $t \in[0,1), \Gamma(t)$ is a homeomorphism of E onto E and $\Gamma^{-1}(t) \in C(E \times$ $[0,1), E)$.
3) $\Gamma(1) E$ is a single point in E and $\Gamma(t) A$ converges uniformly to $\Gamma(1) E$ as $t \rightarrow 1$ for each bounded set $A \subset E$.
4) For each $t_{0} \in[0,1)$ and each bounded set $A \subset E$,

$$
\sup _{\substack{0 \leq t \leq t_{0} \\ u \in A}}\left\{\|\Gamma(t) u\|+\left\|\Gamma^{-1}(t) u\right\|\right\}<\infty .
$$

Let Φ be the set of all continuous maps Γ as defined above.

Definition 2.1. (see [20], Definition 3.2) We say that A links $B[h m]$ if A and B are subsets of E such that $A \cap B=\emptyset$, and for each $\Gamma \in \Phi$, there is a $t^{\prime} \in(0,1]$ such that $\Gamma\left(t^{\prime}\right) A \cap B \neq \emptyset$.

Example 1. (see [20], page 21) Let B be an open set in E, and let A consist of two points e_{1}, e_{2} with $e_{1} \in B$ and $e_{2} \notin \bar{B}$. Then A links $\partial B[\mathrm{hm}]$.

We use the following theorem to prove our main results.
Theorem 2.1. (see [20], Theorem 3.4 and Theorem 2.12) Let E be a Banach space, $\varphi \in C^{1}(E, \mathbb{R})$ and A and B two subsets of E such that A links $B[\mathrm{hm}]$. Assume that

$$
\sup _{A} \varphi \leq \inf _{B} \varphi
$$

and

$$
c:=\inf _{\Gamma \in \Phi} \sup _{\substack{s \in[0,1] \\ u \in A}} \varphi(\Gamma(s) u)<\infty .
$$

Let $\psi(t)$ be a positive, nonincreasing, locally Lipschitz continuous function on $[0, \infty)$ satisfying $\int_{0}^{\infty} \psi(r) d r=\infty$. Then there exists a sequence $\left\{u_{n}\right\} \subset E$ such that $\varphi\left(u_{n}\right) \rightarrow c$ and $\varphi^{\prime}\left(u_{n}\right) / \psi\left(\left\|u_{n}\right\|\right) \rightarrow 0$, as $n \rightarrow \infty$. Moreover, if $c=\sup _{A} \varphi$, then there is a sequence $\left\{u_{n}\right\} \subset E$ satisfying $\varphi\left(u_{n}\right) \rightarrow c, \varphi^{\prime}\left(u_{n}\right) \rightarrow 0$, and $d\left(u_{n}, B\right) \rightarrow 0$, as $n \rightarrow \infty$.

Remark 2.4. Since A links B, by Definition 2.1, it is easy to know that $c \geq \inf _{B} \varphi$. By [20], if we let $\psi(r)=\frac{1}{1+r}$, the sequence $\left\{u_{n}\right\}$ is the Cerami sequence, that is $\left\{u_{n}\right\}$ satisfying

$$
\varphi\left(u_{n}\right) \rightarrow c, \quad\left(1+\left\|u_{n}\right\|\right)\left\|\varphi^{\prime}\left(u_{n}\right)\right\| \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

3. Proofs of theorems

For convenience, we denote by $C_{i}, i=1, \ldots$ various positive constants. When $p>1$ and $p \neq 2$, let

$$
C_{0}=\left[\max \left\{\frac{1}{2 T}+\frac{p-1}{2}, \frac{1}{2}\right\}\right]^{1 / p}
$$

and when $p=2$, let

$$
C_{0}=\sqrt{\frac{1+\sqrt{1+4 T^{2}}}{4 T}}
$$

Lemma 3.1. Suppose that (H2) or (H2)' holds. Then

$$
\begin{aligned}
& K(t, x) \leq K\left(t, \frac{x}{|x|}\right)|x|^{p} \text { for all } t \in \mathbb{R},|x| \geq 1 \\
& K(t, x) \geq K\left(t, \frac{x}{|x|}\right)|x|^{p} \text { for all } t \in \mathbb{R},|x| \leq 1
\end{aligned}
$$

Proof. Since the function $\xi \in(0,+\infty) \rightarrow K\left(t, \xi^{-1} x\right) \xi^{p}$ is nondecreasing, the proof is easy to be completed.

Lemma 3.2. Suppose that (H1) or (H1) holds. Then for any $u \in E_{k}$,

$$
\eta_{k}^{p}(u) \geq \min \left\{\|u\|_{E_{k}}^{p}, p a C_{0}^{\gamma-p}\|u\|_{E_{k}}^{\gamma}\right\}, \quad \forall k \in \mathbb{N} .
$$

Proof. It follows from (2.7), (H1) or (H1) ${ }^{\prime}$ and $\gamma \leq p$ that for any $u \in E_{k}$,

$$
\begin{aligned}
\eta_{k}^{p}(u) & =\int_{-k T}^{k T}\left[|\dot{u}(t)|^{p}+p K(t, u(t))\right] d t \\
& \geq \int_{-k T}^{k T}\left[|\dot{u}(t)|^{p}+p a|u(t)|^{\gamma}\right] d t \\
& \geq \int_{-k T}^{k T}\left[|\dot{u}(t)|^{p}+p a\|u\|_{L_{2 k T}}^{\gamma-p}|u(t)|^{p}\right] d t \\
& \geq \int_{-k T}^{k T}|\dot{u}(t)|^{p} d t+p a\left(C_{0}\|u\|_{E_{k}}\right)^{\gamma-p} \int_{-k T}^{k T}|u(t)|^{p} d t
\end{aligned}
$$

$$
\begin{aligned}
& \geq \min \left\{1, p a\left(C_{0}\|u\|_{E_{k}}\right)^{\gamma-p}\right\}\|u\|_{E_{k}}^{p} \\
& =\min \left\{\|u\|_{E_{k}}^{p}, p a C_{0}^{\gamma-p}\|u\|_{E_{k}}^{\gamma}\right\} .
\end{aligned}
$$

Proof of Theorem 1.1. We divide the proof into the following Lemma 3.3-Lemma 3.5.
Lemma 3.3. Under the assumptions of Theorem 1.1, for every $k \in \mathbb{N}$, system (2.1) has a nontrivial solution u_{k} in E_{k}.

