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EXISTENCE OF SOLUTIONS TO NONLOCAL AND SINGULAR

VARIATIONAL ELLIPTIC INEQUALITY VIA GALERKIN

METHOD

FRANCISCO JULIO S. A. CORRÊA & SILVANO B. DE MENEZES

Abstract. In this article, we study the existence of solutions for nonlocal
variational elliptic inequality

−M(‖u‖2)∆u ≥ f(x, u)

Making use of the penalized method and Galerkin approximations, we estab-
lish existence theorems for both cases when M is continuous and when M is
discontinuous.

1. Introduction

Let Ω ⊂ R
N be a bounded smooth domain with boundary ∂Ω. Let us consider

the Sobolev spaces L2(Ω), H1
0 (Ω) whose inner products and norms will be denoted

by (, ), |, |, ((, )), ‖, ‖, respectively. We have H1
0 (Ω) ⊂ L2(Ω) dense and continuous.

Then the duals (L2(Ω))′ ⊂ (H1
0 (Ω))′ also dense and continuous. If we identify

L2(Ω) = (L2(Ω))′ we have

H1
0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω),

where H−1(Ω) is the dual of H1
0 (Ω). Throughout this paper, let us represent by K

a closed convex set of L2(Ω), with 0 ∈ K, which has the following property:

(H1) There exists a contraction ρ : R −→ R (e.g., | ρ(λ1) − ρ(λ2) |≤ | λ1 − λ2 |)
with ρ(0) = 0 such that (PKv)(x) = ρ(v(x)),∀ v ∈ L2(Ω), where PK is the projec-
tion operator from L2(Ω) into K.

For example, let us consider K = {v ∈ L2(Ω); a ≤ v(x) ≤ b a.e. in Ω}
where −∞ ≤ a ≤ 0 ≤ b ≤ ∞. We define ρ(λ) as follows

ρ(λ) =






λ for a < λ < b
b for λ ≥ b (if b is finite)
a for λ ≤ a (if a is finite)

In this paper we study some questions related to the existence of solutions for
the nonlocal elliptic variational inequality:

u ∈ K : (−M(‖u‖2)∆u, v) ≥ (f, v) , for all v ∈ K ∩ (H1
0 (Ω) ∩ H2(Ω)) (1.1)

where f ∈ H1
0 (Ω) and M : R → R is a function whose behavior will be stated

later. The main purpose of this work is establishing properties on M under which
EJQTDE, 2005, No. 18, p. 1



problem (1.1), and its nonlinear counterpart, possesses a solution. This inequality
has called our attention because the operator

Lu := M(‖u‖2)∆u

contains the nonlocal term M(‖u‖2) which poses some interesting mathematical
questions. Also the operator L appears in the Kirchhoff equation, which arises in
nonlinear vibrations, namely

utt − M
( ∫

Ω

|∇u|2dx
)
∆u = f(x, u) in Ω × (0, T ),

u = 0 on ∂Ω × (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x).

The mathematical aspects of this model were largely investigated. See, for example,
Arosio-Spagnolo [2], Hazoya-Yamada [11], Lions [16], Pohozhaev [18]. A survey of
the results about the mathematical aspects of Kirchhoff model can be found in
Medeiros-Limaco-Menezes [14]. Unilateral problems for nonlinear operators of the
Kirchhoff type were initially studied by Kludnev [12], Larkin [13], Medeiros-Milla
Miranda [17] among others.
Recently, Alves-Corrêa [1] focused their attention on problem related with (1.1)
in case M(t) ≥ m0 > 0, for all t ≥ 0, where m0 is a constant. Among other
things they studied the above M -linear problem (1.1) where M , besides the strict
positivity mentioned before, satisfies the following assumption:

The function H : R → R with

H(t) = M(t2)t

is monotone and H(R) = R.

In a previous paper, Menezes-Corrêa [8] proved a similar results by allowing M to
attain negative values and M(t) ≥ m0 > 0 only for t large enough. This is possible
thanks to a device explored by Alves-de Figueiredo [3], who use Galerkin method to
attack a non-variational elliptic system. The technique can be conveniently adapted
to problems such as (1.1). In this way we improve substantially the existence result
on the above problem mainly because our assumptions on M are weakened. Indeed,
we may also consider the case in which M possesses a singularity. The methodology
used in our proof consists in transforming, by penalty, the inequality (1.1) into a
family of equations depending of a parameter ε > 0 and apply Galerkin’s method.
In the application of Galerkin’s methods we use the sharp angle lemma(see Lions
[15, p.53]). This paper is organized as follows: Section 2 is devoted to the study
of (1.1) in the continuous case. In Section 3 the inequality (1.1) is studied in case
M possesses a discontinuity. In Section 4 we analyze another type of variational
inequality.

2. The M-linear Problem: Continuous Case

In this section we are concerned with the M -linear problem (1.1) where f ∈
H1

0 (Ω) and M : R → R is a continuous function satisfying
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(M1) There exists a positive number m0 such that M(t) ≥ m0, for all t ≥ 0.

We have

Theorem 2.1. Assume that and (M1) and (H1) hold. Then for any choice of
0 6= f ∈ H1

0 (Ω) the problem (1.1) admits at least one solution.

