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Singular differential operators, for example operators defined in an unbounded domain,
in general may have not only a discrete but also a continuous spectrum. Therefore in
general an arbitrary function cannot be decomposed into a series of eigenfunctions. For
this reason the most important problem in the study of the spectrum in dependence of
the behavior of the coefficients in the case of an unbounded domain is the discreteness of
the spectrum.

Spectral characteristics of singular elliptic differential operators are well-studied and
the typical difficulties encountered in connection with bad behaving coefficients clarified.
An extensive literature is devoted to their study and we mention [1–3].

Review of the literature shows that such questions as: 1) the existence and compactness
of the resolvent, 2) the discreteness of the spectrum of hyperbolic differential operators
defined in an unbounded domain are not well studied.

We consider in the space L2 (Ω) the differential operator of hyperbolic type

A0u = uxx − uyy + a (y)ux + c (y)u

with the domain D(A0) of infinitely differentiable functions satisfying the conditions
u (−π; y) = u (π; y) , ux (−π; y) = ux (π; y) and compactly supported with respect to
the variable y, where

Ω = {(x, y) : −π < x < π, −∞ < y <∞} .

Further, we assume that the coefficients a (y) , c (y) satisfy the conditions:
i) |a(y)| ≥ δ0 > 0, c(y) ≥ δ > 0 are continuous functions in R = (−∞; ∞) .
It is easy to verify that the operator A0 admits closure in the space L2 (Ω), which is

denoted by A.
We note that the operator A corresponds to the problem of propagation of the bound-

ary regime (see [1], p. 106), i.e. the problem without initial conditions. Here the term
aux describes the friction force. The question of the existence of solutions of the problem
without initial conditions, in general, depends on the behavior of the coefficients a and c.
For example, when a = 0, the solution does not always exist.

The main results of this paper are the following theorems.

1Email: musahan m@mail.ru
2Email: muratbekov mm@enu.kz
3Email: abylayeva b@mail.ru

EJQTDE, 2013 No. 64, p. 1



Theorem 1.1 Let the condition i) be fulfilled. Then the operator A+ λI is continuously
invertible for λ ≥ 0.

Theorem 1.2 Let the condition i) be fulfilled. Then the resolvent of the operator A is
compact if and only if for any w > 0

lim
|y|→∞

∫ y+w

y

c (t) dt =∞. (∗)

The last theorem shows that the condition (∗) is a necessary and sufficient condition
for the discreteness of the spectrum of A.

The question of the existence of the resolvent and discrete spectrum in an unbounded
domain with growing and oscillating coefficients was previously studied only in the case
of elliptic and pseudodifferential operators [1–3].

Assume that the coefficients of the operator A, in addition to conditions i), satisfy the
condition

ii) µ0 = sup
|y−t|≤1

c (y)

c (t)
<∞, µ = sup

|y−t|≤1

a (y)

a (t)
<∞.

Then, Theorem 1.2 easily implies the following theorem.

Theorem 1.3 Let the conditions i)–ii) be fulfilled. Then the resolvent of the operator A
is compact if and only if lim

|y|→∞
c (y) =∞.

2 Auxiliary lemmas and inequalities

To prove the following statements below, we use computations and arguments that have
been used in [5].

Lemma 2.1 Let the condition i) be fulfilled and λ ≥ 0. Then the inequality

‖(A+ λI)u‖2 ≥ c ‖u‖2 , (2.1)

holds for all u ∈ D (A), where c = c (δ, δ0) and ‖ · ‖2 is the norm in L2 (Ω).

