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1. Introduction and main results

In this paper, we consider the p-Laplacian system

d

dt
(|u̇(t)|p−2u̇(t)) +∇V (t, u(t)) = f(t) (1.1)

where p > 1, V (t, x) = −K(t, x) + W (t, x), K,W ∈ C1(R × RN ,R) and f : R → RN

is a continuous and bounded function. A solution u(t) is nontrivial homoclinic (to 0) if

u(t) 6≡ 0, u(t)→ 0 and u̇(t)→ 0 as t→ ±∞. Let q > 1 and 1
p

+ 1
q

= 1.

When p = 2, system (1.1) reduces to the second order Hamiltonian system

ü(t) +∇V (t, u(t)) = f(t) (1.2)
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Since 1978, lots of contributions on the existence and multiplicity of homoclinic solu-

tions for system (1.2) have been presented (for example, see [1, 2, 3, 4, 5, 6, 7, 8, 9, 11,

13, 14, 15, 16, 18] and references therein). Most of them considered the following system:

ü(t)− L(t)u(t) +∇W (t, u(t)) = 0, (1.3)

where L(t) is a symmetric matrix value function and W satisfies the following AR-

condition:

(W1) there exists µ > 2 such that

0 < µW (t, x) ≤ (∇W (t, x), x), ∀ (t, x) ∈ R×
(
RN/{0}

)
. (1.4)

In 2005, Izydorek and Janczewska [14] considered system (1.2), more general than

system(1.3), and obtained the following result:

Theorem A Assume that V and f satisfy (W1) and the following conditions:

(V) V (t, x) = −K(t, x) + W (t, x), where K,W : R × RN → R are C1-maps, T -periodic

with respect to t, T > 0;

(K1) there are constants b1, b2 > 0 such that for all (t, x) ∈ R× RN ,

b1|x|2 ≤ K(t, x) ≤ b2|x|2;

(K2) for all (t, x) ∈ R× RN , K(t, x) ≤ (x,∇K(t, x)) ≤ 2K(t, x);

(W2) ∇W (t, x) = o(|x|), as |x| → 0 uniformly with respect to t;

(f) b̄1 := min{1, 2b1} > 2M and ‖f‖L2(R,R) <
b̄1−2M

2C∗
, where

M = sup
t∈[0,T ],|x|=1

W (t, x) (1.5)

and C∗ is a positive constant that depends on T . When T ≥ 1/2, C∗ = 1/2. Then system

(1.2) possesses a nontrivial homoclinic solution.

Since then, several results for system (1.2) in this direction have been obtained (see

[11] and [18]). When p > 1, the following result can be seen in [17]:

Theorem B Assume that V and f satisfy assumptions (V) and the following conditions:

(I1) there exist constants b > 0 and γ ∈ (1, p] such that

K(t, 0) = 0, K(t, x) ≥ b|x|γ, for all (t, x) ∈ R× RN ;
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(I2) there is a constant θ ≥ p such that

K(t, x) ≤ (∇K(t, x), x) ≤ θK(t, x), for all (t, x) ∈ R× RN ;

(I3) W (t, 0) ≡ 0 and ∇W (t, x) = o(|x|p−1), as |x| → 0 uniformly with respect to t;

(I4) there are two constants µ > θ and ν ∈ [0, µ− θ) such that

0 < µW (t, x) ≤ (∇W (t, x), x) + νb|x|γ, for all (t, x) ∈ R× RN/{0};

(I5)

lim inf
|x|→∞

W (t, x)

|x|θ
>

πp

pT p
+m1 uniformly with respect to t,

where

m1 = sup{K(t, x)|t ∈ [0, T ], x ∈ RN , |x| = 1};

(I6) ∫
R
|f(t)|qdt <

(
1

Cp−1
min

{
δp−1

p
,

(
1− ν

µ− γ

)
bδγ−1 −Mδµ−1

})q
,

where M is determined by (1.5), 1
p

+ 1
q

= 1, C = 2
p−1
p (1 + [ 1

2T
])1/p and δ ∈ (0, 1] such that(

1− ν

µ− γ

)
bδγ−1 −Mδµ−1 = max

x∈[0,1]

((
1− ν

µ− γ

)
bxγ−1 −Mxµ−1

)
.

Then system (1.1) possesses a nontrivial homoclinic solution.

For the p-Laplacian system (1.1) with f(t) ≡ 0 and K(t, x) ≡ 0 (or K(t, x) =

(L(t)|x|p−2x, x), where L ∈ C(R,RN2
) is a positive definite symmetric matrix), recently,

under different assumptions, some results on the existence and multiplicity of periodic

solutions, subharmonic solutions and homoclinic solutions have been obtained (for ex-

ample, see [21, 22, 23, 24, 25, 26]). In [21], the authors considered the existence of

subharmonic solutions for system (1.1) with f(t) ≡ 0 and K(t, x) = (L(t)|x|p−2x, x),

where L ∈ C(R,RN2
) is a positive definite symmetric matrix. Under some reasonable

assumptions, they obtained that the system has a sequence of distinct periodic solutions

with period kjT satisfying kj ∈ N and kj →∞ as j →∞. In [22], the authors considered

the existence of homoclinic solutions for system (1.1) with f(t) ≡ 0. They assumed that

W is asymptotically p-linear at infinity, K satisfies (K1) and W and K are not periodic in

t. In [23]–[26], the authors considered the existence and multiplicity of periodic solutions
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for system (1.1) with f(t) ≡ 0 and K(t, x) ≡ 0. Motivated by [11, 14, 17, 18], in this

paper, we consider the existence of homoclinic orbits for system (1.1) and present some

new existence criteria. Next, we state our main results.

Theorem 1.1. Assume that f 6= 0, W and K satisfy (V) and the following conditions:

(H1) there exist γ ∈ (1, p) and a > 0 such that

K(t, x) ≥ a|x|γ, for all (t, x) ∈ [0, T ]× RN ;

(H2) K(t, 0) ≡ 0, (x,∇K(t, x)) ≤ pK(t, x), for all (t, x) ∈ [0, T ]× RN ;

(H3) (i) there exist r ∈ (0, 1] and 0 < b < a such that

W (t, x) ≤ b|x|p, ∀ |x| ≤ r; (1.6)

or (ii) there exist r > 1 and 0 < b < arγ−p such that (1.6) holds;

(H4)

lim
|x|→+∞

W (t, x)

|x|p
>

πp

pT p
+ A0 uniformly for all t ∈ [0, T ],

where

A0 = max
|x|=1,t∈[0,T ]

K(t, x);

(H5) there exist positive constants ξ, η and ν ∈ [0, γ − 1) such that

0 ≤
(
p+

1

ξ + η|x|ν

)
W (t, x) ≤ (∇W (t, x), x) for all (t, x) ∈ [0, T ]× RN ;

(H6) f ∈ Lq(R,RN) ∩ f ∈ L
p−ν
p−ν−1 (R,RN) and

(i) ‖f‖Lq(R,RN ) <
rp−1

Cp−1
0

min

{
1

p
, a− b

}
, when r ∈ (0, 1],

(ii) ‖f‖Lq(R,RN ) <
rp−1

Cp−1
0

min

{
1

p
,
a

rp−γ
− b
}
, when r ∈ (1,+∞),

where

C0 =

[
max

{
1

2T
+

p

2q
,
1

2

}]1/p

, when p 6= 2,

and

C0 =

√
1 +
√

1 + 4T 2

4T
, when p = 2.