Proof. We first construct A and B which satisfy assumptions in Theorem 2.1.
(i) when $r \in(0,1]$, by Corollary 2.1, (H1), (H3)(i), Hölder inequality and $\gamma<p$, for $u \in E_{k}$ with $\|u\|_{E_{k}}=r / C_{0}$, we have

$$
\begin{align*}
\varphi_{k}(u) \geq & \frac{1}{p} \eta_{k}^{p}(u)-b \int_{-k T}^{k T}|u(t)|^{p} d t-\left(\int_{-k T}^{k T}|f(t)|^{q} d t\right)^{1 / q}\left(\int_{-k T}^{k T}|u(t)|^{p} d t\right)^{1 / p} \\
\geq & \frac{1}{p} \int_{-k T}^{k T}\left[|\dot{u}(t)|^{p}+p a|u(t)|^{\gamma}\right] d t-b \int_{-k T}^{k T}|u(t)|^{p} d t \\
& -\left(\int_{-k T}^{k T}|f(t)|^{q} d t\right)^{1 / q}\left(\int_{-k T}^{k T}|u(t)|^{p} d t\right)^{1 / p} \\
\geq & \frac{1}{p} \int_{-k T}^{k T}|\dot{u}(t)|^{p} d t+a\left(C_{0}\|u\|_{E_{k}}\right)^{\gamma-p} \int_{-k T}^{k T}|u(t)|^{p} d t-b \int_{-k T}^{k T}|u(t)|^{p} d t \\
& -\|f\|_{L^{q}\left(\mathbb{R} ; \mathbb{R}^{N}\right)}\|u\|_{E_{k}} \\
\geq & \min \left\{\frac{1}{p}, a r^{\gamma-p}-b\right\}\|u\|_{E_{k}}^{p}-\|f\|_{L^{q}\left(\mathbb{R} ; \mathbb{R}^{N}\right)}\|u\|_{E_{k}} \\
\geq & \min \left\{\frac{1}{p}, a-b\right\}\|u\|_{E_{k}}^{p}-\|f\|_{L^{q}\left(\mathbb{R} ; \mathbb{R}^{N}\right)}\|u\|_{E_{k}} . \tag{3.1}
\end{align*}
$$

(H6)(i) implies that there exists $\alpha>0$ such that

$$
\varphi_{k}(u) \geq \alpha>0, \text { for all } u \in E_{k} \text { with }\|u\|_{E_{k}}=\frac{r}{C_{0}}, \quad \forall k \in \mathbb{N} .
$$

(ii) when $r \in(1,+\infty)$, by Corollary 2.1, (H1), Hölder's inequality and $\gamma<p$, for $u \in E_{k}$ with $\|u\|_{E_{k}}=r / C_{0}$, we have

$$
\begin{align*}
\varphi_{k}(u) \geq & \frac{1}{p} \int_{-k T}^{k T}|\dot{u}(t)|^{p} d t+a\left(C_{0}\|u\|_{E_{k}}\right)^{\gamma-p} \int_{-k T}^{k T}|u(t)|^{p} d t-b \int_{-k T}^{k T}|u(t)|^{p} d t \\
& -\|f\|_{L^{q}\left(\mathbb{R} ; \mathbb{R}^{N}\right)}\|u\|_{E_{k}} \\
\geq & \min \left\{\frac{1}{p}, a r^{\gamma-p}-b\right\}\|u\|_{E_{k}}^{p}-\|f\|_{L^{q}\left(\mathbb{R} ; \mathbb{R}^{N}\right)}\|u\|_{E_{k}} . \tag{3.2}
\end{align*}
$$

(H6)(ii) implies that there exists $\alpha>0$ such that

$$
\varphi_{k}(u) \geq \alpha>0, \text { for all } u \in E_{k T} \text { with }\|u\|_{E_{k}}=\frac{r}{C_{0}}, \quad \forall k \in \mathbb{N} .
$$

By Lemma 3.1 and the periodicity of K, there exists a constant $B_{0}>0$ such that

$$
\begin{equation*}
K(t, x) \leq A_{0}|x|^{p}+B_{0}, \text { for all }(t, x) \in \mathbb{R} \times \mathbb{R}^{N} \tag{3.3}
\end{equation*}
$$

where

$$
A_{0}=\max _{|x|=1, t \in[0, T]} K(t, x)
$$

By (H4), we know that there exist $\varepsilon_{0}>0$ and $L>0$ such that

$$
\begin{equation*}
W(t, x) \geq\left(\frac{\pi^{p}}{p T^{p}}+A_{0}+\varepsilon_{0}\right)|x|^{p}, \quad \text { for all } t \in \mathbb{R} \text { and } \quad \forall|x| \geq L \tag{3.4}
\end{equation*}
$$

By (3.4) and the periodicity of W, there exists a constant $B_{1}>0$ such that

$$
\begin{equation*}
W(t, x) \geq\left(\frac{\pi^{p}}{p T^{p}}+A_{0}+\varepsilon_{0}\right)|x|^{p}-B_{1}, \quad \text { for all }(t, x) \in \mathbb{R} \times \mathbb{R}^{N} \tag{3.5}
\end{equation*}
$$

Define $w_{k} \in E_{k}$ by

$$
w_{k}(t)= \begin{cases}\left(\left|\sin \frac{\pi}{T} t\right|, 0, \ldots, 0\right) & \text { if } t \in[-T, T] \\ 0 & \text { if } t \in[-k T, k T] /[-T, T]\end{cases}
$$

Since $K(t, 0) \equiv 0$ and $W(t, 0) \equiv 0$ which is implied by (H5), we have $\varphi_{k}\left(\xi w_{k}\right)=\varphi_{1}\left(\xi w_{1}\right)$ for all $\xi \in \mathbb{R}$. Then by (3.5), we have

$$
\begin{align*}
\varphi_{k}\left(\xi w_{k}\right)= & \varphi_{1}\left(\xi w_{1}\right) \\
= & \int_{-T}^{T}\left[\frac{1}{p}\left|\xi \dot{w}_{1}(t)\right|^{p}+K\left(t, \xi w_{1}(t)\right)-W\left(t, \xi w_{1}(t)\right)\right] d t+\int_{-T}^{T}\left(f_{1}(t), \xi w_{1}(t)\right) d t \\
\leq & \frac{|\xi|^{p} \pi^{p}}{p T^{p}} \int_{-T}^{T}\left|\cos \frac{\pi}{T} t\right|^{p} d t+A_{0}|\xi|^{p} \int_{-T}^{T}\left|\sin \frac{\pi}{T} t\right|^{p} d t+2 T B_{0} \\
& -\left(\frac{\pi^{p}}{p T^{p}}+A_{0}+\varepsilon_{0}\right)|\xi|^{p} \int_{-T}^{T}\left|\sin \frac{\pi}{T} t\right|^{p} d t+2 T B_{1} \\
& +|\xi|\left(\int_{-T}^{T}\left|f_{1}(t)\right|^{q} d t\right)^{\frac{1}{q}}\left(\int_{-T}^{T}\left|\sin \frac{\pi}{T} t\right|^{p} d t\right)^{\frac{1}{p}} \\
= & -\varepsilon_{0}|\xi|^{p} \int_{-T}^{T}\left|\cos \frac{\pi}{T} t\right|^{p} d t+2 T B_{0} \\
& +2 T B_{1}+|\xi|\left(\int_{-T}^{T}\left|f_{1}(t)\right|^{q} d t\right)^{\frac{1}{q}}\left(\int_{-T}^{T}\left|\sin \frac{\pi}{T} t\right|^{p} d t\right)^{\frac{1}{p}} . \tag{3.6}
\end{align*}
$$