Proof. Let u ∈ C∞0,π(Ω̄), where C∞0,π(Ω̄) is a space of infinitely differentiable func-
tions satisfying the conditions u (−π; y) = u (π; y) , ux (−π; y) = ux (π; y) and com-
pactly supported with respect to the variable y. Integrating by parts the expressions
〈(A+ λI)u, u〉 and 〈(A+ λI)u, ux〉 we obtain the following inequalities

1

2ε
‖(A+ λI)u‖2

2 ≥
∫

Ω

[
|uy|2 + (δ + λ− ε

2
) |u|2

]
dxdy −

∫
Ω

|ux|2 dxdy, (2.2)

‖(A+ λI)u‖2
2 ≥ δ2

0 ‖ux‖
2
2 , (2.3)

where 〈·, ·〉 is the scalar product in L2 (Ω).
Here we used the Cauchy inequality, with ε = δ

2
> 0. From (2.2) and (2.3) the estimate

‖(A+ λI)u‖2
2 ≥ c ‖u‖2

2 follows. Since A+λI is the closed operator the last estimate holds
for all u ∈ D(A+ λI).
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Let ∆j = (j − 1, j + 1) (j ∈ Z), and γ be a constant such that γa(y) > 0. Denote by
ln,j,γ + λI the closure in L2(∆j) of the differential expression

(ln,j,γ + λI)u = −u′′ +
[
−n2 + in(a(y) + γ) + c(y) + λ

]
u, (n = 0,±1,±2, . . . )

defined on the set C2
0(∆j) of twice continuously differentiable functions u on ∆̄j which

satisfy the conditions u(j − 1) = u(j + 1) = 0.

Lemma 2.2 Let the condition i) be fulfilled and λ ≥ 0. Then the inequalities

a)
‖(ln,γ,j + λI)u‖L2(∆j) ≥ c1

(
‖u′‖2 +

∥∥∥√c(y) + λu
∥∥∥
L2(∆j)

+

+
∥∥∥|n|√(|a(y)|+ |γ|)u

∥∥∥
L2(∆j)

)
, n 6= 0, u ∈ D(ln,γ,j + λI);

b)
∥∥∥(ln,j,γ + λI

)−1
∥∥∥
L2(∆j)→L2(∆j)

≤ c0
(δ+λ)1/2

;

c)
∥∥∥ d
dy

(
ln,j,γ + λI

)−1
∥∥∥
L2(∆j)→L2(∆j)

≤ c2
(δ+λ)1/4

hold, where c0 = c0(δ), c1 = c1(δ), c2 = c2(δ).

Proof. Let u ∈ C2
0(∆j). We have

|〈(ln,j,γ + λI)u, u〉| ≥

∣∣∣∣∣‖u′‖2
L2(∆j) +

∫
∆j

(c(y) + λ) |u|2 dy

∣∣∣∣∣−
∣∣∣∣∣
∫

∆j

n2 |u|2 dy

∣∣∣∣∣ . (2.4)

Hence

‖(ln,j,γ + λI)u‖L2(∆j) · ‖u‖L2(∆j) ≥
∫

∆j

|u′|2 dy −
∫

∆j

|n|2 |u|2 dy (2.5)

and
1

δ
‖(ln,j,γ + λI)u‖2

L2(∆j) ≥
1

2

∫
∆j

(c(y) + λ) |u|2 dy −
∫

∆j

|n|2 |u|2 dy. (2.6)

Here we again used the Cauchy inequality with ε > 0, where ε = δ
2
> 0.

On the other hand, by transforming the expression 〈(ln,j,γ + λI)u, u〉∆j
and 〈(ln,j,γ +

λI)u,−inu〉∆j
, u ∈ C2

0(∆̄j), we have

c(δ0) ‖(ln,j,γ + λI)u‖L2(∆j) ≥
∥∥∥√|n| (a(y) + |γ|)u

∥∥∥
L2(∆j)

(2.7)

and
‖(ln,j,γ + λI)u‖2

L2(∆j) ≥ (δ0 + |γ|)2 · |n|2 ‖u‖2
L2(∆j) . (2.8)

