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SPATIAL ANALYTICITY OF SOLUTIONS OF A NONLOCAL

PERTURBATION OF THE KDV EQUATION

BORYS ALVAREZ SAMANIEGO

IMECC-UNICAMP, C.P. 6065, 13083-970, Campinas, SP, Brazil.

Abstract. Let H denote the Hilbert transform and η ≥ 0. We show that if
the initial data of the following problems ut +uux +uxxx +η(Hux +Huxxx) =

0, u(·, 0) = φ(·) and vt+
1

2
(vx)2+vxxx+η(Hvx+Hvxxx) = 0, v(·, 0) = ψ(·) has

an analytic continuation to a strip containing the real axis, then the solution
has the same property, although the width of the strip might diminish with
time. When η > 0 and the initial data is complex-valued we prove local well-
posedness of the two problems above in spaces of analytic functions, which
implies the constancy over time of the radius of the strip of analyticity in the
complex plane around the real axis.

1. Introduction

We are interested in studying spatial analyticity of solutions of the following

problems:

ut + uux + uxxx + η(Hux + Huxxx) = 0, u(·, 0) = φ(·), (1)

vt +
1

2
(vx)

2 + vxxx + η(Hvx + Hvxxx) = 0, v(·, 0) = ψ(·), (2)

where H denotes the Hilbert transform given by Hf(x) = 1
πP

∫ ∞
−∞

f(y)
y−xdy for f ∈

S(R) the Schwartz space of rapidly decreasing C∞(R) functions, P represents the

principal value of the integral and the parameter η is an arbitrary nonnegative

number. It is known that (̂Hf)(ξ) = isgn(ξ)f̂(ξ), for all f ∈ Hs(R), where

sgn (ξ) =

{
−1, ξ < 0,

1, ξ > 0.

Equation (1) was derived by Ostrovsky et.al. (see [9] for more details) to describe

the radiational instability of long non-linear waves in a stratified fluid caused by

internal wave radiation from a shear layer; the fourth term corresponds to the wave

amplification and the fifth term represents damping. It models the motion of a

homogeneous finite-thickness fluid layer with density δ1, which moves at a constant

speed U , slipping over an immobile infinitely deep stratified fluid with a density

δ2 > δ1. The upper boundary of the layer is supposed to be rigid and the lower

one is contiguous to the infinitely deep fluid. Here u(x, t) is the deviation of the
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interface from its equilibrium position. Let us remark that some numerical results

for periodic and solitary-wave solutions of equation (1) were obtained by Bao-Feng

Feng and T. Kawahara [4].

The Cauchy problems associated to (1) and (2) were studied in [1], where it

was proved that problems (1) and (2) are globally well-posed in Hs(R) for s ≥ 1,

considering real-valued solutions.

In this paper we are interested in proving that if the initial condition of the

problem (1) (resp. (2)) is analytic and has an analytic continuation to a strip

containing the real axis, then the solution of (1) (resp. (2)) has the same property.

Section 2 is devoted to studying the case when the solutions are real-valued on

the real axis at any time, and η ≥ 0. Hence, the results obtained in [1] about

the initial value problems associated to (1) and (2) will be helpful. We use the

method developed by Kato&Masuda [8] which estimates certain families of Liapunov

functions for the solutions, to prove global spatial analyticity of the solutions, but

the width of the strip might decrease with time.

Section 3 shows that problems (1) and (2) admit a Gevrey-class analysis. For

η > 0, we prove local well-posedness of problem (1) (resp. (2)) in Xσ,s for σ > 0

and s > 1/2 (resp. s > 3/2); here, the initial data can be complex-valued. So, if the

initial data of problem (1) (resp. (2)) is analytic and has an analytic continuation

to a strip containing the real axis, then the solution of (1) (resp. (2)) has the same

property, maintaining the width of the strip in time. It should be mentioned that

it was recently proved by Grujić&Kalisch [5] a result on local well-posedness of the

generalized KdV equation (KdV is an abbreviation for Korteweg-de Vries) in spaces

of analytic functions on a strip containing the real axis without shrinking the width

of the strip in time; their proof uses space-time estimates and Bourgain-type spaces.

Here we do not make use of Bourgain spaces, we mainly use some properties of the

Semigroup associated to the linear part of problem (1), namely Lemmas 3.1 and 3.2,

to prove local well-posedness of problem (1) in Xσ,s. Moreover, proceeding as in

[2], where Bona&Grujić studied some KdV-type equations, we prove for real-valued

solutions and η ≥ 0 that if the initial state belongs to a Gevrey class, then the

solution of (1) (resp. (2)) remains in this class for all time but the width of the

strip of analyticity may diminish as a function of time.

Finally, in Section 4 we consider η ≥ 0 in (1) and complex-valued initial data

in Xr-spaces for r > 0. Similar as in [6], where analyticity of solutions of the KdV

equation was studied, we use Banach’s fixed point theorem in a suitable function

space in order to find a local solution of problem (1) that is analytic and has an
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analytic extension to a strip around the real axis although the radius of the strip

of analyticity in the complex plane around the real axis may decrease with time.

Notation:

• f̂ = Ff : the Fourier transform of f (F−1 : the inverse of the Fourier transform),

where f̂(ξ) = 1√
2π

∫
e−iξxf(x)dx for f ∈ L1(R).

• ‖ · ‖s, (·, ·)s: the norm and the inner product respectively in Hs(R) (Sobolev

space of order s of L2 type), s ∈ R. ‖f‖2
s ≡

∫
(1 + |ξ|2)s|f̂(ξ)|2dξ.

‖ · ‖ = ‖ · ‖0: the L2(R) norm. (·, ·) denotes the inner product on L2(R).

H∞(R) ≡ ∩Hs(R).

• H: the Hilbert transform.

• B(X,Y ): set of bounded linear operators on X to Y . If X = Y we write B(X).

‖ · ‖B(X,Y ): the operator norm in B(X,Y ).

• S(r) = {x+ iy ∈ C; x ∈ R, |y| < r}, for r > 0.

A(r): the set of all analytic functions f on S(r) such that f ∈ L2(S(r′)) for each

0 < r′ < r and that f(x) ∈ R for x ∈ R.

• A = (I − ∂2
x)

1/2, Xσ,s = D(AseσA) the domain of the operator AseσA.

• Lp = {f ; f is measurable on R, ‖f‖Lp < ∞}, where ‖f‖Lp =
( ∫

|f(x)|pdx
)1/p

if

1 ≤ p < +∞, and ‖f‖L∞ = ess supx∈R
|f(x)|, f is an equivalence class.

• Lr = {f ∈ L2; ‖f‖2
Lr

= (f, f)Lr = (cosh(2rξ)f̂ , f̂) < +∞}.
• Xr =

{
f∈L2; ‖f‖2

Xr
= (f, f)Xr =

∑1
j=0(ξ

2j(cosh(2rξ)+ξ sinh(2rξ))f̂ , f̂) <∞
}
.

• Yr =
{
f ∈ L2; ∂xf ∈ L2, ‖f‖2

Yr
= (f, f)Yr =

∑1
j=0(ξ

2j+2 cosh(2rξ)f̂ , f̂) < +∞
}
.

• ‖f‖pm,p =
∑m

j=0 ‖∂jxf‖
p
Lp , 1 ≤ p < +∞. ‖f‖m,∞ =

∑m
j=0 ‖∂jxf‖∞.

• Hp(r): the analytic Hardy space on the strip S(r).

Hp(r) = {F ;F is analytic on S(r), ‖F‖Hp(r) = sup|y|<r ‖F (· + iy)‖Lp <∞}.
• Hm,p(r) = {F ∈ Hp(r); ‖F‖pHm,p(r) =

∑m
j=0 ‖∂jzF‖

p
Hp(r) <∞}.

• C(I ;X) : set of continuous functions on the interval I into the Banach space X .

• Cω(I ;X) : the set of weakly continuous functions from I to X .

• <(z): the real part of the complex number z.