So there exists $\xi_{0} \in \mathbb{R}$ such that $\left\|\xi_{0} w_{k}\right\|>\frac{r}{C_{0}}$ and $\varphi\left(\xi_{0} w_{k}\right)<0$. Moreover, it is clear that $\varphi_{k}(0)=0$. Let $e_{1}=\xi_{0} w_{k}$ and

$$
A=\left\{0, e_{1}\right\}, \quad B=\left\{u \in E_{k}:\|u\|<\frac{r}{C_{0}}\right\} .
$$

Then $0 \in B$ and $e_{1} \notin \bar{B}$. So by Example 1 in Section 2, we know that A links ∂B [hm]. So by Theorem 2.1 and Remark 2.4, we have

$$
\begin{equation*}
c_{k}=\inf _{\Gamma \in \Phi} \sup _{\substack{s \in[0,1] \\ u \in A}} \varphi_{k}(\Gamma(s) u) \geq \inf _{\partial B} \varphi_{k}>\alpha>0, \tag{3.7}
\end{equation*}
$$

and there exists a sequence $\left\{u_{n}\right\} \subset E_{k}$ such that

$$
\varphi_{k}\left(u_{n}\right) \rightarrow c_{k}, \quad\left(1+\left\|u_{n}\right\|\right)\left\|\varphi_{k}^{\prime}\left(u_{n}\right)\right\| \rightarrow 0 .
$$

Then there exists a constant $C_{1 k}>0$ such that

$$
\begin{equation*}
\left|\varphi_{k}\left(u_{n}\right)\right| \leq C_{1 k}, \quad\left(1+\left\|u_{n}\right\|\right)\left\|\varphi_{k}^{\prime}\left(u_{n}\right)\right\| \leq C_{1 k} \quad \text { for all } n \in \mathbb{N} . \tag{3.8}
\end{equation*}
$$

It follows from (H5) and the periodicity and continuity of W that

$$
\begin{equation*}
[(\nabla W(t, x), x)-p W(t, x)]\left(\zeta+\eta|x|^{\nu}\right) \geq W(t, x), \quad \forall(t, x) \in \mathbb{R} \times \mathbb{R}^{N} \tag{3.9}
\end{equation*}
$$

So by (3.5), there exists $C_{2}>0$ such that

$$
\begin{align*}
{[(\nabla W(t, x), x)-p W(t, x)] } & \geq \frac{W(t, x)}{\zeta+\eta|x|^{\nu}} \\
& \geq \frac{\left(\frac{\pi^{p}}{p T^{p}}+A_{0}+\varepsilon_{0}\right)|x|^{p}-B_{1}}{\zeta+\eta|x|^{\nu}} \\
& \geq \frac{\frac{\pi^{p}}{p T^{p}}+A_{0}+\varepsilon_{0}}{\eta}|x|^{p-\nu}-C_{2}, \forall x \in \mathbb{R}^{N} \tag{3.10}
\end{align*}
$$

Hence, it follows from (H2), (3.8) and (3.10) that

$$
\begin{align*}
& p C_{1 k}+C_{1 k} \\
\geq & p \varphi_{k}\left(u_{n}\right)-\left\langle\varphi_{k}^{\prime}\left(u_{n}\right), u_{n}\right\rangle \\
\geq & \int_{-k T}^{k T}\left[\left(\nabla W\left(t, u_{n}(t)\right), u_{n}(t)\right)-p W\left(t, u_{n}(t)\right)\right] d t \\
& +(p-1) \int_{-k T}^{k T}\left(f(t), u_{n}(t)\right) d t \tag{3.11}\\
\geq & \left(\frac{\frac{\pi^{p}}{p T^{p}}+A_{0}+\varepsilon_{0}}{\eta}\right) \int_{-k T}^{k T}\left|u_{n}(t)\right|^{p-\nu} d t \\
& -(p-1) \int_{-k T}^{k T}\left|f(t) \| u_{n}(t)\right| d t-2 k T C_{2} \\
\geq & \left(\frac{\pi^{p}}{p \eta T^{p}}+\frac{A_{0}}{\eta}+\frac{\varepsilon_{0}}{\eta}\right) \int_{-k T}^{k T}\left|u_{n}(t)\right|^{p-\nu} d t-2 k T C_{2} \\
& -(p-1)\left(\int_{-k T}^{k T}|f(t)|^{\frac{p-\nu}{p-\nu-1}} d t\right)^{\frac{p-\nu-1}{p-\nu}}\left(\int_{-k T}^{k T}\left|u_{n}(t)\right|^{p-\nu} d t\right)^{1 /(p-\nu)} . \tag{3.12}
\end{align*}
$$

The fact $p-\nu>1$ and the above inequality show that $\int_{-k T}^{k T}\left|u_{n}(t)\right|^{p-\nu} d t$ is bounded. It follows from (H5) that

$$
\begin{equation*}
[(\nabla W(t, x), x)-p W(t, x)]\left(\zeta+\eta|x|^{\nu}\right) \geq W(t, x) \geq 0 \tag{3.13}
\end{equation*}
$$

By (H1), (H6), (3.8), (3.11), (3.13), Hölder's inequality and (2.12), there exist $C_{5}>0$ and $C_{6}>0$ such that

$$
\begin{align*}
& \frac{1}{p}\left\|u_{n}\right\|_{E_{k}}^{p} \\
= & \varphi_{k}\left(u_{n}\right)-\int_{-k T}^{k T} K\left(t, u_{n}(t)\right) d t+\int_{-k T}^{k T} W\left(t, u_{n}(t)\right) d t+\frac{1}{p} \int_{-k T}^{k T}\left|u_{n}(t)\right|^{p} d t \\
& -\int_{-k T}^{k T}\left(f(t), u_{n}(t)\right) d t \\
\leq & \varphi_{k}\left(u_{n}\right)+\int_{-k T}^{k T}\left[\left(\nabla W\left(t, u_{n}(t)\right), u_{n}(t)\right)-p W\left(t, u_{n}(t)\right)\right]\left(\zeta+\eta\left|u_{n}(t)\right|^{\nu}\right) d t \\
& +\frac{1}{p} \int_{-k T}^{k T}\left|u_{n}(t)\right|^{p} d t+\left(\int_{-k T}^{k T}\left|u_{n}(t)\right|^{p}\right)^{\frac{1}{p}}\left(\int_{\mathbb{R}}|f(t)|^{q} d t\right)^{\frac{1}{q}} \\
\leq & C_{1 k}+\frac{1}{p} \int_{-k T}^{k T}\left|u_{n}(t)\right|^{p} d t+\left\|u_{n}\right\|_{E_{k}}\left(\int_{\mathbb{R}}|f(t)|^{q} d t\right)^{\frac{1}{q}} \\
& +\left(\zeta+\eta\left\|u_{n}\right\|_{L_{2 k T}}^{\nu}\right) \int_{-k T}^{k T}\left[\left(\nabla W\left(t, u_{n}(t)\right), u_{n}(t)\right)-p W\left(t, u_{n}(t)\right)\right] d t \\
\leq & C_{1 k}+\frac{1}{p}\left\|u_{n}\right\|_{L_{2 k T}}^{\nu} \int_{-k T}^{k T}\left|u_{n}(t)\right|^{p-\nu} d t+\left\|u_{n}\right\|_{E_{k}}\left(\int_{\mathbb{R}}|f(t)|^{q} d t\right)^{\frac{1}{q}} \\
& +\left(\zeta+\eta\left\|u_{n}\right\|_{L_{2 k T}}^{\nu}\right)\left[(p+1) C_{1 k}+(p-1)\left\|u_{n}\right\|_{E_{k}}\left(\int_{\mathbb{R}}|f(t)|^{q} d t\right)^{\frac{1}{q}}\right] \\
\leq & C_{1 k}+\frac{C_{0}^{\nu}}{p}\left\|u_{n}\right\|_{E_{k}}^{\nu} \int_{-k T}^{k T}\left|u_{n}(t)\right|^{p-\nu} d t+\left\|u_{n}\right\|_{E_{k}}\left(\int_{\mathbb{R}}|f(t)|^{q} d t\right)^{\frac{1}{q}} \\
& +\left(\zeta+\eta C_{0}^{\nu}\left\|u_{n}\right\|_{E_{k}}^{\nu}\right)\left[(p+1) C_{1 k}+(p-1)\left\|u_{n}\right\|_{E_{k}}\left(\int_{\mathbb{R}}|f(t)|^{q} d t\right)^{\frac{1}{q}}\right] . \tag{3.14}
\end{align*}
$$