Combining (2.6) with (2.8), and choosing γ so that (δ0 + |γ|)2 − 1 ≥ 0, we obtain

c0(δ) ‖(ln,j,γ + λI)u‖L2(∆j) ≥
∥∥∥√c(y) + λu

∥∥∥
L2(∆j)

, (2.9)

where c0(δ) = 2(1
δ

+ 1). Hence by the conditions i) we conclude

c0(δ)√
δ + λ

‖(ln,j,γ + λI)u‖L2(∆j) ≥ ‖u‖L2(∆j) . (2.10)

From inequalities (2.5), (2.8) and (2.10) we obtain the estimate

c0(δ) + 1√
δ + λ

‖(ln,j,γ + λI)u‖2
L2(∆j) ≥

∫
∆j

|u′|2 dy + |n|2
∫

∆j

(
(δ0 + |γ|)2

√
δ + λ

− 1

)
|u|2 dy. (2.11)
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The estimate a) follows from inequalities (2.7), (2.9) and (2.11) by choosing γ so that
(δ0+|γ|)2√

δ+λ
− 1 ≥ 0. The estimate (2.10) implies b). From the inequality (2.11) it follows the

estimate
c2(δ)√
δ + λ

‖(ln,j,γ + λI)u‖2
L2(∆j) ≥ ‖u

′‖2
L2(∆j) , c2(δ) = c0(δ) + 1.

This implies the estimate c). Lemma 2.2 is completely proved.

Lemma 2.3 The operator ln,j,γ + λI is invertible for λ ≥ 0 and the inverse operator
(ln,j,γ + λI)−1 is defined in all L2(∆j), j ∈ Z.

Proof. By estimate b) in Lemma 2.2 it is enough to prove that R(ln,γ,j + λI)=L2(∆j),
where R(ln,γ,j + λI) is the range of the operator ln,γ,j + λI. Assume the contrary. Then
there exists an element υ ∈ L2(∆j), υ 6= 0, which satisfies the equation

(ln,γ,j + λI)∗υ = −υ′′ +
[
−n2 − in(a(y) + γ) + c(y) + λ

]
υ = 0 (2.12)

in the sense of the theory of distributions. This implies that υ′′ ∈ L2(∆j). Integrating by
parts the expression 〈(ln,j,γ +λI)u, υ〉∆j

we have u′(j+ 1)ῡ(j+ 1)−u′(j− 1)ῡ(j− 1) = 0,
where u is an arbitrary function from C∞0 (∆j). Therefore υ(j + 1) = υ(j − 1) = 0, and
using these conditions we can derive the inequality

‖(ln,γ,j + λI)∗υ‖2
L2(∆j) ≥ c ‖υ‖2

L2(∆j) , (2.13)

similarly to (2.10). This implies that υ = 0. Lemma is proved.
By ln,γ + λI (n = 0,±1,±2, . . . ) we denote the closure in L2(R) of the differential

expression (ln,γ + λI)u = −u′′ + (−n2 + in(a(y) + γ) + c(y) + λ)u, defined on the set
C∞0 (R) of infinitely differentiable functions with compact support.

Lemma 2.4 Let λ ≥ 0 and condition i) hold. Then for any u ∈ D(ln,γ+λI) the estimates

‖(l0,γ + λI)u‖L2(R) ≥
√
δ + λ ‖u‖L2(R) ,

‖(ln,γ + λI)u‖L2(R) ≥ |n| (δ0 + |γ|) ‖u‖L2(R)

hold for n 6= 0.

Lemma 2.4 is proved by transforming the expression 〈(ln,γ + λI)u,−inu〉, where u ∈
C∞0 (R).