2. Real-valued initial data.

We deduce in this Section global analyticity (in space variables) of solutions of

problems (1) and (2) when the initial data and the corresponding solution take real

values on the real axis and supposing moreover that the initial data has an analytic

continuation that is analytic in a strip containing the real axis. We will use the fact

that problems (1) and (2) are globally well possed in Hs(R) for s ≥ 1, when the

solution of the two previously mentioned problems take real values on the real axis
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at any time. More precisely we have the following two theorems (for real-valued

solutions) which can be found in [1].

Theorem 2.1. Let s ≥ 1. If φ ∈ Hs(R), then for each η > 0 there exists a

unique u = uη ∈ C([0,∞);Hs(R)) solution to the problem (1) such that ∂tu ∈
C([0,∞);Hs−3(R)).

Proof. See Theorem 4.2 in [1]. �

Theorem 2.2. Let s ≥ 1. If ψ ∈ Hs(R), then for each η > 0 there exists a

unique v = vη ∈ C([0,∞);Hs(R)) solution to the problem (2) such that ∂tv ∈
C([0,∞);Hs−3(R)).

Proof. See Theorem 4.1 in [1]. �

Theorem 2.3 (resp. 2.4) states that if the initial state has an analytic continu-

ation that belongs to A(r0) for some r0 > 0 then the solution u(t) (resp. v(t)) of

problem (1) (resp. (2)), with η ≥ 0, also has an analytic continuation belonging to

A(r1) for all t ∈ [0, T ], where r1 might decrease with time. Theorem 2.3, below,

is an application of the method developed by Kato&Masuda in [8] to study global

analyticity (in space variables) of some partial differential equations. Similar as in

the proof of Theorem 2 in [8] we consider Hm+5(R) ≡ Z ⊂ X ≡ Hm+2(R) and

Φσ;m(v) ≡ 1
2‖v‖2

σ,2;m defined on an appropriate open set O ⊂ Z, where

‖f‖2
σ,s;m ≡

m∑

j=0

e2jσ

(j!)2
‖∂jxf‖2

s and ‖f‖2
σ,s ≡

∞∑

j=0

e2jσ

(j!)2
‖∂jxf‖2

s, s ∈ R.

Lemma 2.1. Let F (v) be defined by F (v) ≡ −vvx− vxxx− η(Hvx +Hvxxx). Then

there exist constants c, γ > 0 such that for every v ∈ Hm+5(R),

〈F (v), DΦσ;m(v)〉 ≤ c(η + ‖v‖2)Φσ;m(v) + γ
√

Φσ;m(v)∂σΦσ;m(v). (3)

Proof. It is not difficult to see that DΦσ;m(v) =
∑m

j=0
e2jσ

(j!)2 (−∂x)jA4∂jxv, where

A = (1 − ∂2
x)

1/2. Then

〈F (v), DΦσ;m(v)〉 =
m∑

j=0

e2jσ

(j!)2
[
−

(
∂jx(v∂xv), ∂

j
xv

)
2
− η

(
∂jx(H∂xv + H∂3

xv), ∂
j
xv

)
2

]

=

m∑

j=0

e2jσ

(j!)2
[
−

(
v∂j+1
x v, ∂jxv

)
2
−Qj(v) − η

(
∂jx(H∂xv + H∂3

xv), ∂
j
xv

)
2

]
,

where Qj(v) =
∑j
k=1

(
j
k

)(
∂kxv∂

j−k+1
x v, ∂jxv

)
2
, and Q0(v) ≡ 0. By using Kato’s

inequality (K) in the Appendix we have that

|(v∂j+1
x v, ∂jxv)2| ≤ c‖∂xv‖1‖∂jxv‖2

2 ≤ c‖v‖2‖∂jxv‖2
2.
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Moreover

−
(
∂jx(H∂xv + H∂3

xv), ∂
j
xv

)
2

=

∫
(1 + ξ2)2ξ2j(|ξ| − |ξ|3)|v̂(ξ)|2dξ

≤
∫

(1 + ξ2)2ξ2j |v̂(ξ)|2dξ = ‖∂jxv‖2
2. (4)

Then

〈F (v), DΦσ;m(v)〉 ≤ c(‖v‖2 + η)Φσ;m(v) −
m∑

j=0

e2jσ

(j!)2
Qj(v). (5)

Now, using the Schwarz inequality and the formula ‖fg‖2 ≤ γ
(
‖f‖2‖g‖1+‖f‖1‖g‖2

)

we get

|Qj(v)| ≤ γ

j∑

k=1

(
j

k

)
‖∂jxv‖2

(
‖∂kxv‖1‖∂j−k+1

x v‖2 + ‖∂kxv‖2‖∂j−k+1
x v‖1

)
. (6)

We denote as in [8], bj ≡ ejσ

j! ‖∂jxv‖2, B
2 ≡ ∑m

j=0 b
2
j = 2Φσ;m(v) and B̃2 ≡

∑m
j=1 jb

2
j = ∂σΦσ;m(v). By using (6) it follows, as a particular case of Lemma

3.1 in [8], that

m∑

j=0

e2jσ

(j!)2
|Qj(v)| ≤ γ

m∑

j=1

j∑

k=1

(
bj
bk−1

k
(j − k + 1)bj−k+1 + bjbkbj−k

)

= γ

m∑

k=1

bk−1

k

( m∑

j=k

bj(j − k + 1)bj−k+1

)
+ γ

m∑

k=1

bk
( m∑

j=k

bjbj−k
)

≤ γB̃2
( m∑

k=1

1

k2

)1/2( m∑

k=1

b2k−1

)1/2
+ γBB̃

m∑

k=1

bk√
k

≤ 2γBB̃2 + γBB̃
( m∑

k=1

1

k2

)1/2( m∑

k=1

kb2k
)1/2 ≤ 4γBB̃2. (7)

By replacing the inequality (7) into (5), the Lemma follows. �

Next, we enunciate Lemma 2.4 in [8] and we give, for expository completeness,

a proof of this trivial result.

Lemma 2.2. Let φn ∈ A(r), n = 1, 2, ... be a sequence with ‖φn‖σ,2 bounded, where

eσ < r. If φn → 0 in H∞ as n→ ∞, then ‖φn‖σ′,2 → 0 for each σ′ < σ.

Proof. Let σ′ < σ. ChooseM such that ‖φn‖σ,2 ≤M for all n. Since e2jσ′

(j!)2 ‖∂jxφn‖2
2 ≤

M2

e2j(σ−σ′ ) , it follows, by using the dominated convergence theorem, that

lim
n→∞

‖φn‖2
σ′,2 =

∞∑

j=0

e2jσ
′

(j!)2
( lim
n→∞

‖∂jxφn‖2
2) = 0.

�
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Theorem 2.3. Let η ≥ 0 and T > 0. Let u ∈ C([0, T ];H∞(R)) be a solution

of (1). If u(0) = φ ∈ A(r0) for some r0 > 0, there exists r1 > 0 such that

u ∈ C([0, T ];A(r1)).

Proof. Let us remark that φ ∈ A(r0) implies, by Lemma 2.2 in [8], that φ ∈
H∞(R). So, it follows from Theorem 2.1 and from Corollary 4.7 in [7] that u ∈
C([0, T ];H∞(R)). We proceed as in the proof of Theorem 2 in [8], to prove that

Φσ;m is a Liapunov family for (1) on O = Z = Hm+5(R), considering the functions:

α(r) = γ
√
r, β(r) = c(η + M)r ≡ Kr, for r ≥ 0, where M = maxt∈[0,T ] ‖u(t)‖2,

and γ, c > 0 are constants given by Lemma 2.1, ρ(t) = 1
2‖φ‖2

b,2e
Kt where b < σ0,

eσ0 < r0, and

σ(t) = b−
√

2γ

K
‖φ‖b,2(e

K
2 t − 1), t ∈ [0, T ]. (8)

We have that u(t) ∈ A(eσ(t)), for all t ∈ [0, T ]. Then u(t) ∈ A(r1) for all t ∈ [0, T ],

where r1 = eσ(T ). The continuity of u, as in the proof of Theorem 2 in [8], is a

consequence of Lemma 2.2 above. �

Theorem 2.4. Let η ≥ 0 and T > 0. Let v ∈ C([0, T ];H∞(R)) be a solution

of (2). If v(0) = ψ ∈ A(r0) for some r0 > 0, there exists r1 > 0 such that

v ∈ C([0, T ];A(r1)).

