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Abstract

In this paper, we give sufficient conditions to get the existence of mild so-
lutions for two classes of first order partial and neutral of perturbed evolution
equations by using the nonlinear alternative of Avramescu for contractions op-
erators in Fréchet spaces, combined with semigroup theory. The solution here is
depending on an infinite delay and is giving on the real half-line.
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1 Introduction

In this paper, we give the existence of mild solutions defined on a semi-infinite
positive real interval J := [0,+∞) for two classes of first order of semilinear functional
and neutral functional perturbed evolution equations with state-dependent delay in a
real separable Banach space (E, | · |) when the delay is infinite.

Firstly, we present some preliminary concepts and results in Section 2 and then in
Section 3 we study the following semilinear functional perturbed evolution equations
with state-dependent delay

y′(t) = A(t)y(t) + f(t, yρ(t,yt)) + h(t, yρ(t,yt)), a.e. t ∈ J, (1)

y0 = φ ∈ B, (2)

where B is an abstract phase space to be specified later, f, h : J×B → E, ρ : J×B → IR
and φ ∈ B are given functions and {A(t)}0≤t<+∞ is a family of linear closed (not
necessarily bounded) operators from E into E that generate an evolution system of
operators {U(t, s)}(t,s)∈J×J for 0 ≤ s ≤ t < +∞.

For any continuous function y and any t ≤ 0, we denote by yt the element of B
defined by yt(θ) = y(t + θ) for θ ∈ (−∞, 0]. Here yt(·) represents the history of the
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state from time t ≤ 0 up to the present time t. We assume that the histories yt belong
to B.

Then, in Section 4, we consider the following neutral functional differential per-
turbed evolution equation with infinite delay

d

dt
[y(t)− g(t, yρ(t,yt))] = A(t)y(t) + f(t, yρ(t,yt)) + h(t, yρ(t,yt)), a.e. t ∈ J, (3)

y0 = φ ∈ B, (4)

where A(·), f and φ are as in problem (1)− (2) and g : J ×B → E is a given function.
Finally in Section 5, two examples are given to illustrate the abstract theory.

Differential delay equations, or functional differential equations, have been used
in modeling scientific phenomena for many years. Often, it has been assumed that
the delay is either a fixed constant or is given as an integral in which case is called
distributed delay; see for instance the books [20, 23, 30], and the papers [15, 19].

An extensive theory is developed for evolution equations [3, 4, 17]. Uniqueness and
existence results have been established for different evolution problems in the papers
by Baghli and Benchohra in [2], [8]–[14]. Recently, Wang et al. look for nonlinear
fractional impulsive evolution equations in [26]–[29].

However, complicated situations in which the delay depends on the unknown func-
tions have been proposed in modeling in recent years. These equations are frequently
called equations with state-dependent delay. Existence results and among other things
were derived recently for functional differential equations when the solution is depend-
ing on the delay on a bounded interval for impulsive problems. We refer the reader to
the papers by Abada et al. [1], Ait Dads and Ezzinbi [5], Anguraj et al. [6], Hernández
et al. [21] and Li et al. [24].

Our main purpose in this paper is to extend some results from the cite literature
devoted to state-dependent delay and those considered on a bounded interval for the
evolution problems studied in [14]. We provide sufficient conditions for the existence of
mild solutions on a semiinfinite interval J = [0,+∞) for the two classes of first order
semilinear functional and neutral functional perturbed evolution equations with state-
dependent delay (1) − (2) and (3) − (4) with state-dependent delay when the delay is
infinite using the nonlinear alternative of Avramescu for contractions maps in Fréchet
spaces [7], combined with semigroup theory [4, 25].

2 Preliminaries

We introduce notations, definitions and theorems which are used throughout this paper.
Let C([0,+∞);E) be the space of continuous functions from [0,+∞) into E and

B(E) be the space of all bounded linear operators from E into E, with the usual
supremum norm

‖N‖B(E) = sup { |N(y)| : |y| = 1 }, N ∈ B(E).
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A measurable function y : [0,+∞) → E is Bochner integrable if and only if |y| is
Lebesgue integrable. (For the Bochner integral properties, see the classical monograph
of Yosida [31]).

Let L1([0,+∞), E) denotes the Banach space of measurable functions y : [0,+∞)→
E which are Bochner integrable normed by

‖y‖L1 =

∫ +∞

0

|y(t)| dt.

In this paper, we will employ an axiomatic definition of the phase space B introduced
by Hale and Kato in [19] and follow the terminology used in [22]. Thus, (B, ‖ · ‖B) will
be a seminormed linear space of functions mapping (−∞, 0] into E, and satisfying the
following axioms.

(A1) If y : (−∞, b) → E, b > 0, is continuous on [0, b] and y0 ∈ B, then for every
t ∈ [0, b) the following conditions hold

(i) yt ∈ B;

(ii) There exists a positive constant H such that |y(t)| ≤ H‖yt‖B;

(iii) There exist two functions K(·),M(·) : R+ → R+ independent of y with K
continuous and M locally bounded such that

‖yt‖B ≤ K(t) sup{ |y(s)| : 0 ≤ s ≤ t}+M(t)‖y0‖B.

(A2) For the function y in (A1), yt is a B−valued continuous function on [0, b].

(A3) The space B is complete.

Denote Kb = sup{K(t) : t ∈ [0, b]} and Mb = sup{M(t) : t ∈ [0, b]}.

Remark 2.1 1. (ii) is equivalent to |φ(0)| ≤ H‖φ‖B for every φ ∈ B.

2. Since ‖·‖B is a seminorm, two elements φ, ψ ∈ B can verify ‖φ−ψ‖B = 0 without
necessarily φ(θ) = ψ(θ) for all θ ≤ 0.

3. From the equivalence of in the first remark, we can see that for all φ, ψ ∈ B such
that ‖φ− ψ‖B = 0 : We necessarily have that φ(0) = ψ(0).

We now indicate some examples of phase spaces. For other details we refer, for instance
to the book by Hino et al. [22].
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Example 2.2 Let

BC denote the space of bounded continuous functions defined from (−∞, 0] to E;

BUC denote the space of bounded uniformly continuous functions defined from (−∞, 0]
to E;

C∞ :=

{
φ ∈ BC : lim

θ→−∞
φ(θ) exist in E

}
;

C0 :=

{
φ ∈ BC : lim

θ→−∞
φ(θ) = 0

}
, endowed with the uniform norm

‖φ‖ = sup{|φ(θ)| : θ ≤ 0}.