Then system (1.1) possesses a nontrivial homoclinic solution.
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Next, we present an example of K and W , which satisfies (H1)–(H5) but does not

satisfy those conditions in [11, 14, 17, 18].

Example 1.1. Let p = 5,

K(t, x) = ln(
1

25
+ 2)|x|4 + |x|5, W (t, x) = |x|5 ln(|x|5 + 1).

Choose γ = 4 and a = ln( 1
25

+ 2). Then it is easy to verify that (H1) and (H2) hold. If

one chooses r = 1
2
, then

W (t, x) ≤ ln(
1

25
+ 1)|x|5, ∀|x| ≤ r.

Choose b = ln( 1
25

+ 1). Then (H3)(i) holds. Obviously,

lim
|x|→+∞

W (t, x)

|x|5
= +∞ uniformly for all t ∈ [0, T ].

(H4) holds. Moreover, note that

5ξ|x|5 ≥ ln(|x|5 + 1) and 5η|x|2 ≥ ln(|x|5 + 1), for all x ∈ RN ,

when we choose sufficiently large ξ and η. Hence

5ξ|x|5 + 5η|x|7 ≥ ln(|x|5 + 1) + ln(|x|5 + 1)|x|5

⇐⇒ 5(ξ + η|x|2)|x|5 ≥ ln(|x|5 + 1)(|x|5 + 1)

⇐⇒ 5(ξ + η|x|2)|x|10 ≥ |x|5 ln(|x|5 + 1)(|x|5 + 1)

⇐⇒ 5|x|10

|x|5 + 1
≥ |x|

5 ln(|x|5 + 1)

ξ + η|x|2

⇐⇒ (∇W (t, x), x)− 5W (t, x) ≥ W (t, x)

ξ + η|x|2
, for all x ∈ RN ,

which implies that (H5) holds.

Theorem 1.2. Assume that f 6= 0, W and K satisfy (V), (H1)–(H5) and the following

conditions:

(H6)′ f ∈ L1(R,RN) and

(i) ‖f‖L1(R,RN ) <
rp−1

Cp
0

min

{
1

p
, a− b

}
, when r ∈ (0, 1],

(ii) ‖f‖L1(R,RN ) <
rp−1

Cp
0

min

{
1

p
,
a

rp−γ
− b
}
, when r ∈ (1,+∞).
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Then system (1.1) possesses a nontrivial homoclinic solution.

Theorem 1.3. Assume that f 6= 0, W and K satisfy (V), (H2), (H4), (H5) and the

following conditions:

(H1)′ there exists a > 0 such that

K(t, x) ≥ a|x|p for all (t, x) ∈ [0, T ]× RN ;

(H3)′ there exist r > 0 and 0 < b < a such that

W (t, x) ≤ b|x|p, ∀ |x| ≤ r;

(H6)′′ f ∈ Lq(R,RN) ∩ f ∈ L
p−ν
p−ν−1 (R,RN) and

‖f‖Lq(R,RN ) <
rp−1

Cp−1
0

min

{
1

p
, a− b

}
.

Then system (1.1) possesses a nontrivial homoclinic solution.

Theorem 1.4. Assume that f 6= 0, W and K satisfy (V), (H1)′, (H2), (H3)′, (H4),

(H5) and the following condition:

(H6)′′′ f ∈ L1(R,RN) and

‖f‖L1(R,RN ) <
rp−1

Cp
0

min

{
1

p
, a− b

}
.

Then system (1.1) possesses a nontrivial homoclinic solution.

Remark 1.1. Theorem 1.3 and Theorem 1.4 show that f can be large when r is large,

which is different from Theorem A and Theorem B. Moreover, in Theorem 1.1 and The-

orem 1.2, if r ∈ (1,+∞), it is also possible that f can be large.

Theorem 1.5. Assume that f ≡ 0, W and K satisfy (H1), (H4) and the following

conditions:

(H2)′ K(t, 0) ≡ 0, K(t, x) ≤ (x,∇K(t, x)) ≤ pK(t, x) for all (t, x) ∈ [0, T ]× RN ;

(H3)′′ there exist r > 0 and 0 < b < arγ−p such that

W (t, x) ≤ b|x|p, ∀ |x| ≤ r;

(H5)′ there exist positive constants ξ, η and ν ∈ [0, γ) such that

0 ≤
(
p+

1

ξ + η|x|ν

)
W (t, x) ≤ (∇W (t, x), x), for all (t, x) ∈ [0, T ]× RN ;
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(H7) Y (0) < min{1, a}, where the function Y : [0,+∞)→ [0,+∞) is defined by

Y (s) = max
t∈[0,T ]
0<|x|≤s

(∇W (t, x), x)

|x|p

for s > 0 and

Y (0) = lim
s→0+

Y (s) = lim
s→0+

max
t∈[0,T ]
0<|x|≤s

(∇W (t, x), x)

|x|p
.

Then system (1.1) possesses a nontrivial homoclinic solution.

Theorem 1.6. Assume that f ≡ 0, W and K satisfy (H1)′, (H2)′, (H3)′, (H4), (H7)

and the following conditions:

(H5)′′ there exist positive constants ξ, η and ν ∈ [0, p) such that

0 ≤
(
p+

1

ξ + η|x|ν

)
W (t, x) ≤ (∇W (t, x), x) for all (t, x) ∈ [0, T ]× RN .

Then system (1.1) possesses a nontrivial homoclinic solution.

2. Preliminaries

Similar to [11, 14, 17, 18], we will obtain the homoclinic orbit of system (1.1) as a

limit of solutions of a sequence of differential systems:

d

dt
(|u̇(t)|p−2u̇(t)) +∇V (t, u(t)) = fk(t), (2.1)

where fk : R → RN is a 2kT -periodic extension of restriction of f to the interval

[−kT, kT ), k ∈ N.

For p > 1, let Lp2kT (R,RN) denote the Banach space of 2kT -periodic functions on R

with values in RN and the norm defined by

‖u‖Lp2kT =

(∫ kT

−kT
|u(t)|pdt

)1/p

.

Let L∞2kT (R,RN) denote a space of 2kT -periodic essential bounded (measurable) functions

from R to RN equipped with the norm

‖u‖L∞2kT = ess sup{|u(t)|, t ∈ [−kT, kT ]}.
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For each k ∈ N, define Ek = W 1,p
2kT by

W 1,p
2kT = {u : R→ RN |u(t) is absolutely continuous on [−kT, kT ], u(t+ 2kT ) = u(t)

and u̇ ∈ Lp([−kT, kT ];RN)}.