Proof. We remark that u ≡ vx ∈ C([0, T ];H∞(R)) is a solution of (1) with u(0) =

ψ′. Since ψ′ ∈ H∞(R) and ‖ψ′‖σ,0 ≤ ‖ψ‖σ,1 for each σ such that eσ < r0 it

follows, as a consequence of Lemma 2.2 in [8], that ψ′ ∈ A(r0). So, by Theorem

2.3, there exists r1 > 0 such that vx ∈ C([0, T ];A(r1)). Now, since v(t) ∈ H∞(R)

and ‖v(t)‖2
σ,0 ≤ supt∈[0,T ] ‖v(t)‖2+e2σ supt∈[0,T ] ‖u(t)‖2

σ,0 <∞ for each σ such that

eσ < r1 and for all t ∈ [0, T ], it follows that v(t) ∈ A(r1) for all t ∈ [0, T ]. The

continuity of v follows as in the previous Theorem. �

3. Gevrey Class Regularity.

Now, we make a Gevrey-class analysis of problems (1) and (2). Let us remark

that, since each function f ∈ Xσ,s = D(AseσA) with σ > 0 and s ≥ 0, satisfies

‖f‖2
Lσ

≤
∫
e2σ|ξ||f̂(ξ)|2dξ ≤ ‖f‖2

Xσ,s < ∞, it follows from Theorem 1 in [6] that

f has an analytic extension F ∈ H2(σ), where σ > 0 is the radius of the strip of

analyticity in the complex plane around the real axis. Theorem 3.1 (resp. Theorem

3.2) states that problem (1) (resp. (2)), for η > 0 and complex-valued initial data,

is locally well-posed in Xσ,s where σ > 0 is a fixed number and s is a suitable

nonnegative number. Theorem 3.1 (resp. 3.2)) implies that if the initial condition

of problem (1) (resp. (2)) is analytic and has an analytic continuation to a strip
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containing the real axis, then the solution of (1) (resp. (2)) has the same property,

without reducing the width of the strip in time.

For t ≥ 0 and ξ ∈ R, let

Fη(t, ξ) = e(iξ
3+η(|ξ|−|ξ|3))t

Eη(t)f = F
−1(Fη(t, ·)f̂), f ∈ L2(R). (9)

It is not difficult to see that |Fη(t, ξ)| ≤ eηt, for all t ≥ 0 and ξ ∈ R.

Lemma 3.1. Let η > 0. Then (Eη(t))t≥0 is a C0-semigroup on Xσ,s for σ > 0

and s ∈ R. Moreover,

‖Eη(t)‖B(Xσ,s) ≤ eηt. (10)

When η = 0, ‖Eη(t)‖B(Xσ,s) = 1 for all t ≥ 0.

Proof. Similar to the proof of Lemma 2.1 in [1]. �

Lemma 3.2. Let t > 0, λ ≥ 0, η > 0, σ > 0 and s ∈ R be given. Then Eη(t) ∈
B(Xσ,s, Xσ,s+λ). Moreover,

‖Eη(t)φ‖Xσ,s+λ ≤ cλ
[
eηt +

1

(ηt)λ/3
]
‖φ‖Xσ,s , (11)

where φ ∈ Xσ,s and cλ is a constant depending only on λ.

Proof.

‖Eη(t)φ‖2
Xσ,s+λ ≤ cλ

[ ∫
(1 + ξ2)se2σ(1+ξ2)1/2 |Fη(t, ξ)|2|φ̂(ξ)|2dξ

+

∫
ξ2λ(1 + ξ2)se2σ(1+ξ2)1/2

e2ηt(|ξ|−|ξ|3)|φ̂(ξ)|2dξ
]

≤ cλ
[
e2ηt + sup

ξ∈R

ξ2λe−2ηt(|ξ|3−|ξ|)]‖φ‖2
Xσ,s . (12)

On the other hand,

sup
ξ∈R

|ξ|λe−ηt(|ξ|3−|ξ|) = sup
ξ≥0

ξλe−ηt(ξ
3−ξ) ≤

√
2
λ
eηt + cλ

1

(ηt)λ/3
. (13)

The lemma follows immediately from (12) and (13). �

Next theorem proves, without using Bourgain-type spaces, local well-posedness to

problem (1) with η > 0 in Xσ,s for σ > 0, s > 1/2, and complex-valued initial data.

Theorem 3.1. Let η > 0, σ > 0 and s > 1/2 be given. If φ ∈ Xσ,s, then there

exist T = T(s,σ,η,‖φ‖Xσ,s ) > 0 and a unique function u ∈ C([0, T ];Xσ,s) satisfying

the integral equation

u(t) = Eη(t)φ− 1

2

∫ t

0

Eη(t− t′)∂x(u
2(t′))dt′. (14)
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Proof. Let M , T > 0 be fixed but arbitrary. Let us consider the map

Af(t) = Eη(t)φ− 1

2

∫ t

0

Eη(t− t′)∂x(f
2(t′))dt′,

defined on the complete metric space

Θs,σ,η(T ) = {f ∈ C([0, T ];Xσ,s); sup
t∈[0,T ]

‖f(t) −Eη(t)φ‖Xσ,s ≤M},

where T > 0 will be suitably chosen later. First, we prove that if f ∈ Θs,σ,η(T ) then

Af ∈ C([0, T ];Xσ,s). Without loss of generality, we may assume that τ > t > 0.

Then

‖Af(t) −Af(τ)‖Xσ,s ≤ ‖(Eη(t) −Eη(τ))φ‖Xσ,s + F (t, τ) +G(t, τ),

where F (t, τ) and G(t, τ) will be estimated below.

G(t, τ) ≡
∫ τ

t

‖Eη(τ − t′)∂x(f
2(t′))‖Xσ,sdt′

≤ cs
η

(M + eηT ‖φ‖Xσ,s)2(eη(τ−t) − 1 +
3

2
(η(τ − t))

2
3 ) → 0 as τ ↓ t,

where in the last inequality we have used Lemmas 3.1 and 3.2 (with λ = 1) and the

fact that Xσ,s is a Banach algebra for s > 1/2 and σ ≥ 0 (Lemma 6 in [2]). Since

τ − t′ ≥ t − t′, for all t′ ∈ [0, t], it follows from Lemma 3.2 and from the triangle

inequality that

‖(Eη(t−t′)−Eη(τ−t′))∂x(f2(t′))‖Xσ,s ≤ cs(M+eηT‖φ‖Xσ,s)2
(
eη(T−t′)+(η(t−t′))− 1

3

)
,

and the expression on the right hand side of the last inequality belongs to L1([0, t], dt′).

The fact that ‖(Eη(t−t′)−Eη(τ−t′))∂x(f2(t′))‖Xσ,s → 0 as τ ↓ t is a consequence of

the dominated convergence theorem. So, by using again the dominated convergence

theorem, we have that

F (t, τ) ≡
∫ t

0

‖(Eη(t− t′) −Eη(τ − t′))∂x(f
2(t′))‖Xσ,sdt′ → 0 as τ ↓ t.