Since $\nu<\gamma-1<p-1$, (3.14) implies that $\left\|u_{n}\right\|_{E_{k}}$ is bounded. Similar to the argument of Lemma 2 in [10], next we prove that in $E_{k},\left\{u_{n}\right\}$ has a convergent subsequence, still denoted by $\left\{u_{n}\right\}$, such that $u_{n} \rightarrow u_{k}$, as $n \rightarrow \infty$. Since $W_{2 k T}^{1, p}$ is a reflexive Banach space, then there is a renamed subsequence $\left\{u_{n}\right\}$ such that

$$
\begin{equation*}
u_{n} \rightharpoonup u_{k} \text { weakly in } W_{2 k T}^{1, p} . \tag{3.15}
\end{equation*}
$$

Furthermore, by Proposition 1.2 in [4], we have

$$
\begin{equation*}
u_{n} \rightarrow u_{k} \text { strongly in } C\left([-k T, k T], \mathbb{R}^{N}\right) \tag{3.16}
\end{equation*}
$$

Note that

$$
\begin{align*}
& \left\langle\varphi_{k}^{\prime}\left(u_{n}\right), u_{n}-u_{k}\right\rangle \\
= & \int_{-k T}^{k T}\left(\left|\dot{u}_{n}(t)\right|^{p-2} \dot{u}_{n}(t), \dot{u}_{n}(t)-\dot{u}_{k}(t)\right) d t+\int_{-k T}^{k T}\left(\nabla K\left(t, u_{n}(t)\right), u_{n}(t)-u_{k}(t)\right) d t \\
& -\int_{-k T}^{k T}\left(\nabla W\left(t, u_{n}(t)\right), u_{n}(t)-u_{k}(t)\right) d t+\int_{-k T}^{k T}\left(f_{k}(t), u_{n}(t)-u_{k}(t)\right) d t \tag{3.17}
\end{align*}
$$

Since $\left\{\left\|u_{n}\right\|\right\}$ is bounded and $\varphi_{k}{ }^{\prime}\left(u_{n}\right) \rightarrow 0$, we have

$$
\begin{equation*}
\left\langle\varphi_{k}^{\prime}\left(u_{n}\right), u_{n}-u_{k}\right\rangle \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty . \tag{3.18}
\end{equation*}
$$

By assumption (V) and (3.16), we have

$$
\begin{equation*}
\int_{-k T}^{k T}\left(\nabla K\left(t, u_{n}(t)\right), u_{n}(t)-u_{k}(t)\right) d t \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{3.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{-k T}^{k T}\left(\nabla W\left(t, u_{n}(t)\right), u_{n}(t)-u_{k}(t)\right) d t \rightarrow 0 \quad \text { as } n \rightarrow \infty . \tag{3.20}
\end{equation*}
$$

Since $f_{k}(t)$ is bounded, (3.16) also implies that

$$
\begin{equation*}
\int_{-k T}^{k T}\left(f_{k}(t), u_{n}(t)-u_{k}(t)\right) d t \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{3.21}
\end{equation*}
$$

Hence, it follows from (3.18), (3.19), (3.20) and (3.21) that

$$
\begin{equation*}
\int_{-k T}^{k T}\left(\left|\dot{u}_{n}(t)\right|^{p-2} \dot{u}_{n}(t), \dot{u}_{n}(t)-\dot{u}_{k}(t)\right) d t \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty . \tag{3.22}
\end{equation*}
$$

On the other hand, it is easy to derive from (3.16) and the boundedness of $\left\{u_{n}\right\}$ that

$$
\begin{equation*}
\int_{-k T}^{k T}\left(\left|u_{n}(t)\right|^{p-2} u_{n}(t), u_{n}(t)-u_{k}(t)\right) d t \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{3.23}
\end{equation*}
$$

Set

$$
\psi_{k}\left(u_{k}\right)=\frac{1}{p}\left(\int_{-k T}^{k T}\left|u_{k}(t)\right|^{p} d t+\int_{-k T}^{k T}\left|\dot{u}_{k}(t)\right|^{p} d t\right) .
$$

Then we have

$$
\begin{align*}
\left\langle\psi_{k}^{\prime}\left(u_{n}\right), u_{n}-u_{k}\right\rangle= & \int_{-k T}^{k T}\left(\left|u_{n}(t)\right|^{p-2} u_{n}(t), u_{n}(t)-u_{k}(t)\right) d t \\
& +\int_{-k T}^{k T}\left(\left|\dot{u}_{n}(t)\right|^{p-2} \dot{u}_{n}(t), \dot{u}_{n}(t)-\dot{u}_{k}(t)\right) d t \tag{3.24}
\end{align*}
$$

and

$$
\begin{align*}
\left\langle\psi_{k}^{\prime}\left(u_{k}\right), u_{n}-u_{k}\right\rangle= & \int_{-k T}^{k T}\left(\left|u_{k}(t)\right|^{p-2} u_{k}(t), u_{n}(t)-u_{k}(t)\right) d t \\
& +\int_{-k T}^{k T}\left(\left|\dot{u}_{k}(t)\right|^{p-2} \dot{u}_{k}(t), \dot{u}_{n}(t)-\dot{u}_{k}(t)\right) d t \tag{3.25}
\end{align*}
$$

From (3.22) and (3.23), we obtain

$$
\begin{equation*}
\left\langle\psi_{k}^{\prime}\left(u_{n}\right), u_{n}-u_{k}\right\rangle \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty . \tag{3.26}
\end{equation*}
$$