On W 1,p
2kT , we define the norm as follows:

‖u‖Ek =
[∫ kT

−kT
|u(t)|pdt+

∫ kT

−kT
|u̇(t)|pdt

]1/p

, u ∈ W 1,p
2kT .

Then
(
W 1,p

2kT , ‖ · ‖Ek
)

is a reflexive and uniformly convex Banach space (see [19], Theorem

3.3 and Theorem 3.6).

Lemma 2.1. Let c > 0 and u ∈ W 1,p(R,RN). Then for every t ∈ R, the following

inequalities hold:

|u(t)| ≤ (2c)−1/p

(∫ t+c

t−c
|u(s)|pds

)1/p

+
c1/q

21/p(q + 1)1/q

(∫ t+c

t−c
|u̇(s)|pds

)1/p

, (2.2)

|u(t)| ≤ 2−1/p

(∫ t+1

t−1

|u(s)|pds+

∫ t+1

t−1

|u̇(s)|pds
)1/p

(2.3)

and

|u(t)| ≤

(∫ t+ 1
2

t− 1
2

|u(s)|pds+

∫ t+ 1
2

t− 1
2

|u̇(s)|pds

)1/p

(2.4)

Proof. Fix t ∈ R. Then for every τ ∈ R,

u(t) = u(τ) +

∫ t

τ

u̇(s)ds. (2.5)

Set

φ(s) =


s− t+ c, t− c ≤ s ≤ t,

t+ c− s, t ≤ s ≤ t+ c.

Integrating (2.5) on [t− c, t+ c] and using the Hölder’s inequality, we have

2c|u(t)| ≤
∫ t+c

t−c
|u(τ)|dτ +

∫ t+c

t−c

∫ t

τ

|u̇(s)|dsdτ

≤
∫ t+c

t−c
|u(τ)|dτ +

∫ t

t−c

∫ t

τ

|u̇(s)|dsdτ +

∫ t+c

t

∫ τ

t

|u̇(s)|dsdτ

≤
∫ t+c

t−c
|u(τ)|dτ +

∫ t

t−c

(
s− t+ c

)
|u̇(s)|ds+

∫ t+c

t

(
t+ c− s

)
|u̇(s)|ds
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=

∫ t+c

t−c
|u(τ)|dτ +

∫ t+c

t−c
φ(s)|u̇(s)|ds

≤ (2c)1/q

(∫ t+c

t−c
|u(τ)|pdτ

)1/p

+

(∫ t+c

t−c
[φ(s)]qds

)1/q (∫ t+c

t−c
|u̇(s)|pds

)1/p

= (2c)1/q

(∫ t+c

t−c
|u(τ)|pdτ

)1/p

+
21/qc(q+1)/q

(q + 1)1/q

(∫ t+c

t−c
|u̇(s)|pds

)1/p

. (2.6)

So (2.2) holds. Let c = 1 and c = 1/2, respectively. Then (2.3) and (2.4) hold.

Remark 2.1. When p = 2, Lemma 2.1 reduces to Lemma 2.2 in [12] and (2.4) improved

Lemma 2.2 in [17].

The following (2.8) and its proof have been given in [11] (see [11], Lemma 2.2). Here,

for readers’ convenience, we also present it. In our Lemma 2.2, our main aim is to present

the following (2.7) which generalizes Lemma 2.2 in [11] in some sense.

Lemma 2.2. For every k ∈ N, if p > 1 and u ∈ Ek, then

‖u‖L∞2kT ≤
[
max

{
1

2kT
+
p− 1

2
,
1

2

}]1/p(∫ kT

−kT
|u(s)|pds+

∫ kT

−kT
|u̇(s)|pds

)1/p

; (2.7)

If p = 2 and u ∈ Ek, then the following better result holds:

‖u‖L∞2kT ≤

√
1 +

√
1 + 4(kT )2

4kT

(∫ kT

−kT
|u(s)|2ds+

∫ kT

−kT
|u̇(s)|2ds

)1/2

. (2.8)

Proof. Let t̄ ∈ [−kT, kT ] and t∗ ∈ [t̄, t̄+ 2kT ] such that

|u(t̄)|p =
1

2kT

∫ kT

−kT
|u(s)|pds and |u(t∗)| = max

t∈[−kT,kT ]
|u(t)|.

Then

|u(t∗)|p = |u(t̄)|p + p

∫ t∗

t̄

(|u(s)|p−2u(s), u̇(s))ds (2.9)

and

|u(t∗ − 2kT )|p = |u(t̄)|p − p
∫ t̄

t∗−2kT

(|u(s)|p−2u(s), u̇(s))ds (2.10)

It follows from (2.9), (2.10) and Young’s inequality that

|u(t∗)|p =
1

2
[|u(t∗)|p + |u(t∗ − 2kT )|p]

=
1

2
|u(t̄)|p +

1

2
|u(t̄)|p +

p

2

∫ t∗

t̄

(|u(s)|p−2u(s), u̇(s))ds

−p
2

∫ t̄

t∗−2kT

(|u(s)|p−2u(s), u̇(s))ds

EJQTDE, 2013 No. 67, p. 9



≤ |u(t̄)|p +
p

2

∫ t∗

t̄

|u(s)|p−1|u̇(s)|ds+
p

2

∫ t̄

t∗−2kT

|u(s)|p−1|u̇(s)|ds

= |u(t̄)|p +
p

2

∫ t∗

t∗−2kT

|u(s)|p−1|u̇(s)|ds

=
1

2kT

∫ kT

−kT
|u(s)|pds+

p

2

∫ kT

−kT
|u(s)|p−1|u̇(s)|ds (2.11)

≤ 1

2kT

∫ kT

−kT
|u(s)|pds+

p

2

∫ kT

−kT

[
|u(s)|p

q
+
|u̇(s)|p

p

]
ds

≤ max

{
1

2kT
+

p

2q
,
1

2

}[∫ kT

−kT
|u(s)|pds+

∫ kT

−kT
|u̇(s)|pds

]
= max

{
1

2kT
+
p− 1

2
,
1

2

}[∫ kT

−kT
|u(s)|pds+

∫ kT

−kT
|u̇(s)|pds

]
When p = 2, it follows from (2.11) and Young’s inequality that

|u(t∗)|2 ≤ 1

2kT

∫ kT

−kT
|u(s)|2ds+

∫ kT

−kT
|u(s)||u̇(s)|ds

≤ 1

2kT

∫ kT

−kT
|u(s)|2ds+

kT

1 +
√

1 + 4(kT )2

∫ kT

−kT
|u(s)|2ds

+
1 +

√
1 + 4(kT )2

4kT

∫ kT

−kT
|u̇(s)|2ds

=
1 +

√
1 + 4(kT )2

4kT

[∫ kT

−kT
|u(s)|2ds+

∫ kT

−kT
|u̇(s)|2ds

]
.