Now, we prove that A(Θs,σ,η(T )) ⊂ Θs,σ,η(T ), for T = T̃ > 0 sufficiently small. Let

u ∈ Θs,σ,η(T ). Then

‖Au(t) −Eη(t)φ‖Xσ,s ≤
∫ t

0

‖Eη(t− t′)∂x(u
2(t′))‖Xσ,sdt′

≤ cs
η

(M + eηT ‖φ‖Xσ,s)2h(T ), (15)

where h(T ) ≡ eηT − 1 + 3
2 (ηT )2/3. By choosing T = T̃ > 0 sufficiently small, the

right hand side of (15) is less than M . Finally , we claim that there exists T̂ ∈ (0, T̃ ]
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such that A is a contraction on Θs,σ,η(T̂ ). Let t ∈ [0, T̃ ], u, v ∈ Θs,σ,η(T̃ ). Then

‖Au(t) −Av(t)‖Xσ,s ≤ c1

∫ t

0

(
eη(t−t

′) +
1

(η(t− t′))1/3
)
‖∂x(u2(t′) − v2(t′))‖Xσ,s−1dt′

≤ cs(M + eηt‖φ‖Xσ,s) sup
t′∈[0,T̃ ]

‖u(t′) − v(t′)‖Xσ,s

·
∫ t

0

(
eη(t−t

′) +
1

(η(t− t′))1/3
)
dt′

≤ cs
η

(M + eηT̃ ‖φ‖Xσ,s)h(T̃ ) sup
t′∈[0,T̃ ]

‖u(t′) − v(t′)‖Xσ,s .

So, by choosing T̂ ∈ (0, T̃ ] such that cs

η (M+eηT̂‖φ‖Xσ,s)h(T̂ ) < 1, the claim follows.

Hence A has a unique fixed point u ∈ Θs,σ,η(T̂ ), which satisfies (14). Uniqueness

of the solution u ∈ C([0, T̂ ];Xσ,s) follows from Proposition 3.2 in [1], which implies

uniqueness of the solution in the class C([0, T̂ ];Hs(R)) for s > 1/2. �

Proposition 3.1. Problem (1) is equivalent to the integral equation (14). More

precisely, if u ∈ C([0, T ];Xσ,s), s > 1/2 is a solution of (1) then u satisfies

(14). Reciprocally, if u ∈ C([0, T ];Xσ,s), s > 1/2 is a solution of (14) then

u ∈ C1([0, T ];Xσ,s−3) and satisfies (1).

Proof. Similar to the proof of Proposition 3.1 in [1]. However, here we use Lemmas

3.1 and 3.2. �

Theorem 3.2. Let η > 0, σ > 0 and s > 3/2 be given. Let ψ ∈ Xσ,s. Then there

exist T = T(s,σ,η,‖ψ‖Xσ,s) > 0 and a unique v ∈ C([0, T ];Xσ,s) solution of (2).

Proof. Since ψ ∈ Xσ,s, it follows that φ ≡ ψ′ ∈ Xσ,s−1. By Theorem 3.1 and Propo-

sition 3.1, there exist T = T(s,σ,η,‖ψ‖Xσ,s) > 0 and a unique u ∈ C([0, T ];Xσ,s−1)

satisfying (14) and (1). Let us define

v(t) ≡ Eη(t)ψ − 1

2

∫ t

0

Eη(t− t′)u2(t′)dt′, t ∈ [0, T ]. (16)

It follows easily from (16) and from the uniqueness of the solution of (14) that

∂xv(t) = u(t). Since u ∈ C([0, T ];Xσ,s−1), it follows from Lemmas 3.1 and 3.2 that

v ∈ C([0, T ];Xσ,s). Now, by similar calculations as in the proof of Proposition 3.1

in [1], we have that v ∈ C1([0, T ];Xσ,s−3) and satisfies (2). �

Theorems 3.3 and 3.4, below, consider the case of real-valued solutions (on the

real axis) to problems (1) and (2) respectively, for η ≥ 0. So, Theorems 2.1 and 2.2

will be required again. The following theorem is proved similarly to Theorem 11

in [2], where the rate of decrease of the uniform radius of analyticity for KdV-type

equations of the form ut +G(u)ux − Lux = 0 was also studied, where u = u(x, t),
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for x, t ∈ R, G is a function that is analytic at least in a neighborhood of zero in C,

but real-valued on the real axis, and L is a homogeneus Fourier multiplier operator

defined by L̂u(ξ) = |ξ|µû(ξ), for some µ > 0. In the case of problem (1) we have

that L̂u(ξ) = [ξ2 − ηi(sgn(ξ) − ξ|ξ|)]û(ξ).

Theorem 3.3. Let η ≥ 0 and T > 0. Suppose that φ ∈ Xσ0,s, for some σ0 > 0

and s > 5/2. Suppose moreover that φ(x) ∈ R for x ∈ R. Then the solution u

of problem (1) satisfies u ∈ C([0, T ];Xσ(T ),s), where σ(t) is a positive monotone

decreasing function given by (24).

Proof. Let η, T, σ0, and s be as in the hypothesis of the theorem. Let r ≡ s−1 > 3/2.

By the Remark at the end of this Section we have that φ ∈ A(σ0). So, by using

Lemma 2.2 in [8], we have that φ ∈ H∞(R). Then u ∈ C([0, T ];Hs(R)), which

follows from Theorem 2.1 and from Corollary 4.7 in [7]. Let v ≡ ux, then

vt + v2 + vxxx + η(Hvx + Hvxxx) + uvx = 0, v(0) = φ′. (17)

Let σ ∈ C1([0, T ]; R) be a positive function such that σ′ < 0 and σ(0) = σ0. Then

1

2

d

dt
‖v(t)‖2

Xσ(t),r−σ′(t)‖v(t)‖2
Xσ(t),r+1/2 = <

∫
(1+ξ2)re2σ(t)(1+ξ2)1/2

∂tv̂(t, ξ)v̂(t, ξ)dξ.

It follows from the last expression and from (17) that

1

2

d

dt
‖v(t)‖2

Xσ(t),r − σ′(t)‖v(t)‖2
Xσ(t),r+1/2 ≤ I1 + I2 + η‖v(t)‖2

Xσ(t),r , (18)

where {
I1 ≡ |(Areσ(t)Av2(t), Areσ(t)Av(t))|,
I2 ≡ |(Areσ(t)A(uvx)(t), A

reσ(t)Av(t))|.
I1 and I2 are particular cases of the corresponding ones in [2], taking G(u) = u. For

the sake of completeness we estimate them here. Since r > 1/2, by using Lemmas

6 and 9 in [2], we have that

I1 ≤ cr‖Areσ(t)Av(t)‖3 ≤ cr‖Arv(t)‖3 + c̃rσ(t)‖Ar+1/3eσ(t)Av(t)‖3

≤ cr‖Arv(t)‖3 + c̃rσ(t)‖Areσ(t)Av(t)‖‖Ar+1/2eσ(t)Av(t)‖2. (19)

Since r > 3/2, by using Lemma 10 in [2], we obtain

I2 ≤ cr‖Ar+1u(t)‖‖Arv(t)‖2 + c̃rσ(t)‖Ar+1eσ(t)Au(t)‖‖Ar+1/2eσ(t)Av(t)‖2. (20)

Since u ∈ C([0, T ];Hs(R)), it follows that ‖Ar+1u(t)‖ ≤ c(r,T ). Moreover

‖Ar+1eσ(t)Au(t)‖2 =

∫
(1 + ξ2)re2σ(t)(1+ξ2)1/2 |û(ξ, t)|2dξ + ‖Areσ(t)Av(t)‖2

≤ e2
√

2σ0‖u(t)‖2
r + 2‖Areσ(t)Av(t)‖2 ≤ c(r,T,σ0) + 2‖Areσ(t)Av(t)‖2, (21)
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where c(r,T,σ0) is a positive constant depending only on r, T and σ0. Replacing the

last inequalities into (20) and since v ∈ C([0, T ];Hr(R)), we get

I2 ≤ c(r,T ) + c̃rσ(t)
(
c(r,T,σ0) +

√
2‖Areσ(t)Av(t)‖

)
‖Ar+1/2eσ(t)Av(t)‖2. (22)

Let us remark that c(r,T ) and c(r,T,σ0) are positive, continuous, non-decreasing func-

tions of the variable T ∈ [0,+∞). Now, by using (19) and (22) into (18), we obtain

1

2

d

dt
‖v(t)‖2

Xσ(t),r − σ′(t)‖v(t)‖2
Xσ(t),r+1/2

≤ c(r,T ) + c(r,T,σ0)σ(t)
(
1 + ‖v(t)‖Xσ(t),r

)
‖v(t)‖2

Xσ(t),r+1/2 + η‖v(t)‖2
Xσ(t),r .