Let {ϕj(y)}+∞
j=−∞ ⊂ C∞0 (R) be a sequence of functions satisfying the conditions ϕj ≥ 0,

suppϕj ⊆ ∆j (j ∈ Z),
∑+∞

j=−∞ ϕ
2
j(y) = 1. Assume

Kλ,γf =
+∞∑
j=−∞

ϕj(ln,j,γ + λI)−1ϕjf,

Bλ,γf =
∑+∞

j=−∞ ϕ
′′
j (ln,j,γ + λI)−1ϕjf + 2

∑+∞
j=−∞ ϕ

′
j
d
dy

(ln,j,γ + λI)−1ϕjf, f ∈ C∞0 (R),

λ ≥ 0.

Obviously
(ln,γ + λI)Kλ,γf = f −Bλ,γf. (2.14)

Lemma 2.5 Let the condition i) be fulfilled. Then there exists a number λ0 > 0 such
that ‖Bλ,γ‖L2(R)→L2(R) < 1 for all λ ≥ λ0.
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Proof. Let f ∈ C∞0 (R). Since only the functions ϕj−1, ϕj, ϕj+1 can be nonzero on
∆̄j (j ∈ Z) we have

‖Bλ,γf‖2
L2(R) =

=
∫∞
−∞

∣∣∣∑∞j=−∞ ϕ′′
j (ln,j,γ + λI)−1ϕjf + 2

∑∞
j=−∞ ϕ

′
j
d
dy

(ln,j,γ + λI)−1ϕjf
∣∣∣2 dy ≤

≤
∑+∞

j=−∞
∫ +∞
−∞

∣∣∣∑j+1
k=j−1

[
ϕ

′′

k(ln,k,γ + λI)−1ϕkf + 2ϕ
′

k
d
dy

(ln,k,γ + λI)−1ϕkf
]∣∣∣2 dy.

Hence using the obvious inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2) and estimates b), c)
in Lemma 2.2, we obtain

‖Bλ,γf‖2
L2(R) ≤ c

(
c0

(δ + λ)
1/2

+
c2

(δ + λ)
1/4

)
‖f‖2

L2(R) ,

where c = 24 max
{∣∣ϕ′′j ∣∣ , ∣∣ϕ′j∣∣}, and the constants c0, c2 are from Lemma 2.2. Hence, it

is easy to choose a number λ0 > 0 such that ‖Bλ,γ‖L2(R)→L2(R) < 1 for λ ≥ λ0. This
completes the proof.

Lemma 2.6 Let the condition i) be satisfied. Then the operator ln,γ + λI is continuously
invertible for λ ≥ λ0 > 0, and for the inverse operator (ln,γ + λI)−1 the equality

(ln,γ + λI)−1 = Kλ,γ(I −Bλ,γ)
−1 (2.15)

holds.

Lemma 2.6 follows from (2.14) and from Lemmas 2.5 and 2.4.

Lemma 2.7 Let the condition i) be satisfied and ρ(y) be a continuous function defined
on R. Then for α = 0, 1 and λ ≥ λ0 the estimate∥∥ρ(y) |n|α (ln,γ + λI)−1

∥∥2

L2(R)→L2(R)
≤

≤ c4(λ) sup
j∈Z

∥∥ρ(y) |n|α ϕj (ln,j,γ + λI)−1
∥∥2

L2(∆j)→L2(∆j)

(2.16)

holds.

Proof. Let f ∈ C∞0 (R). From representation (2.15) and by the properties of the functions
{ϕj} (j ∈ Z), we have∥∥ρ(y) |n|α (ln,γ + λI)−1 f

∥∥2

L2(R)
≤

≤
∑+∞

j=−∞
∫ +∞
−∞

∣∣∣∑j+1
k=j−1

[
ρ(y) |n|α ϕk (ln,k,γ + λI)−1 ϕk(I −Bλ,γ)

−1f
]∣∣∣2 dy.

Hence, using again the inequality (a0 + b0 + c0)2 ≤ 3(a2
0 + b2

0 + c2
0) and by Lemma 2.5, we

obtain the estimate (2.16). Lemma 2.7 is proved.
The result below follows from Lemma 2.2 and the estimate (2.16).