We have that the spaces BUC, C∞ and C0 satisfy conditions (A1) − (A3). However,
BC satisfies (A1), (A3) but (A2) is not satisfied.

Example 2.3 The spaces Cg, UCg, C
∞
g and C0

g .
Let g be a positive continuous function on (−∞, 0]. We define

Cg :=

{
φ ∈ C((−∞, 0], E) :

φ(θ)

g(θ)
is bounded on (−∞, 0]

}
;

C0
g :=

{
φ ∈ Cg : lim

θ→−∞

φ(θ)

g(θ)
= 0

}
, endowed with the uniform norm

‖φ‖ = sup

{
|φ(θ)|
g(θ)

: θ ≤ 0

}
.

Then we have that the spaces Cg and C0
g satisfy conditions (A3). We consider the

following condition on the function g.

(g1) For all a > 0, sup
0≤t≤a

sup

{
g(t+ θ)

g(θ)
: −∞ < θ ≤ −t

}
<∞.

They satisfy conditions (A1) and (A2) if (g1) holds.

Example 2.4 The space Cγ.
For any real constant γ, we define the functional space Cγ by

Cγ :=

{
φ ∈ C((−∞, 0], E) : lim

θ→−∞
eγθφ(θ) exists in E

}
endowed with the following norm

‖φ‖ = sup{eγθ|φ(θ)| : θ ≤ 0}.

Then in the space Cγ the axioms (A1)− (A3) are satisfied.
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Definition 2.5 A function f : J ×B → E is said to be an L1 -Carathéodory function
if it satisfies

(i) for each t ∈ J the function f(t, .) : B → E is continuous ;

(ii) for each y ∈ B the function f(., y) : J → E is measurable ;

(iii) for every positive integer k there exists hk ∈ L1(J ;R+) such that

|f(t, y)| ≤ hk(t) for all ‖y‖B ≤ k and almost every t ∈ J.

In what follows, we assume that {A(t)}t≥0 is a family of closed densely defined linear
unbounded operators on the Banach space E and with domain D(A(t)) independent
of t.

Definition 2.6 A family {U(t, s)}(t,s)∈∆ of bounded linear operators U(t, s) : E → E
where (t, s) ∈ ∆ := {(t, s) ∈ J × J : 0 ≤ s ≤ t < +∞} is called an evolution system if
the following properties are satisfied:

1. U(t, t) = I where I is the identity operator in E,

2. U(t, s) U(s, τ) = U(t, τ) for 0 ≤ τ ≤ s ≤ t < +∞,

3. U(t, s) ∈ B(E) the space of bounded linear operators on E, where for every
(t, s) ∈ ∆ and for each y ∈ E, the mapping (t, s)→ U(t, s) y is continuous.

More details on evolution systems and their properties could be found on the books
of Ahmed [3], Engel and Nagel [16] and Pazy [25].

Let X be a Fréchet space with a family of semi-norms {‖ · ‖n}n∈N. We assume that
the family of semi-norms {‖ · ‖n} verifies

‖x‖1 ≤ ‖x‖2 ≤ ‖x‖3 ≤ ... for every x ∈ X.

Let Y ⊂ X, we say that Y is bounded if for every n ∈ N, there exists Mn > 0 such
that

‖y‖n ≤Mn for all y ∈ Y.
To X we associate a sequence of Banach spaces {(Xn, ‖ · ‖n)} as follows : For every

n ∈ N, we consider the equivalence relation ∼n defined by : x ∼n y if and only if
‖x − y‖n = 0 for x, y ∈ X. We denote Xn = (X|∼n , ‖ · ‖n) the quotient space, the
completion of Xn with respect to ‖ · ‖n. To every Y ⊂ X, we associate a sequence
{Y n} of subsets Y n ⊂ Xn as follows : For every x ∈ X, we denote [x]n the equivalence
class of x of subset Xn and we defined Y n = {[x]n : x ∈ Y }. We denote Y n, intn(Y n)
and ∂nY

n, respectively, the closure, the interior and the boundary of Y n with respect
to ‖ · ‖n in Xn.

The following definition is the appropriate concept of contraction in X.
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Definition 2.7 [18] A function f : X → X is said to be a contraction if for each
n ∈ N there exists kn ∈ (0, 1) such that

‖f(x)− f(y)‖n ≤ kn ‖x− y‖n for all x, y ∈ X.

The corresponding nonlinear alternative result is as follows

Theorem 2.8 (Nonlinear Alternative of Avramescu, [7]). Let X be a Fréchet space
and let A,B : X −→ X be two operators satisfying

(1) A is a compact operator.

(2) B is a contraction.

Then one of the following statements holds

(Av1) The operator A+B has a fixed point;

(Av2) The set {x ∈ X, x = λA(x) + λB(x
λ
)} is unbounded for λ ∈]0, 1[.

3 Semilinear evolution equations

Before stating and proving the main result, we give first the definition of a mild solution
of the semilinear perturbed evolution problem (1)− (2).

Definition 3.1 We say that the function y : R→ E is a mild solution of (1)− (2) if
y(t) = φ(t) for all t ≤ 0 and y satisfies the following integral equation

y(t) = U(t, 0) φ(0) +

∫ t

0

U(t, s) [f(s, yρ(s,ys)) + h(s, yρ(s,ys))] ds a.e. t ∈ J. (5)

Set
R(ρ−) = {ρ(s, φ) : (s, φ) ∈ J × B, ρ(s, φ) ≤ 0}.

We always assume that ρ : J × B → R is continuous. Additionally, we introduce the
following hypothesis

(Hφ) The function t→ φt is continuous fromR(ρ−) into B and there exists a continuous
and bounded function Lφ : R(ρ−)→ (0,∞) such that

‖φt‖B ≤ Lφ(t)‖φ‖B for every t ∈ R(ρ−).

Remark 3.2 The condition (Hφ), is frequently verified by continuous and bounded
functions. For more details, see for instance [22].