Then

d

dt
‖v(t)‖2

Xσ(t),r + 2
(
− σ′(t) − c(r,T,σ0)σ(t)(1 + ‖v(t)‖Xσ(t),r )

)
‖v(t)‖2

Xσ(t),r+1/2

≤ c(r,T ) + 2η‖v(t)‖2
Xσ(t),r . (23)

Inequality (23) implies that v(t) ∈ Xσ(t),r for all t ∈ [0, T ], where

σ(t) = σ0e
−Kt, (24)

K = c(r,T,σ0)(1+ c(r,T,σ0,φ)e
ηT ), and c(r,T,σ0,φ) =

(
‖Areσ0Aφ′‖2 + c(r,T )T

)1/2
. More

precisely we have that

‖v(t)‖Xσ(t),r ≤ c(r,T,σ0,φ)e
ηT , t ∈ [0, T ]. (25)

Now, we will prove assertion (25). In fact let

T ∗ ≡ sup{T > 0; ∃!u ∈ C([0, T ];Xσ(T ),s) solution of (1), sup
t∈[0,T ]

‖u(t)‖Xσ(t),s <∞}.

We claim that T ∗ = +∞. Suppose by contradiction that T ∗ < ∞. It follows from

Theorem 3.1, Proposition 3.1 and Theorem 1 in [5] (for η = 0) that T ∗ > 0. Let

T̃ < T ∗. We have that

sup
t∈[0,T̃ ]

‖v(t)‖Xσ(t),r ≤ sup
t∈[0,T̃ ]

‖u(t)‖Xσ(t),s ≡M(T̃ ) ≡M.

By choosing σ(t) = σ0e
−K̃t for t ∈ [0, T̃ ], where K̃ ≡ c(r,T̃ ,σ0)(1 +M), we have that

−σ′(t) − c(r,T̃ ,σ0)σ(t)(1 + ‖v(t)‖Xσ(t),r ) = σ(t)c(r,T̃ ,σ0)(M − ‖v(t)‖Xσ(t),r ) ≥ 0,

for all t ∈ [0, T̃ ]. So, it follows from (23) that

d

dt
‖v(t)‖2

Xσ(t),r ≤ c(r,T̃ ) + 2η‖v(t)‖2
Xσ(t),r ,

for all t ∈ [0, T̃ ]. Now, Gronwall´s inequality implies that ‖v(t)‖Xσ(t),r ≤ c(r,T̃ ,σ0,φ)e
ηt,

for all t ∈ [0, T̃ ], where c(r,T̃ ,σ0,φ) ≡ (‖φ′‖2
Xσ0,r +c(r,T̃ )T̃ )1/2 is a continuous, positive,

non-decreasing function of T̃ ∈ [0,∞). So, we can replace above the upper bound

M by c(r,T̃ ,σ0,φ)e
ηT̃ and take σ(t) = σ0e

−Kt, K ≡ c(r,T̃ ,σ0)(1 + c(r,T̃ ,σ0,φ)e
ηT̃ ), for

t ∈ [0, T̃ ] . Since c(r,T̃ ,σ0) and c(r,T̃ ,σ0,φ) are continuous, non-decreasing functions of
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T̃ ∈ [0,∞), we can choose σ(t) = σ0e
−K̂t, where K̂ ≡ c(r,T∗,σ0)(1 + c(r,T∗,σ0,φ)e

ηT∗

)

for all t ∈ [0, T ∗], and applying again the local theory we obtain a contradiction. Fi-

nally, it follows from (21) and (25) that u(t) ∈ Xσ(t),s ⊂ Xσ(T ),s for all t ∈ [0, T ]. �

Theorem 3.4. Let η ≥ 0 and T > 0. Suppose that ψ ∈ Xσ0,s, for some σ0 > 0

and s > 7/2. Suppose moreover that ψ(x) ∈ R for x ∈ R. Then the solution v

of problem (2) satisfies v ∈ C([0, T ];Xσ(T ),s), where σ(t) is a positive monotone

decreasing function given by (24).

Proof. Since ψ′ ∈ Xσ0,s−1, and s − 1 > 5/2, it follows from Theorem 3.3 that

u ≡ vx ∈ C([0, T ];Xσ(T ),s−1), where σ is given by (24). Making similar calculations

to (21), we see that v(t) ∈ Xσ(t),s for all t ∈ [0, T ]. Finally, since

‖v(t) − v(τ)‖2
Xσ(T ),s ≤ e2

√
2σ(T )‖v(t) − v(τ)‖2

s−1 + ‖u(t) − u(τ)‖2
Xσ(T ),s−1 ,

it follows that v ∈ C([0, T ];Xσ(T ),s). �

Remark: For r > 0, we have




Xr,s ⊂ Lr, if s ≥ 0.
Xr,s ⊂ Xr, if s ≥ 3/2.
Xr ⊂ Lr.
If f ∈ Lr, and f(x) ∈ R for x ∈ R, then f ∈ A(r).

(26)

The first statement above was already proved at the beginning of this Section. The

second part in (26) follows from the inequality ‖f‖2
Xr

≤ 4‖f‖2
Xr,s for s ≥ 3/2. The

fact that Xr ⊂ Lr is obvious. Finally, suppose that f ∈ Lr and f(x) ∈ R for x ∈ R;

then we already know (see the first paragraph of this Section) that f has an analytic

extension F ∈ H2(r); moreover, for every 0 < r′ < r we have
∫ r′

−r′

∫ +∞

−∞
|F (x+ iy)|2dxdy ≤

∫ r′

−r′

(
sup
|y|<r′

∫ +∞

−∞
|F (x+ iy)|2dx

)
dy ≤ 2r‖F‖2

H2(r).

4. Analyticity of Local Solutions of (1) in Xr-Spaces.

In this section we show that if the initial data φ of (1), with η ≥ 0, is analytic

and has an analytic continuation to a strip containing the real axis, then there exists

a T > 0 such that the solution u(t) of (1) has the same property for all t ∈ [0, T ],

but the width of the strip may decrease as a function of time. Similar to the proof

of Theorem 2 in [6], we establish in Theorem 4.1 existence and analyticity of the

solution of problem (1) simultaneously including the case when the initial condition

is complex-valued on the real axis, more precisely when φ ∈ Xσ0 for some σ0 > 0.

The following lemma, which states a close relation between spaces Xr and Yr, will

be mainly used to prove that u ∈ Cω([0, T ];Xσ(T )) in Theorem 4.1.
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Lemma 4.1. Yr is a dense subset of Xr, for r > 0.

Proof. Let f ∈ Yr. We have that
∫

cosh(2rξ)|f̂(ξ)|2dξ ≤ cosh(2r)‖f‖2 +

∫

|ξ|>1

cosh(2rξ)|f̂(ξ)|2dξ

≤ cosh(2r)(‖f‖2 + ‖f‖2
Yr

),∫
ξ sinh(2rξ)|f̂(ξ)|2dξ ≤ sinh(2r)‖f‖2 +

∫

|ξ|>1

ξ2 cosh(2rξ)|f̂(ξ)|2dξ

≤ cosh(2r)(‖f‖2 + ‖f‖2
Yr

),

and similarly
∫
ξ3 sinh(2rξ)|f̂(ξ)|2dξ ≤ cosh(2r)(‖f‖2 + ‖f‖2

Yr
). So, using the last

three inequalities, it is not difficult to prove that

‖f‖2
Xr

≤ 4 cosh(2r)(‖f‖2 + ‖f‖2
Yr

). (27)

It follows from the last inequality that Yr ⊂ Xr. Now, let us consider the set

L2,0(R)=
{
g∈L2(R); ∃K>0, |ĝ(ξ)| ≤ K a.e. in R, ĝ(ξ) = 0 a.e. in {ξ; |ξ| > K}

}
.