On the other hand, it follows from (3.15) that

$$
\begin{equation*}
\left\langle\psi_{k}^{\prime}\left(u_{k}\right), u_{n}-u_{k}\right\rangle \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty . \tag{3.27}
\end{equation*}
$$

By (3.24), (3.25) and the Hölder's inequality, we get

$$
\begin{aligned}
& \left\langle\psi_{k}^{\prime}\left(u_{n}\right)-\psi_{k}^{\prime}\left(u_{k}\right), u_{n}-u_{k}\right\rangle \\
= & \int_{-k T}^{k T}\left(\left|u_{n}(t)\right|^{p-2} u_{n}(t), u_{n}(t)-u_{k}(t)\right) d t+\int_{-k T}^{k T}\left(\left|\dot{u}_{n}(t)\right|^{p-2} \dot{u}_{n}(t), \dot{u}_{n}(t)-\dot{u}_{k}(t)\right) d t \\
& -\int_{-k T}^{k T}\left(\left|u_{k}(t)\right|^{p-2} u_{k}(t), u_{n}(t)-u_{k}(t)\right) d t-\int_{-k T}^{k T}\left(\left|\dot{u}_{k}(t)\right|^{p-2} \dot{u}_{k}(t), \dot{u}_{n}(t)-\dot{u}_{k}(t)\right) d t \\
= & \left\|u_{n}\right\|_{E_{k}}^{p}+\left\|u_{k}\right\|_{E_{k}}^{p}-\int_{-k T}^{k T}\left(\left|u_{n}(t)\right|^{p-2} u_{n}(t), u_{k}(t)\right) d t-\int_{-k T}^{k T}\left(\left|\dot{u}_{n}(t)\right|^{p-2} \dot{u}_{n}(t), \dot{u}_{k}(t)\right) d t \\
& -\int_{-k T}^{k T}\left(\left|u_{k}(t)\right|^{p-2} u_{k}(t), u_{n}(t)\right) d t-\int_{-k T}^{k T}\left(\left|\dot{u}_{k}(t)\right|^{p-2} \dot{u}_{k}(t), \dot{u}_{n}(t)\right) d t \\
\geq & \left\|u_{n}\right\|_{E_{k}}^{p}+\left\|u_{k}\right\|_{E_{k}}^{p}-\left(\left\|u_{n}\right\|_{L_{2 k T}^{p}}^{p-1}\left\|u_{k}\right\|_{L_{2 k T}^{p}}^{p}+\left\|\dot{u}_{n}\right\|_{L_{2 k T}^{p}}^{p-1}\left\|\dot{u}_{k}\right\|_{L_{2 k T}^{p}}^{p}\right) \\
& -\left(\left\|u_{k}\right\|_{L_{2 k T}^{p}}^{p-1}\left\|u_{n}\right\|_{L_{2 k T}^{p}}^{p}+\left\|\dot{u}_{k}\right\|_{L_{2 k T}^{p}}^{p-1}\left\|\dot{u}_{n}\right\|_{L_{2 k T}^{p}}^{p}\right) \\
\geq & \left\|u_{n}\right\|_{E_{k}}^{p}+\left\|u_{k}\right\|_{E_{k}}^{p}-\left(\left\|u_{k}\right\|_{L_{2 k T}}^{p}+\left\|\dot{u}_{k}\right\|_{L_{2 k T}^{p}}^{p}\right)^{1 / p}\left(\left\|u_{n}\right\|_{L_{2 k T}^{p}}^{p}+\left\|\dot{u}_{n}\right\|_{L_{2 k T}^{p}}^{p}\right)^{1 / q} \\
& -\left(\left\|u_{n}\right\|_{L_{2 k T}^{p}}^{p}+\left\|\dot{u}_{n}\right\|_{L_{2 k T}^{p}}^{p}\right)^{1 / p}\left(\left\|u_{k}\right\|_{L_{2 k T}^{p}}^{p}+\left\|\dot{u}_{k}\right\|_{L_{2 k T}^{p}}^{p}\right)^{1 / q} \\
= & \left\|u_{n}\right\|_{E_{k}}^{p}+\left\|u_{k}\right\|_{E_{k}}^{p}-\left\|u_{k}\right\|_{E_{k}}\left\|u_{n}\right\|_{E_{k}}^{p-1}-\left\|u_{n}\right\|_{E_{k}}\left\|u_{k}\right\|_{E_{k}}^{p-1} \\
= & \left(\left\|u_{n}\right\|_{E_{k}}^{p-1}-\left\|u_{k}\right\|_{E_{k}}^{p-1}\right)\left(\left\|u_{n}\right\|_{E_{k}}-\left\|u_{k}\right\|_{E_{k}}\right) .
\end{aligned}
$$

It follows that

$$
0 \leq\left(\left\|u_{n}\right\|_{E_{k}}^{p-1}-\left\|u_{k}\right\|_{E_{k}}^{p-1}\right)\left(\left\|u_{n}\right\|_{E_{k}}-\left\|u_{k}\right\|_{E_{k}}\right) \leq\left\langle\psi^{\prime}\left(u_{n}\right)-\psi^{\prime}\left(u_{k}\right), u_{n}-u_{k}\right\rangle,
$$

which, together with (3.26) and (3.27) yields $\left\|u_{n}\right\|_{E_{k}} \rightarrow\left\|u_{k}\right\|_{E_{k}}$ (see [10]). By the uniform convexity of E_{k} and (3.15), it follows from the Kadec-Klee property (see [27]) that $\| u_{n}-$
$u_{k} \|_{E_{k}} \rightarrow 0$. Moreover, by the continuity of φ_{k} and φ_{k}^{\prime}, we obtain $\varphi_{k}^{\prime}\left(u_{k}\right)=0$ and $\varphi_{k}\left(u_{k}\right)=c_{k}>0$. It is clear that $u_{k} \neq 0$ and so u_{k} is a desired nontrivial solution of system (2.1). The proof is complete.

Lemma 3.4. Let $\left\{u_{k}\right\}_{k \in \mathbb{N}}$ be the solution of system (2.1). Then there exists a subsequence $\left\{u_{k_{j}}\right\}$ of $\left\{u_{k}\right\}_{k \in \mathbb{N}}$ convergent to a certain function $u_{0} \in C^{1}\left(\mathbb{R}, \mathbb{R}^{N}\right)$ in $C_{\text {loc }}^{1}\left(\mathbb{R}, \mathbb{R}^{N}\right)$.