Lemma 2.8 Let the condition i) be satisfied and λ ≥ λ0. Then

a)
∥∥∥√c(y) + λ (ln,γ + λI)−1

∥∥∥
L2(R)→L2(R)

<∞ (n = 0,±1,±2, . . . );

b)
∥∥in (ln,γ + λI)−1

∥∥
L2(R)→L2(R)

<∞ (n 6= 0);

c)
∥∥∥ d
dy

(ln,γ + λI)−1
∥∥∥
L2(R)→L2(R)

<∞ (n = 0,±1,±2, . . . ).
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Consider the equation

(ln + λI)u ≡ −u′′ + (−n2 + ina(y) + c(y) + λ)u = f, (2.17)

where f ∈ L2(R).
The function u ∈ L2(R) is called a solution of the equation (2.17) if there exists a

sequence {un}∞n=1 ⊂ C∞0 (R) such that ‖un − u‖L2(R) → 0, ‖(ln + λI)un − f‖L2(R) → 0 as
n→∞.

Lemma 2.9 The operator ln+λI (n = 0,±1,±2, . . . ) is boundedly invertible for λ ≥ λ0,
and for the inverse operator (ln + λI)−1the equality

(ln + λI)−1f = (ln,γ + λI)−1(I − Aλ,γ)−1f, f ∈ L2(R) (2.18)

holds, where ‖Aλ,γ‖L2(R)→L2(R) < 1.

Proof. Let n 6= 0. We rewrite the equation (ln + λI)u = f ∈ L2(R) in the form
υ − Aλ,γυ = f , where υ = (ln,γ + λI)u, Aλ,γ = inγ(ln,γ + λI)−1. From Lemma 2.4 it

follows that ‖Aλ,γυ‖L2(R)→L2(R) ≤
|n|·|γ|

|n|(δ0+|γ|) ‖v‖L2(R) or ‖Aλ,γ‖L2(R)→L2(R) < 1. Hence

u = (ln + λI)−1υ = (ln,γ + λI)−1 (I − Aλ,γ)−1 f.

The operator l0 + λI be a self-adjoint operator for n = 0 [6, p. 208] and the estimate
‖(l0 + λI)u‖L2(R) ≥ (δ + λ) ‖u‖L2(R) holds for any u ∈ D(l0 + λI). These imply that the
operator l0 + λI is boundedly invertible in all L2(R). Lemma 2.9 is proved.

Lemma 2.8 and the equality (2.18) imply the following lemma.

Lemma 2.10 If λ ≥ λ0, then the estimates

a)
∥∥∥√c(y) + λ (ln + λI)−1

∥∥∥
L2(R)→L2(R)

<∞ (n = 0,±1,±2, . . . );

b)
∥∥in (ln + λI)−1

∥∥
L2(R)→L2(R)

<∞ (n 6= 0);

c)
∥∥∥ d
dy

(ln + λI)−1
∥∥∥
L2(R)→L2(R)

<∞ (n = 0,±1,±2, . . . ) hold.

We will use also the following well-known lemma [7, p. 350].

Lemma 2.11 Let the operator A + λ0I (λ0 > 0) be boundedly invertible in L2(R) and
the estimate ‖(A+ λI)u‖L2(R) ≥ c ‖u‖L2(R), u ∈ D(A + λI) hold for λ ∈ (0, λ0]. Then
the operator A : L2(R)→ L2(R) is boundedly invertible also.

Lemma 2.12 Let the condition i) be fulfilled and λ > 0. Then the inequality∥∥(ln + λI)−1
∥∥

2→2
≤ 1

|n| · δ0

(2.19)

holds for all n (n = 0,±1,±2, . . . ).

Proof. Let u ∈ C∞0 (R). Integrating the expression 〈(ln + λI)u, u〉 by parts, we obtain

|〈(ln + λI)u, u〉| =
∣∣∣∣∫ ∞
−∞

[|u′|2 + (−n2 + c(y)) |u|2]dy +

∫ ∞
−∞

ina(y) |u|2 dy
∣∣∣∣ .