Corollary 2.1. For every k ∈ N, if p > 1 and u ∈ Ek, then

‖u‖L∞2kT ≤
[
max

{
1

2T
+
p− 1

2
,
1

2

}]1/p(∫ kT

−kT
|u(s)|pds+

∫ kT

−kT
|u̇(s)|pds

)1/p

; (2.12)

If p = 2 and u ∈ Ek, then the following better result holds:

‖u‖L∞2kT ≤

√
1 +
√

1 + 4T 2

4T

(∫ kT

−kT
|u(s)|2ds+

∫ kT

−kT
|u̇(s)|2ds

)1/2

. (2.13)

Remark 2.2. It is easy to verify that Corollary 2.1 improves Corollary 2.1 in [17].

Corollary 2.2. If p > 1 and u ∈ Ek, then there exists k0 ∈ N such that for all k ≥ k0,

‖u‖L∞2kT ≤ C∗
(∫ kT

−kT
|u(s)|pds+

∫ kT

−kT
|u̇(s)|pds

)1/p

(2.14)

where C∗ >
[
max

{
p−1

2
, 1

2

}]1/p
.
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Proof. It follows from sequences
{[

max
{

1
2kT

+ p−1
2
, 1

2

}]1/p}
and

{√
1+
√

1+4k2T 2

4kT

}
are

decreasing and[
max

{
1

2kT
+
p− 1

2
,
1

2

}]1/p

→
[
max

{
p− 1

2
,
1

2

}]1/p

, as k →∞

and √
1 +
√

1 + 4k2T 2

4kT
→
√

2

2
, as k →∞.

Remark 2.3. Corollary 2.2 generalizes (3.3) in [11].

Define η : Ek → [0,+∞) by

ηk(u) =

(∫ kT

−kT
[|u̇(t)|p + pK(t, u(t))]dt

)1/p

and ϕk : Ek → R by

ϕk(u) =

∫ kT

−kT

[
1

p
|u̇(t)|p − V (t, u(t))

]
dt+

∫ kT

−kT
(fk(t), u(t))dt

=
1

p
ηpk(u)−

∫ kT

−kT
W (t, u(t))dt+

∫ kT

−kT
(fk(t), u(t))dt.

It is easy to obtain that ϕ ∈ C1(Ek,R) and for u, v ∈ Ek,

(ϕ′k(u), v) =

∫ kT

−kT

[
(|u̇(t)|p−2u̇(t), v̇(t))− (∇V (t, u(t)), v(t))

]
dt+

∫ kT

−kT
(fk(t), v(t))dt

=

∫ kT

−kT

[
(|u̇(t)|p−2u̇(t), v̇(t)) + (∇K(t, u(t)), v(t))− (∇W (t, u(t)), v(t))

]
dt

+

∫ kT

−kT
(fk(t), v(t))dt.

By (H2) or (H2)′, for all u ∈ Ek, we obtain

(ϕ′k(u), u) ≤
∫ kT

−kT

[
|u̇(t)|p−2 + pK(t, u(t))

]
dt−

∫ kT

−kT
(∇W (t, u(t)), u(t))dt

+

∫ kT

−kT
(fk(t), u(t))dt.

It is well known that critical points of ϕ correspond to solutions of system (1.1).

Different from [11, 14, 17], we shall use one linking method in [20] to obtain the critical

points of ϕ (the details can be seen in [20]). Let (E, ‖ · ‖) be a Banach space. Define the
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continuous map Γ : [0, 1] × E → E by Γ(t, x) = Γ(t)x, where Γ(t) satisfies the following

conditions:

1) Γ(0) = I, the identity map.

2) For each t ∈ [0, 1), Γ(t) is a homeomorphism of E onto E and Γ−1(t) ∈ C(E ×

[0, 1), E).

3) Γ(1)E is a single point in E and Γ(t)A converges uniformly to Γ(1)E as t→ 1 for

each bounded set A ⊂ E.

4) For each t0 ∈ [0, 1) and each bounded set A ⊂ E,

sup
0≤t≤t0
u∈A

{‖Γ(t)u‖+ ‖Γ−1(t)u‖} <∞.

Let Φ be the set of all continuous maps Γ as defined above.

Definition 2.1. (see [20], Definition 3.2) We say that A links B[hm] if A and B are

subsets of E such that A ∩ B = ∅, and for each Γ ∈ Φ, there is a t′ ∈ (0, 1] such that

Γ(t′)A ∩B 6= ∅.

Example 1. (see [20], page 21) Let B be an open set in E, and let A consist of two

points e1, e2 with e1 ∈ B and e2 6∈ B̄. Then A links ∂B[hm].

We use the following theorem to prove our main results.

Theorem 2.1. (see [20], Theorem 3.4 and Theorem 2.12) Let E be a Banach space,

ϕ ∈ C1(E,R) and A and B two subsets of E such that A links B[hm]. Assume that

sup
A
ϕ ≤ inf

B
ϕ

and

c := inf
Γ∈Φ

sup
s∈[0,1]
u∈A

ϕ(Γ(s)u) <∞.

Let ψ(t) be a positive, nonincreasing, locally Lipschitz continuous function on [0,∞) sat-

isfying
∫∞

0
ψ(r)dr = ∞. Then there exists a sequence {un} ⊂ E such that ϕ(un) → c

and ϕ′(un)/ψ(‖un‖) → 0, as n → ∞. Moreover, if c = supA ϕ, then there is a sequence

{un} ⊂ E satisfying ϕ(un)→ c, ϕ′(un)→ 0, and d(un, B)→ 0, as n→∞.
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Remark 2.4. Since A links B, by Definition 2.1, it is easy to know that c ≥ infB ϕ.

By [20], if we let ψ(r) = 1
1+r

, the sequence {un} is the Cerami sequence, that is {un}

satisfying

ϕ(un)→ c, (1 + ‖un‖)‖ϕ′(un)‖ → 0, as n→∞.

3. Proofs of theorems

For convenience, we denote by Ci, i = 1, . . . various positive constants. When p > 1

and p 6= 2, let

C0 =

[
max

{
1

2T
+
p− 1

2
,
1

2

}]1/p

and when p = 2, let

C0 =

√
1 +
√

1 + 4T 2

4T
.

Lemma 3.1. Suppose that (H2) or (H2)′ holds. Then

K(t, x) ≤ K

(
t,
x

|x|

)
|x|p for all t ∈ R, |x| ≥ 1;

K(t, x) ≥ K

(
t,
x

|x|

)
|x|p for all t ∈ R, |x| ≤ 1.

Proof. Since the function ξ ∈ (0,+∞) → K(t, ξ−1x)ξp is nondecreasing, the proof is

easy to be completed.