The proof of Theorem 2.1 is given by the penalty method. In fact, let us represent
by β the operator from L2(Ω) into L2(Ω) defined by β = I − PK , e.g., (βv)(x) =
v(x)−ρ(v(x)) for all v ∈ L2(Ω). The operator β is monotone and Lipschitzian. The
next result can be found in Haraux [10] p. 58.

Lemma 2.2. Let g : R → R be a Lipschitzian and increasing function with g(0) =
0. Then (g(u),−∆u) ≥ 0 for all u ∈ H1

0 (Ω) ∩ H2(Ω).

We have that g(s) = s − ρ(s) is under the condition of the Lemma 2.2, then

(β(v),−∆v) ≥ 0 for all v ∈ H1
0 (Ω) ∩ H2(Ω). (2.1)

The penalized problem associated to the problem (1.1), consists in given ε > 0, find
uε solution in Ω of the problem

−M(‖uε‖
2)∆uε +

1

ε
β(uε) = f in Ω,

uε = 0 on ∂Ω,
(2.2)

where f is given in H1
0 (Ω).

The existence of one solution of the penalized problem (2.2) is give by the

Theorem 2.3. Assume that (M1) hold. Then, for any 0 6= f ∈ H1
0 (Ω) there exists

at least one uε ∈ H1
0 (Ω) ∩ H2(Ω), solution of the problem (2.2) .

Proof. We employ the Galerkin Method by using the sharp angle lemma. Let us
consider the Hilbertian basis of spectral objects (ej)j∈N and (λj)j∈N for the operator
−∆ in H1

0 (Ω), cf. Brezis [5]. We know that the eigenvectors (ej)j∈N are orthonormal
complete in L2(Ω) and complete in H1

0 (Ω) ∩ H2(Ω). For each m ∈ N consider

Vm = span{e1, . . . , em},

the subspace of H1
0 (Ω)∩H2(Ω) generated by m eigenvectors e1, e2, ..., em. If uεm

∈
Vm, then

uεm
=

m∑

j=1

ξjej with real ξj , 1 ≤ j ≤ m.

We will consider um instead of uεm
. The approximate problem consists in finding

a solution um ∈ Vm of the system of algebraic equations

M(‖um‖2)((um, ei)) +
1

ε
(β(uε), ei) = (f, ei), i = 1, . . . , m. (2.3)

We need to prove that (2.3) has a solution um ∈ Vm. To this end, we will consider
the vector η = (ηi)1≤i≤m of R

m defined by

ηi = M(‖um‖2)((um, ei)) +
1

ε
(β(um), ei) − (f, ei), i = 1, . . . , m.
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Let ξ = (ξi)1≤i≤m be the components of the vector um of Vm. The mapping
P : R

m → R
m defined by Pξ = η is continuous. If we prove that 〈Pξ, ξ〉 ≥ 0 for

‖ξ‖Rn = r, with an appropriate r, it will follow by the sharp angle lemma that there
exists a ξ in the ball Br(0) ⊂ R

m such that Pξ = 0. This implies the existence of
a solution to (2.3). In fact, we have

〈Pξ, ξ〉 =

m∑

1

ξiηi = M(‖um‖)((um, um)) +
1

ε
(β(um), um) − (f, um).

Using (M1), Hölder and Poincaré inequalities and observing that (β(um), um) ≥ 0,
we get

〈Pξ, ξ〉 ≥ m0‖um‖2 − C‖f‖‖um‖

We can consider r large enough that (Pξ, ξ) ≥ 0 for ‖ξ‖Rm = r. Then Pξ = 0
for some ξ ∈ Br(0), which implies that system (2.3) has a solution um ∈ Vm

corresponding to this ξ. Thus, there is um ∈ Vm,

‖um‖ ≤ r, (2.4)

r does not depend on m and ε, such that

M(‖um‖2)((um, ei)) +
1

ε
(β(um), ei) = (f, ei), i = 1, . . . , m,

which implies that

M(‖um‖2)((um, ω)) +
1

ε
(β(um), ω) = (f, ω), for all ω ∈ Vm. (2.5)

Because (‖um‖2) is a bounded real sequence and M is continuous one has

‖um‖2 → t̃0, (2.6)

for some t̃0 ≥ 0, and

um ⇀ u in H1
0 (Ω), um → u in L2(Ω), M(‖um‖2) → M(t̃0), (2.7)

perhaps for a subsequence.
Take k ≤ m, Vk ⊂ Vm. Fix k and let m → ∞ in equation (2.5) to obtain

M(t̃0)((u, ω)) +
1

ε
(β(u), ω) = (f, ω), for all ω ∈ (H1

0 ∩ H2)(Ω). (2.8)

Since −∆ej = λjej we take ω = −∆um in (2.8). We obtain

M(t̃0)(∆um, ∆um) +
1

ε
(β(um),−∆um) = (∇f,∇um) (2.9)

By (2.1), we obtain

|∆um|2 ≤ C(|∇f |2 + |∇um|2). (2.10)