Proof. First, we prove that the sequence $\left\{c_{k}\right\}_{k \in \mathbb{N}}$ is bounded and the sequence $\left\{u_{k}\right\}_{k \in \mathbb{N}}$ is uniformly bounded. Second, we prove $\left\{\dot{u}_{k}\right\}_{k \in \mathbb{N}}$ is also uniformly bounded. Finally, we prove both $\left\{u_{k}\right\}$ and $\left\{\dot{u}_{k}\right\}$ are equicontinuous and then by using the Arzelà-Ascoli Theorem, we obtain the conclusion. We only prove the first step. The rest of proof is the same as Lemma 3.2 in [17]. For every $k \in \mathbb{N}$, define $\Gamma_{k}:[0,1] \times E_{k} \rightarrow E_{k}$ by

$$
\Gamma_{k}(s) v=(1-s) v, \quad v \in E_{k}
$$

Then $\Gamma \in \Phi$. Note that set $A=\left\{0, e_{1}\right\}$. So (3.7) implies that

$$
\varphi_{k}\left(u_{k}\right)=c_{k} \leq \sup _{\substack{s \in[0,1] \\ u \in A}} \varphi_{k}((1-s) u)=\sup _{s \in[0,1]} \varphi_{k}\left((1-s) e_{1}\right)=\sup _{s \in[0,1]} \varphi_{1}\left((1-s) e_{1}\right):=M_{0},
$$

where M_{0} is independent of $k \in \mathbb{N}$. Moreover, $\varphi_{k}^{\prime}\left(u_{k}\right)=0$. Then it follows from (H2) and (3.10) that

$$
\begin{aligned}
p M_{0} \geq p c_{k}= & p \varphi_{k}\left(u_{k}\right)-\left\langle\varphi_{k}^{\prime}\left(u_{k}\right), u_{k}\right\rangle \\
\geq & \int_{-k T}^{k T}\left[\left(\nabla W\left(t, u_{k}(t)\right), u_{k}(t)\right)-p W\left(t, u_{k}(t)\right)\right] d t \\
& +(p-1) \int_{-k T}^{k T}\left(f(t), u_{k}(t)\right) d t \\
\geq & \int_{-k T}^{k T} \frac{W\left(t, u_{k}(t)\right)}{\xi+\eta\left|u_{k}(t)\right|^{\nu}} d t+(p-1) \int_{-k T}^{k T}\left(f(t), u_{k}(t)\right) d t .
\end{aligned}
$$

So

$$
\int_{-k T}^{k T} \frac{W\left(t, u_{k}(t)\right)}{\xi+\eta\left|u_{k}(t)\right|^{\nu}} d t \leq p M_{0}-(p-1) \int_{-k T}^{k T}\left(f(t), u_{k}(t)\right) d t
$$

Then

$$
\begin{aligned}
\eta_{k}^{p}\left(u_{k}\right) & =p \varphi_{k}\left(u_{k}\right)+p \int_{-k T}^{k T} \frac{W\left(t, u_{k}(t)\right)}{\xi+\eta\left|u_{k}(t)\right|^{\nu}}\left(\xi+\eta\left|u_{k}(t)\right|^{\nu}\right) d t-p \int_{-k T}^{k T}\left(f(t), u_{k}(t)\right) d t \\
& \leq p \varphi_{k}\left(u_{k}\right)+p\left(\xi+\eta\left\|u_{k}\right\|_{\infty}^{\nu}\right) \int_{-k T}^{k T} \frac{W\left(t, u_{k}(t)\right)}{\xi+\eta\left|u_{k}(t)\right|^{\nu}} d t-p \int_{-k T}^{k T}\left(f(t), u_{k}(t)\right) d t
\end{aligned}
$$

$$
\begin{align*}
\leq & p \varphi_{k}\left(u_{k}\right)+p\left(\xi+\eta C_{0}\left\|u_{k}\right\|_{E_{k}}^{\nu}\right)\left(p M_{0}-(p-1) \int_{-k T}^{k T}\left(f(t), u_{k}(t)\right) d t\right) \\
& -p \int_{-k T}^{k T}\left(f(t), u_{k}(t)\right) d t \\
\leq & p M_{0}+p^{2} \xi M_{0}+p^{2} \eta C_{0} M_{0}\left\|u_{k}\right\|_{E_{k}}^{\nu}-p(p-1) \xi \int_{-k T}^{k T}\left(f(t), u_{k}(t)\right) d t \\
& -p(p-1) \eta C_{0}\left\|u_{k}\right\|_{E_{k}}^{\nu} \int_{-k T}^{k T}\left(f(t), u_{k}(t)\right) d t-p \int_{-k T}^{k T}\left(f(t), u_{k}(t)\right) d t \\
\leq & \left(p+p^{2} \xi\right) M_{0}+[p(p-1) \xi+p]\left(\int_{\mathbb{R}}|f(t)|^{q} d t\right)^{1 / q}\left(\int_{-k T}^{k T}\left|u_{k}(t)\right|^{p} d t\right)^{1 / p} \\
& +p^{2} \eta C_{0} M_{0}\left\|u_{k}\right\|_{E_{k}}^{\nu}+p(p-1) \eta C_{0}\left\|u_{k}\right\|_{E_{k}}^{\nu}\left(\int_{\mathbb{R}}|f(t)|^{q} d t\right)^{1 / q}\left(\int_{-k T}^{k T}\left|u_{k}(t)\right|^{p} d t\right)^{1 / p} \\
\leq & \left(p+p^{2} \xi\right) M_{0}+[p(p-1) \xi+p]\left(\int_{\mathbb{R}}|f(t)|^{q} d t\right)^{1 / q}\left\|u_{k}\right\|_{E_{k}}+p^{2} \eta C_{0} M_{0}\left\|u_{k}\right\|_{E_{k}}^{\nu} \\
& +p(p-1) \eta C_{0}\left(\int_{\mathbb{R}}|f(t)|^{q} d t\right)^{1 / q}\left\|u_{k}\right\|_{E_{k}}^{\nu+1} . \tag{3.28}
\end{align*}
$$

Thus (3.28) and Lemma 3.2 imply that

$$
\begin{aligned}
& \left(p+p^{2} \xi\right) M_{0}+[p(p-1) \xi+1]\left(\int_{\mathbb{R}}|f(t)|^{q} d t\right)^{1 / q}\left\|u_{k}\right\|_{E_{k}}+p^{2} \eta C_{0} M_{0}\left\|u_{k}\right\|_{E_{k}}^{\nu} \\
& +p(p-1) \eta C_{0}\left(\int_{\mathbb{R}}|f(t)|^{q} d t\right)^{1 / q}\left\|u_{k}\right\|_{E_{k}}^{\nu+1} \\
\geq & \min \left\{\left\|u_{k}\right\|_{E_{k}}^{p}, p a C_{0}^{\gamma-p}\left\|u_{k}\right\|_{E_{k}}^{\gamma}\right\} .
\end{aligned}
$$

Note that $\gamma>\nu+1$. So (H6) implies there exists $M_{1}>0$ (independent of k) such that

$$
\left\|u_{k}\right\|_{E_{k}} \leq M_{1} \text { for every } k \in \mathbb{N}
$$

By Corollary 2.1,

$$
\left\|u_{k}\right\|_{L_{2 k T}} \leq C_{0} M_{1}:=M_{2} \text { for every } k \in \mathbb{N} .
$$

Thus the proof is complete.
Lemma 3.5. Let $u_{0} \in C^{1}\left(\mathbb{R}, \mathbb{R}^{N}\right)$ be determined by Lemma 3.4. When $f \neq 0, u_{0}$ is a nontrivial solution of system (1.1) such that $u_{0}(t) \rightarrow 0$ and $\dot{u}_{0}(t) \rightarrow 0$ as $t \rightarrow \pm \infty$.