Lemma 3.2. Suppose that (H1) or (H1)′ holds. Then for any u ∈ Ek,

ηpk(u) ≥ min{‖u‖pEk , paC
γ−p
0 ‖u‖γEk}, ∀k ∈ N.

Proof. It follows from (2.7), (H1) or (H1)′ and γ ≤ p that for any u ∈ Ek,

ηpk(u) =

∫ kT

−kT
[|u̇(t)|p + pK(t, u(t))] dt

≥
∫ kT

−kT
[|u̇(t)|p + pa|u(t)|γ] dt

≥
∫ kT

−kT

[
|u̇(t)|p + pa‖u‖γ−pL∞2kT

|u(t)|p
]
dt

≥
∫ kT

−kT
|u̇(t)|pdt+ pa(C0‖u‖Ek)γ−p

∫ kT

−kT
|u(t)|pdt
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≥ min{1, pa(C0‖u‖Ek)γ−p}‖u‖
p
Ek

= min{‖u‖pEk , paC
γ−p
0 ‖u‖γEk}.

Proof of Theorem 1.1. We divide the proof into the following Lemma 3.3–Lemma 3.5.

Lemma 3.3. Under the assumptions of Theorem 1.1, for every k ∈ N, system (2.1) has

a nontrivial solution uk in Ek.

Proof. We first construct A and B which satisfy assumptions in Theorem 2.1.

(i) when r ∈ (0, 1], by Corollary 2.1, (H1), (H3)(i), Hölder inequality and γ < p, for

u ∈ Ek with ‖u‖Ek = r/C0, we have

ϕk(u) ≥ 1

p
ηpk(u)− b

∫ kT

−kT
|u(t)|pdt−

(∫ kT

−kT
|f(t)|qdt

)1/q (∫ kT

−kT
|u(t)|pdt

)1/p

≥ 1

p

∫ kT

−kT
[|u̇(t)|p + pa|u(t)|γ] dt− b

∫ kT

−kT
|u(t)|pdt

−
(∫ kT

−kT
|f(t)|qdt

)1/q (∫ kT

−kT
|u(t)|pdt

)1/p

≥ 1

p

∫ kT

−kT
|u̇(t)|pdt+ a(C0‖u‖Ek)γ−p

∫ kT

−kT
|u(t)|pdt− b

∫ kT

−kT
|u(t)|pdt

−‖f‖Lq(R;RN )‖u‖Ek

≥ min

{
1

p
, arγ−p − b

}
‖u‖pEk − ‖f‖Lq(R;RN )‖u‖Ek

≥ min

{
1

p
, a− b

}
‖u‖pEk − ‖f‖Lq(R;RN )‖u‖Ek . (3.1)

(H6)(i) implies that there exists α > 0 such that

ϕk(u) ≥ α > 0, for all u ∈ Ek with ‖u‖Ek =
r

C0

, ∀k ∈ N.

(ii) when r ∈ (1,+∞), by Corollary 2.1, (H1), Hölder’s inequality and γ < p, for

u ∈ Ek with ‖u‖Ek = r/C0, we have

ϕk(u) ≥ 1

p

∫ kT

−kT
|u̇(t)|pdt+ a(C0‖u‖Ek)γ−p

∫ kT

−kT
|u(t)|pdt− b

∫ kT

−kT
|u(t)|pdt

−‖f‖Lq(R;RN )‖u‖Ek

≥ min

{
1

p
, arγ−p − b

}
‖u‖pEk − ‖f‖Lq(R;RN )‖u‖Ek . (3.2)

(H6)(ii) implies that there exists α > 0 such that

ϕk(u) ≥ α > 0, for all u ∈ EkT with ‖u‖Ek =
r

C0

, ∀k ∈ N.
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By Lemma 3.1 and the periodicity of K, there exists a constant B0 > 0 such that

K(t, x) ≤ A0|x|p +B0, for all (t, x) ∈ R× RN . (3.3)

where

A0 = max
|x|=1,t∈[0,T ]

K(t, x).

By (H4), we know that there exist ε0 > 0 and L > 0 such that

W (t, x) ≥
(
πp

pT p
+ A0 + ε0

)
|x|p, for all t ∈ R and ∀|x| ≥ L. (3.4)

By (3.4) and the periodicity of W , there exists a constant B1 > 0 such that

W (t, x) ≥
(
πp

pT p
+ A0 + ε0

)
|x|p −B1, for all (t, x) ∈ R× RN . (3.5)

Define wk ∈ Ek by

wk(t) =


(| sin π

T
t|, 0, . . . , 0) if t ∈ [−T, T ]

0 if t ∈ [−kT, kT ]/[−T, T ].

Since K(t, 0) ≡ 0 and W (t, 0) ≡ 0 which is implied by (H5), we have ϕk(ξwk) = ϕ1(ξw1)

for all ξ ∈ R. Then by (3.5), we have

ϕk(ξwk) = ϕ1(ξw1)

=

∫ T

−T

[
1

p
|ξẇ1(t)|p +K(t, ξw1(t))−W (t, ξw1(t))

]
dt+

∫ T

−T
(f1(t), ξw1(t))dt

≤ |ξ|pπp

pT p

∫ T

−T
| cos

π

T
t|pdt+ A0|ξ|p

∫ T

−T
| sin π

T
t|pdt+ 2TB0

−
(
πp

pT p
+ A0 + ε0

)
|ξ|p

∫ T

−T
| sin π

T
t|pdt+ 2TB1

+|ξ|
(∫ T

−T
|f1(t)|qdt

) 1
q
(∫ T

−T
| sin π

T
t|pdt

) 1
p

= −ε0|ξ|p
∫ T

−T
| cos

π

T
t|pdt+ 2TB0

+2TB1 + |ξ|
(∫ T

−T
|f1(t)|qdt

) 1
q
(∫ T

−T
| sin π

T
t|pdt

) 1
p

. (3.6)

So there exists ξ0 ∈ R such that ‖ξ0wk‖ > r
C0

and ϕ(ξ0wk) < 0. Moreover, it is clear that

ϕk(0) = 0. Let e1 = ξ0wk and

A = {0, e1}, B = {u ∈ Ek : ‖u‖ < r

C0

}.
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Then 0 ∈ B and e1 6∈ B̄. So by Example 1 in Section 2, we know that A links ∂B [hm].

So by Theorem 2.1 and Remark 2.4, we have

ck = inf
Γ∈Φ

sup
s∈[0,1]
u∈A

ϕk(Γ(s)u) ≥ inf
∂B
ϕk > α > 0, (3.7)

and there exists a sequence {un} ⊂ Ek such that

ϕk(un)→ ck, (1 + ‖un‖) ‖ϕ′k(un)‖ → 0.