We will need to introduce the following hypotheses which are assumed thereafter

EJQTDE, 2013 No. 59, p. 6



(H0) U(t, s) is compact for t− s > 0.

(H1) There exists a constant M̂ ≥ 1 such that

‖U(t, s)‖B(E) ≤ M̂ for every (t, s) ∈ ∆.

(H2) There exists a function p ∈ L1
loc(J ;R+) and a continuous nondecreasing function

ψ : R+ → (0,∞) and such that

|f(t, u)| ≤ p(t) ψ(‖u‖B) for a.e. t ∈ J and each u ∈ B.

(H3) For all R > 0, there exists lR ∈ L1
loc(J ;R+) such that

|f(t, u)− f(t, v)| ≤ lR(t) ‖u− v‖B

for all u, v ∈ B with ‖u‖B ≤ R and ‖v‖B ≤ R.

(H4) There exists a function η ∈ L1(J,R+) such that

|h(t, u)− h(t, v)| ≤ η(t) ‖u− v‖B a.e. t ∈ J et ∀u, v ∈ B.

Consider the following space

B+∞ =
{
y : R→ E : y|[0,T ] continuous for T > 0 and y0 ∈ B

}
,

where y|[0,T ] is the restriction of y to the real compact interval [0, T ].

Let us fix τ > 1. For every n ∈ N, we define in B+∞ the semi-norms by

‖y‖n := sup { e−τ L∗
n(t) |y(t)| : t ∈ [0, n] },

where L∗n(t) =

∫ t

0

ln(s) ds , ln(t) = KnM̂ln(t) and ln is the function from (H3).

Then B+∞ is a Fréchet space with those family of semi-norms ‖ · ‖n∈N.

Lemma 3.3 ([21], Lemma 2.4)
If y : (−∞, b]→ E is a function such that y0 = φ, then

‖ys‖B ≤ (Mb + Lφ)‖φ‖B +Kb sup{|y(θ)|; θ ∈ [0,max{0, s}]}, s ∈ R(ρ−) ∪ J,

where Lφ = sup
t∈R(ρ−)

Lφ(t).

Proposition 3.4 By (Hφ), Lemma 3.3 and the property (A1), we have for each t ∈
[0, n] and n ∈ N

‖yρ(t,yt)‖ ≤ Kn|y(t)|+ (Mn + Lϕ) ‖y0‖B
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Theorem 3.5 Assume that (Hφ), (H0) − (H2) and (H4) hold and moreover for all
n ∈ N, we have ∫ +∞

σn

ds

s+ ψ(s)
> KnM̂

∫ n

0

max(p(s); η(s)) ds. (6)

with σn = (Mn+Lφ+KnM̂H)‖φ‖B+KnM̂

∫ n

0

|h(s, 0)| ds. Then the problem (1)−(2)

has a mild solution on (−∞,+∞).

Proof. We transform the problem (1)− (2) into a fixed-point problem. Consider the
operator N : B+∞ → B+∞ defined by

N(y)(t) =



φ(t), if t ∈ R−;

U(t, 0) φ(0) +

∫ t

0

U(t, s) f(s, yρ(s,ys)) ds,

+

∫ t

0

U(t, s) h(s, yρ(s,ys)) ds, if t ∈ J .

Clearly, fixed points of the operator N are mild solutions of the problem (1)− (2).

For φ ∈ B, we will define the function x(.) : R→ E by

x(t) =

{
φ(t), if t ≤ 0;

U(t, 0) φ(0), if t ∈ J.

Then x0 = φ. For each function z ∈ B+∞, set

y(t) = z(t) + x(t)

It is obvious that y satisfies (5) if and only if z satisfies z0 = 0 and

z(t) =

∫ t

0

U(t, s) f(s, zρ(s,zs+xs) + xρ(s,zs+xs)) ds

+

∫ t

0

U(t, s) h(s, zρ(s,zs+xs) + xρ(s,zs+xs)) ds.

Let
B0

+∞ = {z ∈ B+∞ : z0 = 0} .

Define the operators F,G : B0
+∞ → B0

+∞ by

F (z)(t) =

∫ t

0

U(t, s) f(s, zρ(s,zs+xs) + xρ(s,zs+xs)) ds
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and

G(z)(t) =

∫ t

0

U(t, s) h(s, zρ(s,zs+xs) + xρ(s,zs+xs)) ds.

Obviously the operator N having a fixed point is equivalent to F + G having one, so
it turns to prove that F +G has a fixed point.

First, show that F is continuous and compact.
Step 1 : First, we show the continuity of F . Let (zn)n∈N be a sequence in B0

+∞ such
that zn → z in B0

+∞. By the hypothesis (H1), we have

|F (zn)(t)− F (z)(t)| ≤
∫ t

0

‖U(t, s)‖B(E) ×

×|f(s, znρ(s,zns+xs) + xρ(s,zns+xs))− f(s, zρ(s,zs+xs) + xρ(s,zs+xs))|ds

≤ M̂

∫ t

0

∣∣f(s, znρ(s,zns+xs) + xρ(s,zns+xs))− f(s, zρ(s,zs+xs) + xρ(s,zs+xs))
∣∣ ds.

Since f is continuous, by dominated convergence theorem of Lebesgue, we get

|F (zn)(t)− F (z)(t)| −→ 0 if n −→ +∞

So F is continuous.

Step 2 : Show that F transforms any bounded of B0
+∞ in a bounded set. For each

d > 0, there exists a positive constant ξ such that for all z ∈ Bd = {z ∈ B0
+∞ : ‖z‖n ≤

d} we get ‖F (z)‖n ≤ ξ. Let z ∈ Bd, from assumption (H1) and (H2), we have for each
t ∈ [0, n]

|F (z)(t)| ≤
∫ t

0

‖U(t, s)‖B(E) |f(s, zρ(s,zs+xs) + xρ(s,zs+xs))| ds

≤ M̂

∫ t

0

p(s) ψ(‖zρ(s,zs+xs) + xρ(s,zs+xs)‖B) ds.