Proof. The proof is the same as Step 1-Step 3 in the proof of Lemma 3.3 in [17].
Proof of Theorem 1.2. The proof is easy to be completed by replacing

$$
\int_{-k T}^{k T}(f(t), u(t)) d t \leq\left(\int_{-k T}^{k T}|f(t)|^{q} d t\right)^{1 / q}\left(\int_{-k T}^{k T}|u(t)|^{p} d t\right)^{1 / p} \leq\|u\|_{E_{k}}\left(\int_{\mathbb{R}}|f(t)|^{q} d t\right)^{1 / q}
$$

with

$$
\int_{-k T}^{k T}(f(t), u(t)) d t \leq\|u\|_{L_{2 k T}^{\infty}} \int_{-k T}^{k T}|f(t)| d t \leq C_{0}\|u\|_{E_{k}} \int_{\mathbb{R}}|f(t)| d t
$$

in the proofs of Lemma 3.3 and Lemma 3.4.
Proofs of Theorem 1.3 and Theorem 1.4. We only note that in the proof of Lemma 3.3, when $\gamma=p$, we dot not need $r \in(0,1]$ and it is sufficient that $r>0$. The remaining parts of the proofs are the same as the proofs of Theorem 1.1 and Theorem 1.2, respectively.

Proof of Theorem 1.5. Note that $f \equiv 0$. By (H1), (H3)" and $\gamma<p$, for $u \in E_{k}$ with $\|u\|_{E_{k}}=r / C_{0}$, we have

$$
\begin{aligned}
\varphi_{k}(u) & \geq \frac{1}{p} \eta_{k}^{p}(u)-b \int_{-k T}^{k T}|u(t)|^{p} d t \\
& \geq \frac{1}{p} \int_{-k T}^{k T}\left[|\dot{u}(t)|^{p}+p a|u(t)|^{\gamma}\right] d t-b \int_{-k T}^{k T}|u(t)|^{p} d t \\
& \geq \frac{1}{p} \int_{-k T}^{k T}|\dot{u}(t)|^{p} d t+a\left(C_{0}\|u\|_{E_{k}}\right)^{\gamma-p} \int_{-k T}^{k T}|u(t)|^{p} d t-b \int_{-k T}^{k T}|u(t)|^{p} d t \\
& \geq \min \left\{\frac{1}{p}, a r^{\gamma-p}-b\right\} \frac{r^{p}}{C_{0}^{p}} .
\end{aligned}
$$

So (H3)" implies that there exists $\alpha>0$ such that

$$
\varphi_{k}(u) \geq \alpha>0, \text { for all } u \in E_{k} \text { with }\|u\|_{E_{k}}=\frac{r}{C_{0}}, \quad \forall k \in \mathbb{N} .
$$

(H5) ${ }^{\prime}$ implies that $W(t, 0) \equiv 0$ and (H2)' implies that (H2). So (3.6) holds with $f_{1}(t) \equiv 0$. Hence there exists $\xi_{0} \in \mathbb{R}$ such that $\left\|\xi_{0} w_{k}\right\|>\frac{r}{C_{0}}$ and $\varphi\left(\xi_{0} w_{k}\right)<0$. Moreover, it is clear that $\varphi_{k}(0)=0$. Let $e_{1}=\xi_{0} w_{k}$ and

$$
A=\left\{0, e_{1}\right\}, \quad B=\left\{u \in E_{k}:\|u\|<\frac{r}{C_{0}}\right\}
$$

Then $0 \in B$ and $e_{1} \notin \bar{B}$. So by Example 1 in Section 2, we know that A links ∂B [hm]. So by Theorem 2.1 and Remark 2.4,

$$
c_{k}=\inf _{\Gamma \in \Phi} \sup _{\substack{s \in[0,1] \\ u \in A}} \varphi_{k}(\Gamma(s) u) \geq \inf _{\partial B} \varphi_{k}>\alpha>0
$$

and there exists a sequence $\left\{u_{n}\right\} \subset E_{k}$ such that

$$
\varphi_{k}\left(u_{n}\right) \rightarrow c_{k}, \quad\left(1+\left\|u_{n}\right\|\right)\left\|\varphi_{k}^{\prime}\left(u_{n}\right)\right\| \rightarrow 0
$$

Then there exists a constant $C_{1 k}>0$ such that

$$
\left|\varphi_{k}\left(u_{n}\right)\right| \leq C_{1 k}, \quad\left(1+\left\|u_{n}\right\|\right)\left\|\varphi_{k}^{\prime}\left(u_{n}\right)\right\| \leq C_{1 k} \text { for all } n \in \mathbb{N} \text {. }
$$

Similar to the argument in Lemma 3.3 and Lemma 3.4 with $f(t) \equiv 0$, noting that it is sufficient $\nu<\gamma<p$ when $f \equiv 0$, we can obtain that u_{k} is a desired nontrivial solution of system (2.1). By the Step 1-Step 3 in the proof of Lemma 3.3 in [17], we obtain that $u_{0}(t) \rightarrow 0$ and $\dot{u}_{0}(t) \rightarrow 0$ as $t \rightarrow \pm \infty$. Next, we prove, when $f \equiv 0, u_{0}$ is nontrivial. The proof is the similar to that in [18] and same as step 4 in the proof of Lemma 3.3 in [17] (with $\gamma=p$ and $b=a$ there). Here, for readers' convenience, we also present it. It is easy to see that the function Y defined in (H7) is continuous, nondecreasing, $Y(s) \geq Y(0) \geq 0$. By the definition of Y, we have

$$
\left(\nabla W\left(t, u_{k}(t)\right), u_{k}(t)\right) \leq Y\left(\left\|u_{k}\right\|_{L_{2 k T}^{\infty}}\right)\left|u_{k}(t)\right|^{p} .
$$

Integrating the above inequality on the interval $[-k T, k T]$, we obtain that for every $k \in \mathbb{N}$,

$$
\begin{equation*}
\int_{-k T}^{k T}\left(\nabla W\left(t, u_{k}(t)\right), u_{k}(t)\right) d t \leq Y\left(\left\|u_{k}\right\|_{L_{2 k T}^{\infty}}\right)\left\|u_{k}\right\|_{E_{k}}^{p} \tag{3.29}
\end{equation*}
$$

Note that $\left(\varphi_{k}^{\prime}\left(u_{k}\right), u_{k}\right)=0$. Hence,

$$
\begin{equation*}
\int_{-k T}^{k T}\left(\nabla W\left(t, u_{k}(t)\right), u_{k}(t)\right) d t=\int_{-k T}^{k T}\left|\dot{u}_{k}(t)\right|^{p} d t+\int_{-k T}^{k T}\left(\nabla K\left(t, u_{k}(t)\right), u_{k}(t)\right) d t . \tag{3.30}
\end{equation*}
$$