Let g ∈ L2,0(R), then
∑1
j=0

∫
ξ2j+2 cosh(2rξ)|ĝ(ξ)|2dξ ≤ (K2+K4) cosh(2rK)‖g‖2,

so g ∈ Yr. Now we will prove that L2,0(R) is a dense set in Xr. Let f be an element

of Xr. For each n ∈ N, take fn ∈ L2,0(R) given by

f̂n(ξ) =

{
f̂(ξ), if |ξ| ≤ n and |f̂(ξ)| ≤ n
0, otherwise.

It follows easily from the definition of fn that |f̂n(ξ)| ≤ |f̂(ξ)|, for all n ∈ N and

ξ ∈ R. Moreover, f̂n(ξ) → f̂(ξ) as n → ∞, for all ξ ∈ R. So, by the dominated

convergence theorem, we have that ‖fn − f‖Xr → 0 as n→ ∞. This concludes the

proof. �

Lemma 4.2. (i.) Suppose that F ∈ H2,2(r). Let f be the trace of F on the real

line. Then f ∈ Yr and

‖f‖Yr ≤
√

2‖F‖H2,2(r). (28)

(ii.) Conversely, suppose that f ∈ Yr. Then f has an analytic extension F ∈
H2,2(r) and

‖F‖H2,2(r) ≤
√

10 cosh(2r)(‖f‖+ ‖f‖Yr). (29)

Proof. (i.) Since F ∈ H2,2(r), we see that ∂zF, ∂
2
zF ∈ H2(r). Then, by using

Theorem 1 in [6], we have that f ′, f ′′ ∈ Lr and moreover

‖f‖2
Yr

= ‖f ′‖2
Lr

+ ‖f ′′‖2
Lr

≤ 2(‖∂zF‖2
H2(r) + ‖∂2

zF‖2
H2(r)) ≤ 2‖F‖2

H2,2(r).
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(ii.) By Lemma 4.1, Yr ⊂ Xr. So, it follows from Lemma 2.1 in [6] that

f has an analytic extension F on S(r) such that ‖∂zF‖H1,2(r) ≤
√

2‖f‖Yr and

‖F‖H1,2(r) ≤
√

2‖f‖Xr . Now, using the last inequalities, we have that

‖F‖2
H2,2(r) = ‖F‖2

H1,2(r) + ‖∂2
zF‖2

H2(r) ≤ ‖F‖2
H1,2(r) + ‖∂zF‖2

H1,2(r)

≤ 2(‖f‖2
Xr

+ ‖f‖2
Yr

) ≤ 10 cosh(2r)(‖f‖2 + ‖f‖2
Yr

),

where in the last inequality we have used (27). �

Lemma 4.3. Let r > 0. Suppose that F,G ∈ H2,2(r). Then FG ∈ H2,2(r) and

‖FG‖H2,2(r) ≤ c‖F‖H2,2(r)‖G‖H2,2(r). (30)

Proof. Using Leibniz’s rule and Sobolev’s inequality (‖G‖H∞(r) ≤ c‖G‖H1,2(r)) we

have that

‖∂2
z (FG)‖H2(r) ≤ ‖∂2

zF‖H2(r)‖G‖H∞(r) + 2‖∂zF‖H∞(r)‖∂zG‖H2(r)

+‖F‖H∞(r)‖∂2
zG‖H2(r).

≤ c‖F‖H2,2(r)‖G‖H2,2(r).

Moreover, by Lemma 2.3 in [6], we have that ‖FG‖H1,2(r) ≤ c‖F‖H1,2(r)‖G‖H1,2(r).

Since ‖FG‖2
H2,2(r) = ‖FG‖2

H1,2(r) +‖∂2
z(FG)‖2

H2(r), the proof of the Lemma follows

from the last two inequalities. �

Lemma 4.4 and Corollary 4.1, below, are particular cases of Lemma 2.4 and its

Corollary in Hayashi [6] respectively.

Lemma 4.4. There exists a polynomial ã of which coefficients are all nonnegative

with the following property: If r > 0 and f, g, v ∈ Xr ∩ Yr, then

|(f∂xf−g∂xg, v)Xr | ≤ ã(‖f‖Xr , ‖g‖Xr)
(
‖f‖Yr‖f−g‖Xr+‖f−g‖Yr

)(
‖v‖Xr +‖v‖Yr

)
.

Corollary 4.1. There exists a polynomial ã1 with nonnegative coefficients such that

if f, v ∈ Xr ∩ Yr, then

|(f∂xf, v)Xr | ≤ ã1(‖f‖Xr)‖f‖Yr

(
‖v‖Xr + ‖v‖Yr

)
. (31)

Now, we state the main theorem of this Section.

Theorem 4.1. Let η ≥ 0. If φ ∈ Xσ0 for some σ0 > 0, then there exist a T =

T (‖φ‖Xσ0
, η, σ0) > 0 and a positive monotone decreasing function σ(t) satisfying

σ(0) = σ0 and such that (1) has a unique solution u ∈ Cω([0, T ];Xσ(T )). When

η = 0, u ∈ C([0, T ];Xσ(T )).
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Proof. Let η ≥ 0, σ0 > 0, and φ ∈ Xσ0 . Let σ(t) = σ0e
−At/σ0 , where the positive

constant A will be conveniently chosen later. For T > 0, consider the space

B(T ) =
{
f : [0, T ]×R 7→ C; ‖f‖2

B(T ) = sup
0≤t≤T

‖f(t)‖2
Xσ(t)

+A

∫ T

0

‖f(t)‖2
Yσ(t)

dt < +∞
}

and

Bρ(T ) = {f ∈ B(T ); ‖f‖B(T ) ≤ ρ}.

Let ρ = 4‖φ‖Xσ0
. For v ∈ Bρ(T ), we define the mapping M by u = Mv, where u

is the solution of the linearized problem
{
∂tu+ ∂3

xu+ η(H∂xu+ H∂3
xu) = −v∂xv

u(0) = φ.
(32)

More precisely u can be obtained as follows. Take the Fourier transform to (32),

then

∂tû(t, ξ) − iξ3û(t, ξ) + η(−|ξ| + |ξ|3)û(t, ξ) = −v̂vx(t, ξ).

Now, integrating the last expression between 0 and t, it follows that

û(t, ξ) = e(iξ
3+η(|ξ|−|ξ|3))tφ̂(ξ) −

∫ t

0

e(iξ
3+η(|ξ|−|ξ|3))(t−τ)v̂vx(τ, ξ)dτ, (33)

where the last integral is well defined, since

∫ t

0

|v̂vx(τ, ξ)|dτ =

∫ t

0

∣∣(v̂(τ) ∗ v̂x(τ)
)
(ξ)

∣∣dτ =

∫ t

0

∣∣
∫
v̂(τ, ξ − ω)ωv̂(τ, ω)dω

∣∣dτ

≤
∫ t

0

‖v(τ)‖‖v(τ)‖1dτ ≤ ρ2t,

and in the last inequality we have used the fact that

‖v(τ)‖1 ≤ ‖v(τ)‖Xσ(τ)
≤ ‖v‖B(T ) ≤ ρ.

Let us choose A, T > 0 such that

e−AT/σ0 >
1

2
. (34)

Let v ∈ Bρ(T ). It will be proved that u = Mv ∈ Bρ(T ), for suitably chosen

T,A > 0. Now, it is not difficult to see that

d

dt
‖u(t)‖2

Xσ(t)
= 2σ′(t)

1∑

j=0

∫
ξ2j

(
ξsinh(2σ(t)ξ) + ξ2cosh(2σ(t)ξ)

)
|û(t, ξ)|2dξ

+2<
1∑

j=0

∫
ξ2j

(
cosh(2σ(t)ξ) + ξsinh(2σ(t)ξ)

)
∂tû(t, ξ)û(t, ξ)dξ.
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Taking the Fourier transform to (32), multiplying both sides of the obtained equa-

tion by ξ2j
(
cosh(2σ(t)ξ)+ ξsinh(2σ(t)ξ)

)
û(t, ξ), integrating with respect to ξ, sum-

ming the terms for j = 0, 1 and finally taking the real part we get

1

2

d

dt
‖u(t)‖2

Xσ(t)
− σ′(t)

1∑

j=0

∫
ξ2j

(
ξsinh(2σ(t)ξ) + ξ2cosh(2σ(t)ξ)

)
|û(t, ξ)|2dξ

+η

1∑

j=0

∫
ξ2j

(
cosh(2σ(t)ξ) + ξsinh(2σ(t)ξ)

)
(−|ξ| + |ξ|3)|û(t, ξ)|2dξ

= −<(vvx, u)Xσ(t)
.