From (Hφ), Lemma 3.3 and assumption (A1), we have for each t ∈ [0, n]

‖zρ(s,zs+xs) + xρ(s,zs+xs)‖B ≤ ‖zρ(s,zs+xs)‖B + ‖xρ(s,zs+xs)‖B
≤ Kn|z(s)|+ (Mn + Lφ)‖z0‖B

+Kn|x(s)|+ (Mn + Lφ)‖x0‖B
≤ Kn|z(s)|+Kn‖U(s, 0)‖B(E)|φ(0)|+ (Mn + Lφ)‖φ‖B
≤ Kn|z(s)|+KnM̂ |φ(0)|+ (Mn + Lφ)‖φ‖B

Using (ii), we get

‖zρ(s,zs+xs) + xρ(s,zs+xs)‖B ≤ Kn|z(s)|+KnM̂H‖φ‖B + (Mn + Lφ)‖φ‖B
≤ Kn|z(s)|+ (Mn + Lφ +KnM̂H)‖φ‖B
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Set cn := (Mn + Lφ +KnM̂H)‖φ‖B and δn := Knd+ cn. Then

‖zρ(s,zs+xs) + xρ(s,zs+xs)‖B ≤ Kn|z(s)|+ cn ≤ δn. (7)

Using the nondecreasing character of ψ, we get for each t ∈ [0, n]

|F (z)(t)| ≤ M̂ψ(δn)‖p‖L1 := %.

So there is a positive constant % such that ‖F (z)‖n ≤ %. Then F (Bd) ⊂ B%.

Step 3 : F maps bounded sets into equicontinuous sets of B0
+∞. We consider Bd

as in Step 2 and we show that F (Bd) is equicontinuous. Let τ1, τ2 ∈ J with τ1 < τ2

and z ∈ Bd.

|F (z)(τ2)− F (z)(τ1)| ≤
∫ τ1

0

‖U(τ2, s)− U(τ1, s)‖B(E) ×

×|f(s, zρ(s,zs+xs) + xρ(s,zs+xs))| ds

+

∫ τ2

τ1

‖U(τ2, s)‖B(E) |f(s, zρ(s,zs+xs) + xρ(s,zs+xs))| ds.

Then by (7) and the nondecreasing character of ψ, we get

|F (z)(τ2)− F (z)(τ1)| ≤ ψ(δn)

∫ τ1

0

‖U(τ2, s)− U(τ1, s)‖B(E) p(s) ds

+M̂ψ(δn)

∫ τ2

τ1

p(s) ds.

Note that |F (z)(τ2) − F (z)(τ1)| −→ 0 as τ2 − τ1 −→ 0 independently of z ∈ Bd. The
right-hand of the above inequality tends to zero as τ2 − τ1 −→ 0, since U(t, s) is a
strongly continuous operator and the compactness of U(t, s) for t > s, implies the
continuity in the uniform operator topology (see [4, 25]). As a consequence of Steps 1
to 3 together with the Arzelà-Ascoli theorem it suffices to show that the operator F
maps Bd into a precompact set in E.

Let t ∈ J be fixed and let ε be a real number satisfying 0 < ε < t. For z ∈ Bd, we
define

Fε(z)(t) = U(t, t− ε)
∫ t−ε

0

U(t− ε, s)Cuz+x(s) ds.

Since U(t, s) is a compact operator, the set Zε(t) = {Fε(z)(t) : z ∈ Bd} is pre-compact
in E for every ε,0 < ε < t. Moreover, using the definition of w, we get

|F(z)(t)− Fε(z)(t)| ≤
∫ t

t−ε
‖U(t, s)‖B(E) |f(s, zρ(s,zs+xs) + xρ(s,zs+xs))| ds

Therefore the set Z(t) = {F (z)(t) : z ∈ Bd} is totally bounded. So we deduce
from Steps 1, 2 and 3 that F is a compact operator.
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Step 4 : G is a contraction. Let z, z ∈ B0
+∞. By the hypotheses (H1) and (H4),

we get for each t ∈ [0, n] and n ∈ N

|G(z)(t)−G(z)(t)| ≤
∫ t

0

‖U(t, s)‖B(E) ×

× | h(s, zρ(s,zs+xs) + xρ(s,zs+xs))− h(s, zρ(s,zs+xs) + xρ(s,zs+xs)) | ds

≤ M̂

∫ t

0

η(s) ‖zρ(s,zs+xs) + xρ(s,zs+xs) − zρ(s,zs+xs) − xρ(s,zs+xs)‖B ds

≤ M̂

∫ t

0

η(s) ‖zρ(s,zs+xs) − zρ(s,zs+xs)‖B ds.

Use the inequality (7), to get

|G(z)(t)−G(z)(t)| ≤
∫ t

0

M̂ Kn η(s) |z(s)− (z)(s)| ds

≤
∫ t

0

[
Ln(s) eτL

∗
n(s)
] [

e−τL
∗
n(s) |z(s)− z(s)|

]
ds

≤
∫ t

0

[
eτ L∗

n(s)

τ

]′
ds ‖z − z‖n

≤ 1

τ
eτ L∗

n(t) ‖z − z‖n.

Therefore

‖G(z)−G(z)‖n ≤
1

τ
‖z − z‖n.

Then the operator G is a contraction for all n ∈ N.

Step 5 : For applying Theorem (2.8), we must check (Av2) : i.e. it remains to
show that the set

Γ =
{
z ∈ B0

+∞ : z = λF (z) + λG
(z
λ

)
for some λ ∈]0, 1[

}
.

is bounded.
Let z ∈ Γ. By (H1)− (H2) and (H4), we have for each t ∈ [0, n]

1

λ
|z(t)| ≤

∫ t

0

‖U(t, s)‖B(E)

∣∣f(s, zρ(s,zs+xs) + xρ(s,zs+xs))
∣∣ ds

+

∫ t

0

‖U(t, s)‖B(E)

∣∣∣∣h(s, zρ(s, zsλ +xs)

λ

)
− h(s, 0) + h(s, 0)

∣∣∣∣ ds
≤ M̂

∫ t

0

p(s) ψ(‖zρ(s,zs+xs) + xρ(s,zs+xs))‖B ds)

+M̂

∫ t

0

η(s)

∥∥∥∥zρ(s, zsλ +xs)

λ

∥∥∥∥
B
ds+ M̂

∫ t

0

|h(s, 0)| ds.
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Use Proposition (3.4) and inequality (7)

1

λ
|z(t)| ≤ M̂

∫ t

0

p(s) ψ(Kn|z(s)|+ cn) ds

+M̂

∫ t

0

η(s)

(
Kn

λ
|z(s)|+ cn

)
ds+ M̂

∫ t

0

|h(s, 0)| ds.