Hence, taking i) into account and using the property of complex numbers, we have

‖(ln + λI)u‖2 ≥ |n| · δ0 ‖u‖2 . (2.20)

It is taken into account that the sign of a(y) does not change. The inequality (2.20)
implies the proof of Lemma 2.12.
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Lemma 2.13 Let the condition i) be fulfilled and λ > 0. Then the operator (ln + λI)−1

is completely continuous for all n (n = 0,±1,±2, . . . ) if and only if for any ω > 0

lim
|y|→∞

∫ y+ω

y

c (t) dt =∞. (∗)

Proof. From Lemma 2.12 it follows that it is sufficient to prove Lemma 2.13 for any
finite n 6= 0.

Let n = 0. Then the operator ln + λI is an operator of Sturm–Liouville type with
potential c (y) , i.e.

(l0 + λI)u = −u′′ + c (y)u, u ∈ D (l0) .

In this case, reproducing all the computations and arguments used in [1,2], we obtain the
proof of Lemma 2.13, i.e. the equality (∗) is a necessary and sufficient condition for the
compactness of the resolvent of the operator l0 + λI.

Consider the case n 6= 0. Let

lim
|y|→∞

∫ y+w

y

(|na (t)|+ c (t)) dt =∞. (2.21)

Necessity. Let the condition (2.21) be not satisfied. Then there exists a sequence of
intervals Qd (yj) ⊂ R such that

sup
{j}

∫
Qd(yj)

(|na (t)|+ c (t)) dt <∞, (2.22)

for every finite n where d > 0, i.e. when the intervals Qd (yj), preserving the length,
converge to infinity. Let w (x) ∈ C∞0 (Qd (0)) and consider the set of functions such that
uj (y) = w (y − yj). It is easy to verify for every finite n the following inequality∥∥−u′′j + (−n2 + ina(y) + c(y) + λ)uj (y)

∥∥2

2
=

=

∫ ∞
−∞

∣∣−u′′j (y) +
(
−n2 + ina (y) + c (y) + λ

)
uj (y)

∣∣2 dy ≤
≤ 8

∫
Qd(yj)

[∣∣−u′′j (y)
∣∣2 +

(
n4 + n2a2 (y) + c2 (y) + λ2

)
|uj (y)|2

]
dy.

(2.23)

From (2.23), taking the inequality (2.22) and the property of the function uj (y) =
ω (y − yj) into account, we obtain∥∥−u′′j +

(
−n2 + ina (y) + c (y) + λ

)
uj (y)

∥∥2

2
< c <∞,

for every finite n 6= 0, where c > 0 is independent of j.
We assume

Fj (y) = −u′′j (y) +
(
−n2 + ina (y) + c (y) + λ

)
uj (y) , supp Fj (y) ⊆ Qd (yj) .

Now we show that Fj (y) weakly converges to zero in L2 (R).

〈Fj (y) , v (y)〉 =
∣∣∣∫∞−∞ Fj (y) v (y) dy

∣∣∣ ≤
≤
(∫

Qd(yj)
F 2
j (y) dy

) 1
2
(∫

Qd(yj)
v2 (y) dy

) 1
2

(2.24)
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Since v ∈ L2 (R) , it is obvious that
∫
Qd(yj)

v2 (y) dy → 0 as j →∞. Taking it into account,

from (2.24) we find that the sequence {Fj} converges weakly to zero.
It is immediately clear that

‖uj (y)‖2 = α > 0. (2.25)

Since, if the operator (ln + λI)−1 is compact and then {uj (y)} should converge to zero in
the norm L2 (R) . But this is impossible by (2.25), i.e. we have a contradiction.