Since σ′(t) = −Ae−
At
σ0 and |ξ| − |ξ|3 ≤ 1, for all ξ ∈ R, it follows that

1

2

d

dt
‖u(t)‖2

Xσ(t)
+Ae−

At
σ0 ‖u(t)‖2

Yσ(t)
≤ −<(vvx, u)Xσ(t)

+ η‖u(t)‖2
Xσ(t)

.

Using (34) and Corollary 4.1, it follows from the last inequality that

1

2

d

dt
‖u(t)‖2

Xσ(t)
+
A

2
‖u(t)‖2

Yσ(t)
≤ a(ρ)‖v(t)‖Yσ(t)

(‖u(t)‖Xσ(t)
+‖u(t)‖Yσ(t)

)+η‖u(t)‖2
Xσ(t)

,

where a(·) is a polynomial with nonnegative coefficients. Now integrating the last

inequality from 0 to t we get

sup
0≤t≤T

‖u(t)‖2
Xσ(t)

+A

∫ T

0

‖u(t)‖2
Yσ(t)

dt ≤ 2
[
‖φ‖2

Xσ0
+ 2a(ρ)

( ∫ T

0

‖v(t)‖2
Yσ(t)

dt
)1/2

·
[( ∫ T

0

‖u(t)‖2
Xσ(t)

dt
)1/2

+
( ∫ T

0

‖u(t)‖2
Yσ(t)

dt
)1/2]

+ 2η

∫ T

0

‖u(t)‖2
Xσ(t)

dt
]
.

Then,

‖u‖2
B(T ) ≤ ρ2

8
+

4ρa(ρ)√
A

(√
T +

1√
A

)
‖u‖B(T ) + 4ηT‖u‖2

B(T )

≤ ρ2

8
+

1

2

[4ρa(ρ)√
A

(√
T +

1√
A

)]2
+ (

1

2
+ 4ηT )‖u‖2

B(T ).

By choosing T > 0 small enough such that

ηT <
1

12
, (35)

we have that

‖u‖2
B(T ) ≤

(3

4
+

48a2(ρ)

A

(√
T +

1√
A

)2)
ρ2.

Now we take A, T > 0 such that

a(ρ)√
A

(√
T +

1√
A

)
<

1

8
√

3
. (36)

So, choosing A, T > 0 such that (34)-(36) are satisfied, it follows that u = Mv ∈
Bρ(T ).

Now let us prove that the mapping M is a contraction, defined from Bρ(T ) into
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itself. Let v1, v2 ∈ Bρ(T ), w = Mv1 −Mv2 = u1 − u2, where u1(0) = u2(0) = φ.

Then,

∂tŵ(t, ξ) − iξ3ŵ(t, ξ) + η(−|ξ| + |ξ|3)ŵ(t, ξ) = F(−v1∂xv1 + v2∂xv2)(t, ξ).

Multiplying both sides of the last equation by ξ2j
(
cosh(2σ(t)ξ)+ξsinh(2σ(t)ξ)

)
ŵ(t, ξ),

integrating in ξ, summing the terms for j = 0, 1 and taking the real part we obtain

d

dt
‖w(t)‖2

Xσ(t)
+A‖w(t)‖2

Yσ(t)
≤ −2<(v1∂xv1 − v2∂xv2, w)Xσ(t)

+ 2η‖w(t)‖2
Xσ(t)

≤ 2ã(ρ, ρ)
(
‖v1(t)‖Yσ(t)

‖v1 − v2‖B(T ) + ‖v1(t) − v2(t)‖Yσ(t)

)

·
(
‖w(t)‖Xσ(t)

+ ‖w(t)‖Yσ(t)

)
+ 2η‖w(t)‖2

Xσ(t)
,

where the last inequality is a consequence of Lemma 4.4 and ã(·, ·) is a polynomial

with nonnegative coefficients. Integrating the last expression on [0, t] and applying

the Cauchy Schwarz inequality, we get

‖w‖2
B(T ) ≤ 4ã(ρ, ρ)

[
‖v1 − v2‖B(T )

( ∫ T

0

‖v1(t)‖2
Yσ(t)

dt
) 1

2 +
( ∫ T

0

‖v1(t) − v2(t)‖2
Yσ(t)

dt
) 1

2
]

·
[( ∫ T

0

‖w(t)‖2
Xσ(t)

dt
) 1

2 +
( ∫ T

0

‖w(t)‖2
Yσ(t)

dt
) 1

2
]
+ 4ηT‖w‖2

B(T )

≤ 4ã(ρ, ρ)√
A

(‖v1‖B(T ) + 1)‖v1 − v2‖B(T )

(√
T +

1√
A

)
‖w‖B(T ) + 4ηT‖w‖2

B(T ).

By using (35) in the last inequality we obtain

‖w‖B(T ) ≤
6ã(ρ, ρ)√

A
(1 + ρ)

(√
T +

1√
A

)
‖v1 − v2‖B(T ).

If we take A, T > 0 such that

6ã(ρ, ρ)√
A

(1 + ρ)
(√

T +
1√
A

)
< 1, (37)

then M is a contraction. So, by choosing A, T > 0 such that (34)-(37) are satisfied,

the mapping M has a unique fixed point u ∈ Bρ(T ) that is the solution of problem

(1). Since ‖u(t)‖Xσ(T )
≤ ‖u(t)‖Xσ(t)

, for all t ∈ [0, T ], then u(t) ∈ Xσ(T ), for all

t ∈ [0, T ].

Now we will prove that u ∈ Cω([0, T ];Xσ(T )). Let t ∈ [0, T ], without loss of

generality we may assume 0′ ≤ t′ < t ≤ T . Since by Lemma 4.1, Yσ(T ) is a dense

subset of Xσ(T ), it is enough to prove that (u(t) − u(t′), f)Xσ(T )
→ 0 as t′ ↑ t,

for all f ∈ Yσ(T ). So, let f be an arbitrary but fixed element of Yσ(T ). Let us

denote by hj(ξ, T ) ≡ ξ2j
(
cosh(2σ(T )ξ)+ ξ sinh(2σ(T )ξ)

)
. First, let us remark that

|û(t, ξ) − û(t′, ξ)| → 0 as t′ ↑ t, for all ξ ∈ R. In fact, by using (33), we have that

û(t, ξ) − û(t′, ξ) =
∑3

j=1 Ij(t, t
′, ξ), where

I1(t, t
′, ξ) ≡

(
Fη(t, ξ) − Fη(t

′, ξ)
)
φ̂(ξ) −→ 0 as t′ ↑ t,
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|I2(t, t′, ξ)| ≡
∣∣
∫ t

t′
Fη(t− τ, ξ)ûux(τ, ξ)dτ

∣∣ ≤ eηT |ξ|
2

∫ t

t′
|û(τ)2(ξ)|dτ

≤ eηT |ξ|
2
√

2π

∫ t

t′
‖u(τ)‖2dτ ≤ ceηT |ξ|‖u‖2

B(T )(t− t′) −→ 0 as t′ ↑ t,

|I3(t, t′, ξ)| ≡
∣∣
∫ t′

0

(
Fη(t− τ, ξ) − Fη(t

′ − τ, ξ)
)
ûux(τ, ξ)dτ

∣∣ −→ 0 as t′ ↑ t,

where the last convergence is a consequence of
∣∣Fη(t−τ, ξ)−Fη(t′−τ, ξ)

∣∣|ûux(τ, ξ)| ≤
2eηT |ûux(τ, ξ)| ∈ L1([0, t], dτ), and the dominated convergence theorem.