We consider the function u(t) := sup
θ∈[0,t]

|z(θ)|. The nondecreasing character of ψ gives

with the fact that 0 < λ < 1

Kn

λ
u(t) + cn ≤ cn +KnM̂

∫ t

0

p(s) ψ

(
Kn

λ
u(s) + cn

)
ds

+KnM̂

∫ t

0

η(s)

(
Kn

λ
u(s) + cn

)
ds+ M̂

∫ t

0

|h(s, 0)| ds.

Set σn := cn +KnM̂

∫ n

0

|h(s, 0)| ds. Then, we have

Kn

λ
u(t) + cn ≤ σn +KnM̂

∫ t

0

p(s) ψ

(
Kn

λ
u(s) + cn

)
ds

+KnM̂

∫ t

0

η(s)

(
Kn

λ
u(s) + cn

)
ds.

We consider the function µ defined by

µ(t) = sup {Knu(s) + cn : 0 ≤ s ≤ t}, 0 ≤ t ≤ +∞.

Let t? ∈ [0, t] be such that µ(t) = Knu(t?) + cn. From the previous inequality, we have
for all t ∈ [0, n]

µ(t) ≤ σn +KnM̂

∫ t

0

p(s)ψ(µ(s))ds+KnM̂

∫ t

0

η(s)µ(s)ds.

Let us take the right-hand side of the above inequality as v(t). Then, we have

µ(t) ≤ v(t) ∀t ∈ [0, n].

From the definition of v, we have

v(0) = σn and v′(t) = KnM̂ [p(t)ψ(µ(t)) + η(t)µ(t)] a.e. t ∈ [0, n].

Using the nondecreasing character of ψ, we get

v′(t) ≤ KnM̂ [p(t)ψ(v(t)) + η(t)v(t)] a.e. t ∈ [0, n]
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So, using (6) for each t ∈ [0, n], we get∫ v(t)

σn

ds

s+ ψ(s)
≤ KnM̂

∫ t

0

max(p(s); η(s)) ds

≤ KnM̂

∫ n

0

max(p(s); η(s)) ds

<

∫ +∞

cn

ds

s+ ψ(s)
.

Thus, for every t ∈ [0, n], there exists a constant Λn such that v(t) ≤ Λn and hence
µ(t) ≤ Λn. Since ‖z‖n ≤ µ(t), we have ‖z‖n ≤ Λn. This shows that the set Γ is
bounded. Then the statement (Av2) in Theorem 2.8 does not hold. The nonlinear
alternative of Avramescu implies that (Av1) is satisfied, we deduce that the operator
F +G has a fixed point z?. Then y?(t) = z?(t) +x(t), t ∈]−∞,+∞[ is the fixed point
of the operator N which is a mild solution of the problem (1)− (2).

4 Semilinear neutral evolution equations

In this section, we give an existence result for the problem (3) − (4). Firstly we
define the concept of the mild solution for that problem.

Definition 4.1 We say that the function y(·) : R→ E is a mild solution of (3)− (4)
if y(t) = φ(t) for all t ≤ 0 and y satisfies the following integral equation

y(t) = U(t, 0)[φ(0)− g(0, φ)] + g(t, yρ(t,yt)) +

∫ t

0

U(t, s)A(s) g(s, yρ(s,ys)) ds

+

∫ t

0

U(t, s) [f(s, yρ(s,ys)) + h(s, yρ(s,ys))] ds ∀t ∈ J.
(8)

We consider the hypotheses (Hφ), (H0)−(H2) and (H4) and we will need the following
assumptions

(H5) There exists a constant M0 > 0 such that

‖A−1(t)‖B(E) ≤M0 for all t ∈ J.

(H6) There exists a constant 0 < L <
1

M0Kn

, such that

|A(t) g(t, φ)| ≤ L (‖φ‖B + 1) for all t ∈ J and φ ∈ B.

(H7) There exists a constant L∗ > 0 such that

|A(s) g(s, φ)− A(s) g(s, φ)| ≤ L∗ (|s− s|+ ‖φ− φ‖B)

for all s, s ∈ J and φ, φ ∈ B.
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(H8) The function g is completely continuous and for any bounded set Q ⊂ B the set
{t −→ g(t, xρ(t,yt)) : x ∈ Q} is equicontinuous in C(J,E).

Theorem 4.2 Suppose that hypotheses (Hφ), (H0) − (H2), (H4) and (H5) − (H8)
are satisfied and moreover for all n ∈ N, we have∫ +∞

ξn

ds

s+ ψ(s)
>

KnM̂

1−M0LKn

∫ n

0

max(L+ η(s), p(s)) ds (9)

with cn = (Mn + Lφ +KnM̂H)‖φ‖B and

ξn = cn +Kn

(
M̂ + 1

)
M0L+ M̂Ln+M0L

(
cn + M̂

)
‖φ‖B + M̂

∫ n

0

|h(s, 0)| ds

1−M0LKn

.

Then the problem (3)− (4) has a mild solution.

Proof. Consider the operator Ñ : B+∞ → B+∞ defined by

Ñ(y)(t) =



φ(t), if t ∈ R−;

U(t, 0) [φ(0)− g(0, φ)] + g(t, yρ(t,yt))

+

∫ t

0

U(t, s)A(s) g(s, yρ(s,ys)) ds,

+

∫ t

0

U(t, s)
[
f(s, yρ(s,ys)) + h(s, yρ(s,ys))

]
ds if t ∈ J .

Then, fixed points of the operator Ñ are mild solutions of the problem (3)− (4).

For φ ∈ B, we consider the function x(.) : R→ E defined as below by

x(t) =

{
φ(t), if t ≤ 0;

U(t, 0) φ(0), if t ∈ J.

Then x0 = φ. For each function z ∈ B+∞, set

y(t) = z(t) + x(t)

It is obvious that y satisfies (8) if and only if z satisfies z0 = 0 and

z(t) = g(t, zρ(s,zt+xt) + xρ(s,zt+xt))− U(t, 0)g(0, φ)

+

∫ t

0

U(t, s)A(s) g(s, zρ(s,zs+xs) + xρ(s,zs+xs)) ds

+

∫ t

0

U(t, s) f(s, zρ(s,zs+xs) + xρ(s,zs+xs)) ds

+

∫ t

0

U(t, s) h(s, zρ(s,zs+xs) + xρ(s,zs+xs)) ds.
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Let
B0

+∞ = {z ∈ B+∞ : z0 = 0} .