Thus, we have proved that in case n 6= 0 the condition (2.21) is a necessary condition
for the compactness of the resolvent ln + λI. From (∗) and (2.21) it follows that the
equality (∗) is a necessary condition for the compactness of the resolvent of the operator
ln + λI for all n (n = 0, ±1, ±2, . . . ) .

Sufficiency. From Lemma 2.10 it follows that R(ln + λI)−1 ⊂ L1
2(R, c(y)), where

R(ln + λI)−1 is the range of the operator (ln + λI)−1, and L1
2, c(y) is the space obtained by

completing C∞0 (R) with respect to the norm

∥∥u : L1
2, c(y)

∥∥ =

(∫ +∞

−∞
(|u′|2 + (c(y) + λ) |u|2)dy

) 1
2

.

To complete the proof it remains to show that the embedding operator of the space
L1

2, c(y) in L2(R) is compact. The answer to this question follows from the results of [2].

In that paper it is shown that any bounded set of the space L1
2, c(y) is compact in L2(R)

if and only if
lim
|y|→∞

c∗(y) =∞, (2.26)

where the function c∗(y) is a special averaging of the function c(y) [2]. Further, in [8,
p. 58] it is proved, that the conditions (∗) and (2.26) are equivalent. Sufficiency of Lemma
2.13 is proved.

3 Proofs of Theorems 1.1–1.3

From Lemma 2.9 we obtain that

uk (x, y) =
k∑

n=−k

(ln + λI)−1 fn (y) einx (3.1)

is a solution of the problem

(A+ λI)uk (x, y) = fk (x, y) ,

uk (−π, y) = uk (π, y) , ukx (−π, y) = ukx (π, y) ,

where fk(x, y)
L2−→ f(x, y), fk (x, y) =

∑k
n=−k fn (y) einx, (ln + λI)−1 is the inverse oper-

ator to the operator (ln + λI) .
By virtue of (2.1) we have

‖uk (x, y)‖2 ≤ c ‖fk (x, y)‖2 , (3.2)

where c > 0 is a constant independent of k.
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Since fk
L2−→ f, then from (3.2) we find

‖uk − um‖2 ≤ c ‖fk − fm‖2 → 0 as k,m→∞.

Hence, by virtue of the completeness of the space L2(Ω), it follows that there exists a
unique function u ∈ L2 (Ω) such that

uk → u as k →∞. (3.3)

(3.3) implies that for any f ∈ L2 (Ω)

u(x, y) = (A+ λI)−1 f(x, y) =
∞∑

n=−∞

(ln + λI)−1 fn (y) einx (3.4)

is a strong solution of the problem

(A+ λI)u = f (3.5)

u(−π, y) = u(π, y), ux(−π, y) = ux(π, y) (3.6)

Let us recall the definition of strong solutions.
The function u ∈ L2 (Ω) is called a strong solution of (3.5)–(3.6), if there exists a

sequence {uk}∞k=1 ⊂ D(L0) such that ‖uk − u‖2 → 0, ‖(A+ λI)uk − f‖2 → 0 as k →∞.
Now, it is easy to see that (3.4) is the inverse operator to the closed operator A+ λI.

Lemma 2.1 implies that the last statement holds for all λ ≥ 0. Theorem 1.1 is proved.
Proof of Theorem 1.2. Using Lemma 2.12 it is easy to see that

lim
|n|→∞

∥∥(ln + λI)−1
∥∥

2→2
= 0.

Therefore, and using the ε-net, from (3.4) we have that the operator (A+ λI)−1 is
compact if and only if (ln + λI)−1 is continuous. Now, the proof of the theorem follows
from Lemma 2.13.

Proof of Theorem 1.2. Without loss of generality we assume 0 < w ≤ 1, then by
the condition ii) we have

µ−1
0 · w · c(y) ≤

∫ y+w

y

c(t)dt ≤ µ0 · w · c(y).

The proof of Theorem 1.3 follows from this inequality and Theorem 1.2.
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