Then there exists a constant C1k > 0 such that

|ϕk(un)| ≤ C1k, (1 + ‖un‖) ‖ϕ′k(un)‖ ≤ C1k for all n ∈ N. (3.8)

It follows from (H5) and the periodicity and continuity of W that

[(∇W (t, x), x)− pW (t, x)](ζ + η|x|ν) ≥ W (t, x), ∀ (t, x) ∈ R× RN . (3.9)

So by (3.5), there exists C2 > 0 such that

[(∇W (t, x), x)− pW (t, x)] ≥ W (t, x)

ζ + η|x|ν

≥

(
πp

pT p
+ A0 + ε0

)
|x|p −B1

ζ + η|x|ν

≥
πp

pT p
+ A0 + ε0

η
|x|p−ν − C2,∀ x ∈ RN . (3.10)

Hence, it follows from (H2), (3.8) and (3.10) that

pC1k + C1k

≥ pϕk(un)− 〈ϕ′k(un), un〉

≥
∫ kT

−kT
[(∇W (t, un(t)), un(t))− pW (t, un(t))]dt

+(p− 1)

∫ kT

−kT
(f(t), un(t))dt (3.11)

≥

(
πp

pT p
+ A0 + ε0

η

)∫ kT

−kT
|un(t)|p−νdt

−(p− 1)

∫ kT

−kT
|f(t)||un(t)|dt− 2kTC2

≥
(

πp

pηT p
+
A0

η
+
ε0

η

)∫ kT

−kT
|un(t)|p−νdt− 2kTC2

−(p− 1)

(∫ kT

−kT
|f(t)|

p−ν
p−ν−1dt

) p−ν−1
p−ν

(∫ kT

−kT
|un(t)|p−νdt

)1/(p−ν)

. (3.12)
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The fact p − ν > 1 and the above inequality show that
∫ kT
−kT |un(t)|p−νdt is bounded. It

follows from (H5) that

[(∇W (t, x), x)− pW (t, x)](ζ + η|x|ν) ≥ W (t, x) ≥ 0. (3.13)

By (H1), (H6), (3.8), (3.11), (3.13), Hölder’s inequality and (2.12), there exist C5 > 0 and

C6 > 0 such that

1

p
‖un‖pEk

= ϕk(un)−
∫ kT

−kT
K(t, un(t))dt+

∫ kT

−kT
W (t, un(t))dt+

1

p

∫ kT

−kT
|un(t)|pdt

−
∫ kT

−kT
(f(t), un(t))dt

≤ ϕk(un) +

∫ kT

−kT
[(∇W (t, un(t)), un(t))− pW (t, un(t))](ζ + η|un(t)|ν)dt

+
1

p

∫ kT

−kT
|un(t)|pdt+

(∫ kT

−kT
|un(t)|p

) 1
p
(∫

R
|f(t)|qdt

) 1
q

≤ C1k +
1

p

∫ kT

−kT
|un(t)|pdt+ ‖un‖Ek

(∫
R
|f(t)|qdt

) 1
q

+(ζ + η‖un‖νL∞2kT )

∫ kT

−kT
[(∇W (t, un(t)), un(t))− pW (t, un(t))]dt

≤ C1k +
1

p
‖un‖νL∞2kT

∫ kT

−kT
|un(t)|p−νdt+ ‖un‖Ek

(∫
R
|f(t)|qdt

) 1
q

+(ζ + η‖un‖νL∞2kT )

[
(p+ 1)C1k + (p− 1)‖un‖Ek

(∫
R
|f(t)|qdt

) 1
q

]

≤ C1k +
Cν

0

p
‖un‖νEk

∫ kT

−kT
|un(t)|p−νdt+ ‖un‖Ek

(∫
R
|f(t)|qdt

) 1
q

+(ζ + ηCν
0 ‖un‖νEk)

[
(p+ 1)C1k + (p− 1)‖un‖Ek

(∫
R
|f(t)|qdt

) 1
q

]
. (3.14)

Since ν < γ − 1 < p− 1, (3.14) implies that ‖un‖Ek is bounded. Similar to the argument

of Lemma 2 in [10], next we prove that in Ek, {un} has a convergent subsequence, still

denoted by {un}, such that un → uk, as n→∞. Since W 1,p
2kT is a reflexive Banach space,

then there is a renamed subsequence {un} such that

un ⇀ uk weakly in W 1,p
2kT . (3.15)
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Furthermore, by Proposition 1.2 in [4], we have

un → uk strongly in C([−kT, kT ],RN). (3.16)

Note that

〈ϕk ′(un), un − uk〉

=

∫ kT

−kT
(|u̇n(t)|p−2u̇n(t), u̇n(t)− u̇k(t))dt+

∫ kT

−kT
(∇K(t, un(t)), un(t)− uk(t))dt

−
∫ kT

−kT
(∇W (t, un(t)), un(t)− uk(t))dt+

∫ kT

−kT
(fk(t), un(t)− uk(t))dt (3.17)

Since {‖un‖} is bounded and ϕk
′(un)→ 0, we have

〈ϕk ′(un), un − uk〉 → 0 as n→∞. (3.18)

By assumption (V) and (3.16), we have∫ kT

−kT

(
∇K(t, un(t)), un(t)− uk(t)

)
dt→ 0 as n→∞ (3.19)

and ∫ kT

−kT

(
∇W (t, un(t)), un(t)− uk(t)

)
dt→ 0 as n→∞. (3.20)

Since fk(t) is bounded, (3.16) also implies that∫ kT

−kT
(fk(t), un(t)− uk(t))dt→ 0 as n→∞. (3.21)

Hence, it follows from (3.18), (3.19), (3.20) and (3.21) that∫ kT

−kT
(|u̇n(t)|p−2u̇n(t), u̇n(t)− u̇k(t))dt→ 0 as n→∞. (3.22)

On the other hand, it is easy to derive from (3.16) and the boundedness of {un} that∫ kT

−kT
(|un(t)|p−2un(t), un(t)− uk(t))dt→ 0 as n→∞. (3.23)

Set

ψk(uk) =
1

p

(∫ kT

−kT
|uk(t)|pdt+

∫ kT

−kT
|u̇k(t)|pdt

)
.