Define the operator F, G̃ : B0
+∞ → B0

+∞ by

F (z)(t) =

∫ t

0

U(t, s) f(s, zρ(s,zs+xs) + xρ(s,zs+xs)) ds

and
G̃(z)(t) = g(t, zρ(s,zt+xt) + xρ(s,zt+xt))− U(t, 0)g(0, φ)

+

∫ t

0

U(t, s)A(s) g(s, zρ(s,zs+xs) + xρ(s,zs+xs)) ds

+

∫ t

0

U(t, s) h(s, zρ(s,zs+xs) + xρ(s,zs+xs)) ds.

Obviously the operator Ñ having a fixed point is equivalent to F + G̃ having one, so
it turns to prove that F + G̃ has a fixed point.

We have shown that the operator F is continuous and compact as in Section 3. It
remains to show that the operator G̃ is a contraction.
Let z, z ∈ B0

+∞. By (H1), (H4), (H5) and (H7), we have for each t ∈ [0, n] and n ∈ N

|G̃(z)(t)− G̃(z)(t)| ≤

≤ |g(t, zρ(t,zt+xt) + xρ(t,zt+xt))− g(t, zρ(t,zt+xt) + xρ(t,zt+xt))|+
∫ t

0

‖U(t, s)‖B(E) ×

×|A(s)[g(s, zρ(s,zs+xs) + xρ(s,zs+xs))− g(s, zρ(s,zs+xs) + xρ(s,zs+xs))]| ds

+

∫ t

0

‖U(t, s)‖B(E) |h(s, zρ(s,zs+xs) + xρ(s,zs+xs))− h(s, zρ(s,zs+xs) + xρ(s,zs+xs))| ds

≤ ‖A−1(t)‖B(E) |A(t)g(t, zρ(t,zt+xt) + xρ(t,zt+xt))− A(t)g(t, zρ(t,zt+xt) + xρ(t,zt+xt))|

+

∫ t

0

M̂ |A(s)g(s, zρ(s,zs+xs) + xρ(s,zs+xs))− A(s)g(s, zρ(s,zs+xs) + xρ(s,zs+xs))| ds

+

∫ t

0

M̂ |h(s, zρ(s,zs+xs) + xρ(s,zs+xs))− h(s, zρ(s,zs+xs) + xρ(s,zs+xs))| ds

≤M0L∗‖zρ(t,zt+xt) − zρ(t,zt+xt)‖B

+

∫ t

0

M̂L∗‖zρ(s,zs+xs) − zρ(s,zs+xs)‖B ds

+

∫ t

0

M̂η(s)‖zρ(s,zs+xs) − zρ(s,zs+xs)‖B ds.

Use the inequality (7) to get

|G̃(z)(t)− G̃(z)(t)| ≤ M0L∗Kn|z(t)− z(t)|+
∫ t

0

M̂L∗Kn|z(s)− z(s)| ds
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+

∫ t

0

M̂Kn η(s)|z(s)− z(s)| ds

≤ M0L∗Kn|z(t)− z(t)|+
∫ t

0

M̂Kn[L∗ + η(s)]|z(s)− z(s)| ds.

Set ln(t) = M̂Kn[L∗ + η(t)] for the family of semi-norms {‖ · ‖n∈N}, then

|G̃(z)(t)− G̃(z)(t)| ≤ M0L∗Kn |z(t)− z(t)|+
∫ t

0

ln(s) |z(s)− z(s)|ds

≤
[
M0L∗Kn e

τ L∗
n(t)
] [

e−τ L∗
n(t) |z(t)− z(t)|

]
+

∫ t

0

[
ln(s) eτ L∗

n(s)
] [

e−τ L∗
n(s) |z(s)− z(s)|

]
ds

≤ M0L∗Kn e
τ L∗

n(t) ‖z − z‖n +

∫ t

0

[
eτ L∗

n(s)

τ

]′
ds ‖z − z‖n

≤
[
M0L∗Kn +

1

τ

]
eτ L∗

n(t) ‖z − z‖n.

Therefore

‖G̃(z)− G̃(z)‖n ≤
[
M0L∗Kn +

1

τ

]
‖z − z‖n.

Let us fix τ > 0 and assume that

M0L∗Kn +
1

τ
< 1,

then the operator G̃ is a contraction for all n ∈ N.

For applying Theorem (2.8), we must check (Av2) i.e. it remains to show that the
set

Γ̃ =
{
z ∈ B0

+∞ : z = λF (z) + λG̃
(z
λ

)
for 0 < λ < 1

}
is bounded.

Let z ∈ Γ̃. By (H1)− (H2), we have for each t ∈ [0, n]

|z(t)|
λ

≤ ‖A−1(t)‖|A(t)g(t, zρ(t,zt+xt) + xρ(t,zt+xt))|+ M̂‖A−1(0)‖|A(0)g(0, φ)|

+M̂

∫ t

0

|A(s)g(s, zρ(s,zs+xs) + xρ(s,zs+xs))| ds

+M̂

∫ t

0

p(s) ψ
(∥∥zρ(s,zs+xs) + xρ(s,zs+xs)

∥∥) ds
+M̂

∫ t

0

∣∣∣∣h(s, zρ(s, zsλ +xs)

λ
+ xρ(s, zsλ +xs)

)
− h(s, 0)

∣∣∣∣ ds
+M̂

∫ n

0

|h(s, 0)| ds.
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Using assumptions (H5)− (H6) and (H4)

|z(t)|
λ

≤ M0L(‖zρ(t,zt+xt) + xρ(t,zt+xt)‖B + 1) + M̂M0L(‖φ‖B + 1)

+M̂L

∫ t

0

(‖zρ(s,zs+xs) + xρ(s,zs+xs)‖B + 1) ds

+M̂

∫ t

0

p(s) ψ(‖zρ(s,zs+xs) + xρ(s,zs+xs)‖B) ds

+M̂

∫ t

0

η(s)

∥∥∥∥zρ(s, zsλ +xs)

λ
+ xρ(s, zsλ +xs)

∥∥∥∥
B
ds

+M̂

∫ t

0

|h(s, 0)| ds

≤
(
M̂ + 1

)
M0L+ M̂Ln+ M̂M0L‖φ‖B + M̂

∫ n

0

|h(s, 0)| ds

+M0L‖zρ(t,zt+xt) + xρ(t,zt+xt)‖B

+M̂L

∫ t

0

‖zρ(s,zs+xs) + xρ(s,zs+xs)‖B ds

+M̂

∫ t

0

p(s) ψ(‖zρ(s,zs+xs) + xρ(s,zs+xs)‖B) ds

+M̂

∫ t

0

η(s)

∥∥∥∥zρ(s, zsλ +xs)

λ
+ xρ(s, zsλ +xs)

∥∥∥∥
B
ds.