By (3.29), (3.30), (H1)' and (H2)', we obtain that

$$
Y\left(\left\|u_{k}\right\|_{L_{2 k T}}^{\infty}\right)\left\|u_{k}\right\|_{E_{k}}^{p} \geq \min \{1, a\}\left\|u_{k}\right\|_{E_{k}}^{p} .
$$

Then

$$
Y\left(\left\|u_{k}\right\|_{L_{2 k T}^{\infty}}\right) \geq \min \{1, a\} .
$$

The remainder of the proof is the same as in [7,11, 17, 18]. If $\left\|u_{k}\right\|_{L_{2 k T}^{\infty}} \rightarrow 0$ as $k \rightarrow \infty$, we would have $Y(0) \geq \min \{1, a\}$, a contradiction to (H7). Thus there is $m>0$, which is independent of k, such that

$$
\begin{equation*}
\left\|u_{k}\right\|_{L_{2 k T}^{\infty}} \geq m \tag{3.31}
\end{equation*}
$$

for every $k \in \mathbb{N}$. Now to complete the proof, observe that by the T-periodicity of V and $f \equiv 0$, whenever $u_{k}(t)$ is a $2 k T$-periodic solution of system (2.1), so is $u_{k}(t+j T)$ for every
$j \in \mathbb{Z}$. Hence, by replacing earlier, if necessary, u_{k} by $u_{k}(t+j T)$ for some $j \in[-k, k] \cap \mathbb{Z}$, one can assume that the maximum of u_{k} occurs in $[-T, T]$. Suppose, contrary to our claim, that $u_{0} \equiv 0$. Then by Lemma 3.4,

$$
\left\|u_{k_{j}}\right\|_{L_{2 k_{j} T}^{\infty}}=\max _{t \in[-T, T]}\left|u_{k_{j}}(t)\right| \rightarrow 0, \quad \text { as } \quad j \rightarrow \infty .
$$

which contradicts (3.31).
Proof of Theorem 1.6. Similar to the argument of Lemma 3.3 and Lemma 3.4, it is easy to obtain that, under the conditions of Theorem 1.6, u_{k} is a desired nontrivial solution of system (2.1). Then by the proof of Theorem 1.5 , we know that u_{0} is nontrivial.

Acknowledgement

This work is supported by Tianyuan Fund for Mathematics of the National Natural Science Foundation of China (No: 11226135) and the Fund for Fostering Talents in Kunming University of Science and Technology (No: KKSY201207032).

References

[1] A. Ambrosetti, V. Coti Zelati, Multiple homoclinic orbits for a class of conservative systems, Rend. Sem. Mat. Univ. Padova, 89 (1993) 177-194.
[2] P. C. Carrião, O. H. Miyagaki, Existence of homoclinic solutions for a class of timedependent Hamiltonian systems, J. Math. Anal. Appl., 230 (1999) 157-172.
[3] V. Coti Zelati. P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991) 693-727.
[4] Y. Ding, Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems, Nonlinear Anal., 25 (1995) 1095-1113.
[5] Y. Ding, M. Girardi, Periodic and homoclinic solutions to a class of Hamiltonian systems with the potentials changing sign, J. Math. Anal. Appl., 189 (1995) 585-601.
[6] W. Omana, M. Willem, Homoclinic orbits for a class of Hamiltonian systems, Differential Integral Equations, 5 (1992) 1115-1120.
[7] P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh 114 A, (1990) 33-38.
[8] P.H. Rabinowitz, K. Tanaka, Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., 206 (1991) 472-499.
[9] K. Tanaka, Homoclinic orbits for a singular second order Hamiltonian system, Ann. Inst. H. Poincaré, 7 (5) (1990) 427-438.
[10] B. Xu, C.L. Tang, Some existence results on periodic solutions of ordinary pLaplacian systems, J. Math. Anal. Appl., 333 (2) (2007) 1228-1236.
[11] X. H. Tang, L. Xiao, Homoclinic solutions for a class of second order Hamiltonian systems, Nonlinear Anal., 71 (2009) 1140-1152.
[12] X. H. Tang, X. Lin, Homoclinic solutions for a class of second-order Hamiltonian systems, J. Math. Anal. Appl., 354 (2009) 539-549.
[13] D. Wu, X. Wu, C. Tang, Homoclinic solutions for a class of nonperiodic and noneven second-order Hamiltonian systems, J. Math. Anal. Appl., 367 (2010) 154-166.
[14] M. Izydorek, J. Janczewska, Homoclinic solutions for a class of the second order Hamiltonian systems, J. Differential Equations, 219 (2005) 375-389.
[15] A. Daouas, Homoclinic orbits for superquadratic Hamiltonian systems without aperiodicity assumption, Nonlinear Anal. 74 (2011) 3407-3418
[16] X. Lv, S. Lu, P. Yan, Existence of homoclinic solutions for a class of second order Hamiltonian systems, Nonlinear Anal., 72 (2010)390-398.
[17] X. Lv, S. Lu, Homoclinic solutions for ordinary p-Laplacian systems, Applied Mathematics and Computation, 218 (2012) 5682-5692.
[18] Z. Zhang, R. Yuan, Homoclinic solutions for some second order Hamiltonian systems without the globally superquadratic condition, Nonlinear Anal., 72 (2010) 1809-1819.
[19] R. A. Adams, J. J. F. Fournier, Sobolev Spaces, Second Edition, Academic Press, 2003.
[20] M. Schechter, Minimax Systems and Critical Point Theory, Birkhäuser, Boston, 2009.
[21] Q. Zhang, X. H. Tang, On the existence of infinitely many periodic solutions for second-order ordinary p-Laplacian system. Bull. Belg. Math. Soc. Simon Stevin 19 (2012) 121-136.
[22] Q. Zhang, X. H. Tang, Existence of homoclinic orbits for a class of asymptotically p-linear aperiodic p-Laplacian systems, Applied Mathematics and Computation, 218 (2012) 7164-7173.
[23] X. Zhang, X. Tang, Periodic solutions for an ordinary p-Laplacian system, Taiwan. J. Math. 15 (3) (2011) 1369-1396.
[24] X. Zhang, X. Tang, Periodic solutions for second order Hamiltonian system with a p-Laplacian, Bull. Belg. Math. Soc. Simon Stevin, 18 (2) (2011) 301-309
[25] X. Zhang, X. Tang, Non-constant periodic solutions for second order Hamiltonian system with a p-Laplacian, Math. Slovaca, 62 (2) (2012) 231-246.
[26] Y. Tian, W. Ge, Periodic solutions of non-autonoumous second-order systems with a p-Laplacian, Nonlinear Anal., 66 (2007) 192-203.
[27] E. Hewitt, K. Stromberg, Real and Abstract Analysis, Springer, New York, 1965.

[^0]: *E-mail address: zhangxingyong1@gmail.com