Then we have

〈ψ′k(un), un − uk〉 =

∫ kT

−kT
(|un(t)|p−2un(t), un(t)− uk(t))dt

+

∫ kT

−kT
(|u̇n(t)|p−2u̇n(t), u̇n(t)− u̇k(t))dt, (3.24)
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and

〈ψ′k(uk), un − uk〉 =

∫ kT

−kT
(|uk(t)|p−2uk(t), un(t)− uk(t))dt

+

∫ kT

−kT
(|u̇k(t)|p−2u̇k(t), u̇n(t)− u̇k(t))dt. (3.25)

From (3.22) and (3.23), we obtain

〈ψ′k(un), un − uk〉 → 0 as n→∞. (3.26)

On the other hand, it follows from (3.15) that

〈ψ′k(uk), un − uk〉 → 0 as n→∞. (3.27)

By (3.24), (3.25) and the Hölder’s inequality, we get

〈ψ′k(un)− ψ′k(uk), un − uk〉

=

∫ kT

−kT
(|un(t)|p−2un(t), un(t)− uk(t))dt+

∫ kT

−kT
(|u̇n(t)|p−2u̇n(t), u̇n(t)− u̇k(t))dt

−
∫ kT

−kT
(|uk(t)|p−2uk(t), un(t)− uk(t))dt−

∫ kT

−kT
(|u̇k(t)|p−2u̇k(t), u̇n(t)− u̇k(t))dt

= ‖un‖pEk + ‖uk‖pEk −
∫ kT

−kT
(|un(t)|p−2un(t), uk(t))dt−

∫ kT

−kT
(|u̇n(t)|p−2u̇n(t), u̇k(t))dt

−
∫ kT

−kT
(|uk(t)|p−2uk(t), un(t))dt−

∫ kT

−kT
(|u̇k(t)|p−2u̇k(t), u̇n(t))dt

≥ ‖un‖pEk + ‖uk‖pEk −
(
‖un‖p−1

Lp2kT
‖uk‖Lp2kT + ‖u̇n‖p−1

Lp2kT
‖u̇k‖Lp2kT

)
−
(
‖uk‖p−1

Lp2kT
‖un‖Lp2kT + ‖u̇k‖p−1

Lp2kT
‖u̇n‖Lp2kT

)
≥ ‖un‖pEk + ‖uk‖pEk −

(
‖uk‖pLp2kT + ‖u̇k‖pLp2kT

)1/p (
‖un‖pLp2kT + ‖u̇n‖pLp2kT

)1/q

−
(
‖un‖pLp2kT + ‖u̇n‖pLp2kT

)1/p (
‖uk‖pLp2kT + ‖u̇k‖pLp2kT

)1/q

= ‖un‖pEk + ‖uk‖pEk − ‖uk‖Ek ‖un‖
p−1
Ek
− ‖un‖Ek ‖uk‖

p−1
Ek

=
(
‖un‖p−1

Ek
− ‖uk‖p−1

Ek

)
(‖un‖Ek − ‖uk‖Ek) .

It follows that

0 ≤
(
‖un‖p−1

Ek
− ‖uk‖p−1

Ek

)
(‖un‖Ek − ‖uk‖Ek) ≤ 〈ψ′(un)− ψ′(uk), un − uk〉,

which, together with (3.26) and (3.27) yields ‖un‖Ek → ‖uk‖Ek (see [10]). By the uniform

convexity of Ek and (3.15), it follows from the Kadec–Klee property (see [27]) that ‖un−
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uk‖Ek → 0. Moreover, by the continuity of ϕk and ϕ′k , we obtain ϕ′k(uk) = 0 and

ϕk(uk) = ck > 0. It is clear that uk 6= 0 and so uk is a desired nontrivial solution of

system (2.1). The proof is complete.

Lemma 3.4. Let {uk}k∈N be the solution of system (2.1). Then there exists a subsequence

{ukj} of {uk}k∈N convergent to a certain function u0 ∈ C1(R,RN) in C1
loc(R,R

N).

Proof. First, we prove that the sequence {ck}k∈N is bounded and the sequence {uk}k∈N

is uniformly bounded. Second, we prove {u̇k}k∈N is also uniformly bounded. Finally,

we prove both {uk} and {u̇k} are equicontinuous and then by using the Arzelà–Ascoli

Theorem, we obtain the conclusion. We only prove the first step. The rest of proof is the

same as Lemma 3.2 in [17]. For every k ∈ N, define Γk : [0, 1]× Ek → Ek by

Γk(s)v = (1− s)v, v ∈ Ek.

Then Γ ∈ Φ. Note that set A = {0, e1}. So (3.7) implies that

ϕk(uk) = ck ≤ sup
s∈[0,1]
u∈A

ϕk((1− s)u) = sup
s∈[0,1]

ϕk((1− s)e1) = sup
s∈[0,1]

ϕ1((1− s)e1) := M0,

where M0 is independent of k ∈ N. Moreover, ϕ′k(uk) = 0. Then it follows from (H2) and

(3.10) that

pM0 ≥ pck = pϕk(uk)− 〈ϕ′k(uk), uk〉

≥
∫ kT

−kT
[(∇W (t, uk(t)), uk(t))− pW (t, uk(t))]dt

+(p− 1)

∫ kT

−kT
(f(t), uk(t))dt

≥
∫ kT

−kT

W (t, uk(t))

ξ + η|uk(t)|ν
dt+ (p− 1)

∫ kT

−kT
(f(t), uk(t))dt.

So ∫ kT

−kT

W (t, uk(t))

ξ + η|uk(t)|ν
dt ≤ pM0 − (p− 1)

∫ kT

−kT
(f(t), uk(t))dt.

Then

ηpk(uk) = pϕk(uk) + p

∫ kT

−kT

W (t, uk(t))

ξ + η|uk(t)|ν
(ξ + η|uk(t)|ν)dt− p

∫ kT

−kT
(f(t), uk(t))dt

≤ pϕk(uk) + p(ξ + η‖uk‖ν∞)

∫ kT

−kT

W (t, uk(t))

ξ + η|uk(t)|ν
dt− p

∫ kT

−kT
(f(t), uk(t))dt
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≤ pϕk(uk) + p(ξ + ηC0‖uk‖νEk)
(
pM0 − (p− 1)

∫ kT

−kT
(f(t), uk(t))dt

)
−p
∫ kT

−kT
(f(t), uk(t))dt

≤ pM0 + p2ξM0 + p2ηC0M0‖uk‖νEk − p(p− 1)ξ

∫ kT

−kT
(f(t), uk(t))dt

−p(p− 1)ηC0‖uk‖νEk

∫ kT

−kT
(f(t), uk(t))dt− p

∫ kT

−kT
(f(t), uk(t))dt

≤ (p+ p2ξ)M0 + [p(p− 1)ξ + p]

(∫
R
|f(t)|qdt

)1/q (∫ kT

−kT
|uk(t)|pdt

)1/p

+p2ηC0M0‖uk‖νEk + p(p− 1)ηC0‖uk‖νEk

(∫
R
|f(t)|qdt

)1/q (∫ kT

−kT
|uk(t)|pdt

)1/p

≤ (p+ p2ξ)M0 + [p(p− 1)ξ + p]

(∫
R
|f(t)|qdt

)1/q

‖uk‖Ek + p2ηC0M0‖uk‖νEk

+p(p− 1)ηC0

(∫
R
|f(t)|qdt

)1/q

‖uk‖ν+1
Ek

. (3.28)

Thus (3.28) and Lemma 3.2 imply that

(p+ p2ξ)M0 + [p(p− 1)ξ + 1]

(∫
R
|f(t)|qdt

)1/q

‖uk‖Ek + p2ηC0M0‖uk‖νEk

+p(p− 1)ηC0

(∫
R
|f(t)|qdt

)1/q

‖uk‖ν+1
Ek

≥ min{‖uk‖pEk , paC
γ−p
0 ‖uk‖γEk}.