Use Proposition (3.4) and inequality (7) to get∥∥∥∥zρ(s, zsλ +xs)

λ
+ xρ(s, zsλ +xs)

∥∥∥∥
B
≤ 1

λ

∥∥∥zρ(s, zsλ +xs)

∥∥∥
B

+
∥∥∥xρ(s, zsλ +xs)

∥∥∥
B

≤ Kn

λ
|z(s)|+ Mn + Lφ

λ
‖z0‖B

+Kn|x(s)|+
(
Mn + Lφ

)
‖x0‖B

≤ Kn

λ
|z(s)|+Kn‖U(s, 0)‖B(E)|φ(0)|

+
(
Mn + Lφ

)
‖φ‖B

≤ Kn

λ
|z(s)|+KnM̂H‖φ‖B +

(
Mn + Lφ

)
‖φ‖B

≤ Kn

λ
|z(s)|+

(
Mn + Lφ +KnM̂H

)
‖φ‖B.

Hence ∥∥∥∥zρ(s, zsλ +xs)

λ
+ xρ(s, zsλ +xs)

∥∥∥∥
B
≤ Kn

λ
|z(s)|+ cn. (10)
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Use the function u(·) and the nondecreasing character of ψ to get

u(t)

λ
≤

(
M̂ + 1

)
M0L+ M̂Ln+ M̂M0L‖φ‖B + M̂

∫ n

0

|h(s, 0)| ds

+M0L (Knu(t) + cn) + M̂L

∫ t

0

(Knu(s) + cn) ds

+M̂

∫ t

0

p(s) ψ (Knu(s) + cn) ds+ M̂

∫ t

0

η(s)

(
Kn

λ
u(s) + cn

)
ds.

Then

u(t)

λ
≤

(
M̂ + 1

)
M0L+ M̂Ln+M0L

[
Mn + Lφ + M̂(1 +KnH)

]
‖φ‖B

+M̂

∫ n

0

|h(s, 0)| ds+M0L
Kn

λ
u(t) + M̂L

∫ t

0

(
Kn

λ
u(s) + cn

)
ds

+M̂

∫ t

0

p(s) ψ

(
Kn

λ
u(s) + cn

)
ds+ M̂

∫ t

0

η(s)

(
Kn

λ
u(s) + cn

)
ds.

Set

ζn :=
(
M̂ + 1

)
M0L+ M̂Ln+M0L

[
Mn + Lφ + M̂(1 +KnH)

]
‖φ‖B

+M̂

∫ n

0

|h(s, 0)| ds.

So

Kn

λ

(
1−M0LKn

)
u(t) ≤ Knζn +KnM̂

∫ t

0

[L+ η(s)]

(
Kn

λ
u(s) + cn

)
ds

+KnM̂

∫ t

0

p(s) ψ

(
Kn

λ
u(s) + cn

)
ds.

Set ξn := cn +
Knζn

1−M0LKn

. Then

Kn

λ
u(t) + cn ≤ ξn +

KnM̂

1−M0LKn

∫ t

0

[L+ η(s)]

(
Kn

λ
u(s) + cn

)
ds

+
KnM̂

1−M0LKn

∫ t

0

p(s) ψ

(
Kn

λ
u(s) + cn

)
ds.

We consider the function µ defined by

µ(t) = sup

{
Kn

λ
u(s) + cn : 0 ≤ s ≤ t

}
, 0 ≤ t ≤ +∞
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Let t? ∈ [0, t] be such that µ(t) =
Kn

λ
u(t?) + cn. By the previous inequality, we have

for t ∈ [0, n]

µ(t) ≤ ξn +
KnM̂

1−M0LKn

∫ t

0

[L+ η(s)] µ(s) ds+
KnM̂

1−M0LKn

∫ t

0

p(s) ψ (µ(s)) ds.

Let us take the right-hand side of the above inequality as v(t). Then we have

µ(t) ≤ v(t) ∀t ∈ [0, n].

From the definition of v, we get v(0) = ξn and

v′(t) =
KnM̂

1−M0LKn

[L+ η(t)] µ(t) +
KnM̂

1−M0LKn

p(t) ψ (µ(t)) a.e. t ∈ [0, n].

Using the nondecreasing character of ψ we have

v′(t) ≤ KnM̂

1−M0LKn

[L+ η(t)] v(t) +
KnM̂

1−M0LKn

p(t) ψ (v(t)) a.e. t ∈ [0, n].

So using (9) we get for each t ∈ [0, n]

∫ v(t)

ξn

ds

s+ ψ(s)
≤ KnM̂

1−M0LKn

∫ t

0

max(L+ η(s), p(s)) ds

≤ M̂Kn

1−M0LKn

∫ n

0

max(L+ η(s), p(s)) ds

<

∫ +∞

ξn

ds

s+ ψ(s)
.

Thus, for every t ∈ [0, n], there exists a constant Λn such that v(t) ≤ Λn and hence

µ(t) ≤ Λn. Since ‖z‖n ≤ µ(t), we have ‖z‖n ≤ Λn. This shows that the set Γ̃ is
bounded. Then the statement (Av2) in Theorem 2.8 does not hold. The nonlinear
alternative of Avramescu implies that (Av1) is satisfied. We deduce that the operator

F + G̃ has a fixed point z?. Then y?(t) = z?(t) + x(t), t ∈]−∞,+∞[ is a fixed point
of the operator N which is a mild solution of the problem (3)− (4).