On the other hand we have that

|(u(t) − u(t′), f)Xσ(T )
| ≤

1∑

j=0

Ij1(t, t′) + I2(t, t
′) + I3(t, t

′),

where

Ij1(t, t′) ≡
∣∣
∫
hj(ξ, T )(Fη(t, ξ) − Fη(t

′, ξ))φ̂(ξ)f̂(ξ)dξ
∣∣,

which, by the dominated convergence theorem, tends to zero as t′ ↑ t.
Now we estimate I2(t, t

′) defined below. First we see that
∫

|ξ|hj(ξ, T )|f̂(ξ)|2dξ ≤ cosh(2σ(T ))‖f‖2 +

∫

|ξ|>1

|ξ|2j+1 cosh(2σ(T )ξ)|f̂(ξ)|2dξ

+ sinh(2σ(T ))‖f‖2 +

∫

|ξ|>1

|ξ|2j+2 cosh(2σ(T )ξ)|f̂(ξ)|2dξ

≤ e2σ(T )‖f‖2 + 2‖f‖2
Yσ(T)

. (38)

Moreover, for every τ ∈ [0, T ], we have that

‖u(τ)2‖ ≤ sup
x∈R

|u(τ, x)|‖u(τ)‖ ≤ c‖u(τ)‖1‖u(τ)‖ ≤ c‖u(τ)‖2
Xσ(T )

(39)

and

‖u(τ)2‖Yσ(T )
≤

√
2‖U(τ)2‖H2,2(σ(T )) ≤ c‖U(τ)‖2

H2,2(σ(T ))

≤ c(T )
(
‖u(τ)‖2 + ‖u(τ)‖2

Yσ(T )

)
, (40)

where in the last inequalities we have used Lemmas 4.2 and 4.3, and U(τ) is the

analytic extension of u(τ) on S(σ(T )). I2(t, t
′) is given by

I2(t, t
′) ≡

∣∣
1∑

j=0

∫
hj(ξ, T )

∫ t

t′
Fη(t− τ, ξ)ûux(τ, ξ)dτ f̂ (ξ)dξ

∣∣

=
∣∣

1∑

j=0

∫ t

t′

∫
hj(ξ, T )Fη(t− τ, ξ)ûux(τ, ξ)f̂(ξ)dξdτ

∣∣. (41)

EJQTDE, 2005 No. 20, p. 18



The interchange of the integrals in (41) is a consequence of Fubini’s Theorem since
∫ t

t′

∫
hj(ξ, T )|Fη(t− τ, ξ)||ûux(τ, ξ)||f̂(ξ)|dξdτ

≤ eηT

2

∫ t

t′

( ∫
|ξ|hj(ξ, T )|f̂(ξ)|2dξ

)1/2( ∫
|ξ|hj(ξ, T )|û(τ)2(ξ)|2dξ

)1/2
dτ

≤ c(T )(‖f‖+ ‖f‖Yσ(T)
)

∫ T

0

(
‖u(τ)2‖ + ‖u(τ)2‖Yσ(T )

)
dτ

≤ c(T )(‖f‖+ ‖f‖Yσ(T)
)

∫ T

0

(
‖u(τ)‖2

Xσ(T )
+ ‖u(τ)‖2 + ‖u(τ)‖2

Yσ(T )

)
dτ

≤ c(T )(‖f‖+ ‖f‖Yσ(T)
)
(
‖u‖2

B(T )T +
‖u‖2

B(T )

A

)
< +∞, (42)

where the second and third last inequalities were consequence of (38)-(40). So, it

follows from (41) that

I2(t, t
′) =

∣∣
∫ t

t′

(
u(τ)∂xu(τ), g(t, τ)

)
Xσ(T )

dτ
∣∣,

where ĝ(t, τ)(ξ) ≡ Fη(t − τ, ξ)f̂(ξ). Then ‖g(t, τ)‖Xσ(T )
≤ eηT ‖f‖Xσ(T )

and the

same thing for the Yσ(T )-norm. By Corollary 4.1 we have that

I2(t, t
′) ≤

∫ t

t′
ã1(‖u(τ)‖Xσ(T )

)‖u(τ)‖Yσ(T )

(
‖g(t, τ)‖Xσ(T )

+ ‖g(t, τ)‖Yσ(T )

)
dτ

≤ ã1(‖u‖B(T ))e
ηT

(
‖f‖Xσ(T)

+ ‖f‖Yσ(T)

)( ∫ t

t′
‖u(τ)‖2

Yσ(T )
dτ

)1/2√
t− t′,

where ã1 is a polynomial with nonnegative coefficients. Last inequality implies that

I2(t, t
′) tends to zero as t′ ↑ t.

Now we estimate I3(t, t
′), given by

I3(t, t
′) ≡

∣∣
1∑

j=0

∫
hj(ξ, T )

∫ t′

0

(
Fη(t− τ, ξ) − Fη(t

′ − τ.ξ)
)
ûux(τ, ξ)dτ f̂ (ξ)dξ

∣∣

=
∣∣

1∑

j=0

∫ t′

0

∫
hj(ξ, T )

(
Fη(t− τ, ξ) − Fη(t

′ − τ.ξ)
)
ûux(τ, ξ)f̂(ξ)dξdτ

∣∣.

The interchange of the integrals in the last expression was a consequence of Fubini’s

Theorem (similar to (41)). So, by the dominated convergence theorem, we have that

I3(t, t
′) tends to zero as t′ ↑ t since

∣∣hj(ξ, T )
(
Fη(t− τ, ξ) − Fη(t

′ − τ, ξ)
)
ûux(τ, ξ)f̂(ξ)

∣∣

≤ eηThj(ξ, T )|ξ|
∣∣û(τ)2(ξ)

∣∣|f̂(ξ)| ∈ L1(R × [0, t], dξdτ),

the last expression is obtained with similar calculations to (42).

Hence |(u(t) − u(t′), f)Xσ(T )
| → 0 as t′ ↑ t (similarly as t′ ↓ t). Then u ∈

Cω([0, T ];Xσ(T )).
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Finally, when η = 0 we have that u ∈ C([0, T ];Xσ(T )), as it was already

mentioned by Hayashi in Theorem 2 of [6]. In fact in this case, we have that
1
2
d
dt‖u(t)‖2

Xσ(T )
= −<(u(t)∂xu(t), u(t))Xσ(T )

. Integrating the last expression be-

tween t′ ant t and using again Corollary 4.1, we obtain

∣∣‖u(t)‖2
Xσ(T )

− ‖u(t′)‖2
Xσ(T )

∣∣ = 2
∣∣
∫ t

t′
<(u(τ)∂xu(τ), u(τ))Xσ(T )

dτ
∣∣

≤ 2ã1(‖u‖B(T ))
[
‖u‖B(T )

( ∫ t

t′
‖u(τ)‖2

Yσ(T )
dτ

)1/2√
t− t′

+

∫ t

t′
‖u(τ)‖2

Yσ(T )
dτ

]
−→ 0 as t′ ↑ t,

and similarly as t′ ↓ t. SinceXσ(T ) is a Hilbert space, it follows that u ∈ C([0, T ];Xσ(T ))

when η = 0. �

Finally, it should be mentioned that Bona, Grujić and Kalisch (see [3]) have

recently obtained algebraic lower bounds on the rate of decrease in time of the

uniform radius of spatial analyticity for the generalized KdV equation. This raises

a potentially interesting question for future research related to the initial value

problems considered in this paper.

Appendix

Kato’s Inequality: (See [7]).

Let s > 3/2, t ≥ 1. If f and u are real-valued, then

|(f∂xu, u)t| ≤ C
(
‖∂xf‖s−1‖u‖2

t + ‖∂xf‖t−1‖u‖s‖u‖t
)
. (K)
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