Note that γ > ν + 1. So (H6) implies there exists M1 > 0 (independent of k) such that

‖uk‖Ek ≤M1 for every k ∈ N.

By Corollary 2.1,

‖uk‖L∞2kT ≤ C0M1 := M2 for every k ∈ N.

Thus the proof is complete.

Lemma 3.5. Let u0 ∈ C1(R,RN) be determined by Lemma 3.4. When f 6= 0, u0 is a

nontrivial solution of system (1.1) such that u0(t)→ 0 and u̇0(t)→ 0 as t→ ±∞.

Proof. The proof is the same as Step 1–Step 3 in the proof of Lemma 3.3 in [17].

Proof of Theorem 1.2. The proof is easy to be completed by replacing∫ kT

−kT
(f(t), u(t))dt ≤

(∫ kT

−kT
|f(t)|qdt

)1/q (∫ kT

−kT
|u(t)|pdt

)1/p

≤ ‖u‖Ek
(∫

R
|f(t)|qdt

)1/q
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with ∫ kT

−kT
(f(t), u(t))dt ≤ ‖u‖L∞2kT

∫ kT

−kT
|f(t)|dt ≤ C0‖u‖Ek

∫
R
|f(t)|dt,

in the proofs of Lemma 3.3 and Lemma 3.4.

Proofs of Theorem 1.3 and Theorem 1.4. We only note that in the proof of Lemma

3.3, when γ = p, we dot not need r ∈ (0, 1] and it is sufficient that r > 0. The re-

maining parts of the proofs are the same as the proofs of Theorem 1.1 and Theorem 1.2,

respectively.

Proof of Theorem 1.5. Note that f ≡ 0. By (H1), (H3)′′ and γ < p, for u ∈ Ek with

‖u‖Ek = r/C0, we have

ϕk(u) ≥ 1

p
ηpk(u)− b

∫ kT

−kT
|u(t)|pdt

≥ 1

p

∫ kT

−kT
[|u̇(t)|p + pa|u(t)|γ] dt− b

∫ kT

−kT
|u(t)|pdt

≥ 1

p

∫ kT

−kT
|u̇(t)|pdt+ a(C0‖u‖Ek)γ−p

∫ kT

−kT
|u(t)|pdt− b

∫ kT

−kT
|u(t)|pdt

≥ min

{
1

p
, arγ−p − b

}
rp

Cp
0

.

So (H3)′′ implies that there exists α > 0 such that

ϕk(u) ≥ α > 0, for all u ∈ Ek with ‖u‖Ek =
r

C0

, ∀k ∈ N.

(H5)′ implies that W (t, 0) ≡ 0 and (H2)′ implies that (H2). So (3.6) holds with f1(t) ≡ 0.

Hence there exists ξ0 ∈ R such that ‖ξ0wk‖ > r
C0

and ϕ(ξ0wk) < 0. Moreover, it is clear

that ϕk(0) = 0. Let e1 = ξ0wk and

A = {0, e1}, B = {u ∈ Ek : ‖u‖ < r

C0

}

Then 0 ∈ B and e1 6∈ B̄. So by Example 1 in Section 2, we know that A links ∂B [hm].

So by Theorem 2.1 and Remark 2.4,

ck = inf
Γ∈Φ

sup
s∈[0,1]
u∈A

ϕk(Γ(s)u) ≥ inf
∂B
ϕk > α > 0,

and there exists a sequence {un} ⊂ Ek such that

ϕk(un)→ ck, (1 + ‖un‖) ‖ϕ′k(un)‖ → 0,
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Then there exists a constant C1k > 0 such that

|ϕk(un)| ≤ C1k, (1 + ‖un‖) ‖ϕ′k(un)‖ ≤ C1k for all n ∈ N.

Similar to the argument in Lemma 3.3 and Lemma 3.4 with f(t) ≡ 0, noting that it is

sufficient ν < γ < p when f ≡ 0, we can obtain that uk is a desired nontrivial solution

of system (2.1). By the Step 1–Step 3 in the proof of Lemma 3.3 in [17], we obtain that

u0(t)→ 0 and u̇0(t)→ 0 as t→ ±∞. Next, we prove, when f ≡ 0, u0 is nontrivial. The

proof is the similar to that in [18] and same as step 4 in the proof of Lemma 3.3 in [17]

(with γ = p and b = a there). Here, for readers’ convenience, we also present it. It is easy

to see that the function Y defined in (H7) is continuous, nondecreasing, Y (s) ≥ Y (0) ≥ 0.

By the definition of Y , we have

(∇W (t, uk(t)), uk(t)) ≤ Y (‖uk‖L∞2kT )|uk(t)|p.

Integrating the above inequality on the interval [−kT, kT ], we obtain that for every k ∈ N,∫ kT

−kT
(∇W (t, uk(t)), uk(t))dt ≤ Y (‖uk‖L∞2kT )‖uk‖pEk . (3.29)

Note that (ϕ′k(uk), uk) = 0. Hence,∫ kT

−kT
(∇W (t, uk(t)), uk(t))dt =

∫ kT

−kT
|u̇k(t)|pdt+

∫ kT

−kT
(∇K(t, uk(t)), uk(t))dt. (3.30)

By (3.29), (3.30), (H1)′ and (H2)′, we obtain that

Y (‖uk‖L∞2kT )‖uk‖pEk ≥ min{1, a}‖uk‖pEk .

Then

Y (‖uk‖L∞2kT ) ≥ min{1, a}.

The remainder of the proof is the same as in [7, 11, 17, 18]. If ‖uk‖L∞2kT → 0 as k → ∞,

we would have Y (0) ≥ min{1, a}, a contradiction to (H7). Thus there is m > 0, which is

independent of k, such that

‖uk‖L∞2kT ≥ m (3.31)

for every k ∈ N. Now to complete the proof, observe that by the T -periodicity of V and

f ≡ 0, whenever uk(t) is a 2kT -periodic solution of system (2.1), so is uk(t+ jT ) for every
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j ∈ Z. Hence, by replacing earlier, if necessary, uk by uk(t+ jT ) for some j ∈ [−k, k]∩Z,

one can assume that the maximum of uk occurs in [−T, T ]. Suppose, contrary to our

claim, that u0 ≡ 0. Then by Lemma 3.4,

‖ukj‖L∞2kjT = max
t∈[−T,T ]

|ukj(t)| → 0, as j →∞.

which contradicts (3.31).

Proof of Theorem 1.6. Similar to the argument of Lemma 3.3 and Lemma 3.4, it is easy

to obtain that, under the conditions of Theorem 1.6, uk is a desired nontrivial solution of

system (2.1). Then by the proof of Theorem 1.5, we know that u0 is nontrivial.
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