5 Examples

To illustrate the previous results, we give in this section two examples.
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Example 1. Consider the partial functional differential equation

∂u

∂t
(t, ξ) =

∂2u(t, ξ)

∂ξ2
+ a0(t, ξ)u(t, ξ)

+

∫ 0

−∞
a1(s− t)u

[
s− ρ1(t)ρ2

(∫ π

0

a2(θ)|u(t, θ)|2dθ
)
, ξ

]
ds

+

∫ 0

−∞
a3(s− t)u

[
s− ρ1(t)ρ2

(∫ π

0

a2(θ)|u(t, θ)|2dθ
)
, ξ

]
ds,

t ≥ 0, ξ ∈ [0, π],

u(t, 0) = u(t, π) = 0, t ≥ 0,

u(θ, ξ) = u0(θ, ξ), −∞ < θ ≤ 0, ξ ∈ [0, π],

(11)

where a0(t, ξ) is a continuous function and is uniformly Hölder continuous in t;
a1, a3 : R− → R and a2 : [0, π] → R, ρi : [0,+∞[→ R are continuous functions
for i = 1, 2.

To study this system, we consider the space E = L2([0, π],R) and the operator
A : D(A) ⊂ E → E given by Aw = w′′ with

D(A) := { w ∈ E : w′′ ∈ E, w(0) = w(π) = 0 }

It is well known that A is the infinitesimal generator of an analytic semigroup {T (t)}t≥0

on E. Furthermore, A has discrete spectrum with eigenvalues −n2, n ∈ N and corre-
sponding normalized eigenfunctions given by

yn(ξ) =

√
2

π
sin(nξ).

In addition, {yn : n ∈ N} is an orthonormal basis of E and T (t)x =
∞∑
n=1

e−n
2t(x, yn)yn

for x ∈ E and t ≥ 0. It follows from this representation that T (t) is compact for every
t > 0 and that ‖T (t)‖ ≤ e−t for every t ≥ 0.

On the domain D(A), we define the operators A(t) : D(A) ⊂ E → E by

A(t)x(ξ) = Ax(ξ) + a0(t, ξ)x(ξ).

By assuming that a0(.) is continuous and that a0(t, ξ) ≤ −δ0 (δ0 > 0) for every
t ∈ R, ξ ∈ [0, π], it follows that the system

u′(t) = A(t)u(t) t ≥ s,

u(s) = x ∈ E,
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has an associated evolution family given by

U(t, s)x(ξ) =

[
T (t− s) exp

(∫ t

s

a0(τ, ξ)dτ

)
x

]
(ξ).

From this expression, it follows that U(t, s) is a compact linear operator and that

‖U(t, s)‖ ≤ e−(1+δ0)(t−s) for every (t, s) ∈ ∆.

Theorem 5.1 Let B = BUC(R−;E) and φ ∈ B. Assume that the condition (Hφ)
holds. Suppose that the functions a1, a3 : R− → R, a2 : [0, π] → R and ρi : R+ −→ R
for i = 1, 2 are continuous. Then there exists a mild solution of (11) on ]−∞,+∞[.

Proof. From the assumptions, we have that

f(t, ψ)(ξ) =

∫ 0

−r
a1(s)ψ(s, ξ)ds,

h(t, ψ)(ξ) =

∫ 0

−r
a3(s)ψ(s, ξ)ds,

ρ(s, ψ) = s− ρ1(s)ρ2

(∫ π

0

a2(θ)|ψ(0, ξ)|2dθ
)
,

are well defined functions, which permit to transform system (11) into the abstract
system (1) − (2). Moreover, the functions f and h are bounded and linear. Now, the
existence of mild solutions can be deduced from a direct application of Theorem 3.5.
From Remark 3.2, we have the following result

Corollary 5.2 Let φ ∈ B be continuous and bounded. Then there exists a mild solution
of (11) on ]−∞,+∞[.

Example 2. Consider the semilinear neutral perturbed evolution equation

∂

∂t

[
u(t, ξ)−

∫ 0

−∞
a3(s− t)u

(
s− ρ1(t)ρ2

(∫ π

0

a2(θ)|u(t, θ)|2dθ
)
, ξ

)
ds

]
=
∂2u(t, ξ)

∂ξ2
+ a0(t, ξ)u(t, ξ)

+

∫ 0

−∞
a1(s− t)u

(
s− ρ1(t)ρ2

(∫ π

0

a2(θ)|u(t, θ)|2dθ
)
, ξ

)
ds

+

∫ 0

−∞
a4(s− t)u

(
s− ρ1(t)ρ2

(∫ π

0

a2(θ)|u(t, θ)|2dθ
)
, ξ

)
ds,

t ≥ 0, ξ ∈ [0, π],

v(t, 0) = v(t, π) = 0, t ≥ 0,

v(θ, ξ) = v0(θ, ξ), −∞ < θ ≤ 0, ξ ∈ [0, π],

(12)

where a4 : R− → R is a continuous function.
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Theorem 5.3 Let B = BUC(R−;E) and φ ∈ B. Assume that the condition (Hφ)
holds. Suppose that the functions a1, a3, a4 : R− → R, a2 : [0, π]→ R and ρi : R+ −→ R
for i = 1, 2 are continuous. Then there exists a mild solution of (12) on ]−∞,+∞[.

Proof. From the assumptions, we have that

f(t, ψ)(ξ) =

∫ 0

−∞
a1(s)ψ(s, ξ)ds,

g(t, ψ)(ξ) =

∫ 0

−∞
a3(s)ψ(s, ξ)ds,

h(t, ψ)(ξ) =

∫ 0

−r
a4(s)ψ(s, ξ)ds,

ρ(s, ψ) = s− ρ1(s)ρ2

(∫ π

0

a2(θ)|ψ(0, ξ)|2dθ
)

are well defined functions, which permit to transform system (12) into the abstract
system (3)− (4). Moreover, the functions f , g and h are bounded and linear. Now, the
existence of mild solutions can be deduced from a direct application of Theorem 4.2.

From Remark 3.2, we have the following result

Corollary 5.4 Let φ ∈ B be continuous and bounded. Then there exists a mild solution
of (12) on ]−∞,+∞[.
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