Since f ∈ H1
0 (Ω) and by (2.6), we have that

|∆um|2 ≤ C (2.11)

where C does not depend on m and ε. By (2.7) and (2.11) and by compact imbed-
ding of (H1

0 (Ω) ∩ H2(Ω)) ⊂ H1
0 (Ω) we deduce that

um → u in H1
0 (Ω) (2.12)
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The continuity of M and convergence (2.7) and (2.12) permit to pass to the limit
in (2.5). We obtain

M(‖u‖2)((u, v)) +
1

ε
(β(u), v) = (f, v), for all v ∈ H1

0 (Ω) ∩ H2(Ω). (2.13)

Thus uε is a weak solution of problem (2.2) and the proof of Theorem 2.3 is com-
plete. �

Proof. of Theorem 2.1
Let (εn)n∈N be a sequence of real numbers such that

0 < εn < 1 for all n ∈ N and lim
n→∞

εn = 0.

For each n ∈ N, we get function uεn
which satisfies Theorem 2.3. Since the estimates

were uniform on ε and n, we can see that there exists a subsequence of uεn
, again

called uεn
, and a function u ∈ H1

0 (Ω) ∩ H2(Ω) such that

uεm
→ u in H1

0 (Ω). (2.14)

Consider v in H1
0 (Ω) ∩ H2(Ω) with v belongs to K. By (2.5), we have

(−M(‖uεn
‖2)∆uεn

− f, v) = (−
1

εn

β(uεn
), v) (2.15)

and

(−M(‖uεn
‖2)∆uεn

− f,−uεn
) = (−

1

εn

β(uεn
),−uεn

). (2.16)

Follows of (2.15) and (2.16) that

(−M(‖uεn
‖2)∆uεn

− f, v − uεn
) =

1

ε
(−β(uεn

), v − uεn
)

=
1

ε
(β(v) − β(uεn

), v − uεn
) ≥ 0,

(2.17)

because v ∈ K and monotonicity of β. Hence

(−M(‖uεn
‖2)∆uεn

− f, v) + (f, uεn
) ≥ (−M(‖uεn

‖2)∆uεn
, uεn

), (2.18)

But

(−M(‖uεn
‖2)∆uεn

, uεn
) = M(‖uεn

‖2)(∇uεn
,∇uεn

) =

M(‖uεn
‖2)(∇(uεn

− u),∇(uεn
− u)) + M(‖uεn

‖2)(∇uεn
,∇u)+

M(‖uεn
‖2)(∇u,∇(uεn

− u)) ≥ M(‖uεn
‖2)(∇uεn

,∇u)+

M(‖uεn
‖2)(∇u,∇(uεn

− u)),

(2.19)

because M(‖uεn
‖2)(∇(uεn

− u),∇(uεn
− u)) ≥ 0. Then,

lim inf[−M(‖uεn
‖2)(∆uεn

, uεn
)] ≥ −M(‖u‖2)(∇u, u). (2.20)

By (2.18) and (2.20), we obtain (1.1).
In order to prove u ∈ K we observe that from (2.5), with ω = uεm

, that

0 ≤ (β(uεn
), uεn

) ≤ εC (2.21)

therefore
(β(uεn

), uεn
) converges to zero. (2.22)
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Let v ∈ H1
0 (Ω) be arbitrarily fixed; then the inequality

(β(uεn
) − β(v), uεn

− v) ≥ 0

yields (β(v), u − v) ≤ 0, hence (β(u − λω)), ω) ≤ 0 with the choice of v = u − λω
with λ > 0 and ω ∈ H1

0 (Ω). By hemicontinuity of β we can let λ → 0+ and obtain
(β(u), ω) ≥ 0, hence β(u) = 0 by the arbitrariness of ω. Therefore u ∈ K.

�

3. The M-linear Problem: A Discontinuous Case

In this section we concentrate our atention on problem (1.1) when M possesses
a discontinuity. More precisely, we study problem (1.1) with M : R/{θ} → R

continuous such that

(M2) limt→θ+ M(t) = limt→θ− M(t) = +∞
(M3) lim supt→+∞ M(t2)t = +∞ .

Theorem 3.1. Assume that (M1)–(M3) and (H1) hold. Then for any choice of
f ∈ H1

0 (Ω) the problem (1.1) admits at least one solution solution.

The proof of Theorem 3.1 is given as in the proof of Theorem 2.1. We will
formulate the penalized problem, associated with the variational inequality (1.1),
as follows. Given ε > 0, find a function uε ∈ H1

0 (Ω) solution of the problem

−M(‖uε‖
2)∆uε +

1

ε
β(uε) = f in Ω,

uε = 0 on ∂Ω,
(3.1)

where f is given in H1
0 (Ω).

The existence of one solution of the penalized problem (3.1) is given by the

Theorem 3.2. Assume that (M1) − (M3) hold. Then, for any 0 6= f ∈ H1
0 (Ω)

there exists at least one uε ∈ L2(Ω), solution of the problem (3.1) .

Proof. We first consider the sequence of functions Mn : R → R given by

Mn(t) =

{
n, θ − δ′n ≤ t ≤ θ + δ′′n,

M(t), t ≤ θ − δ′n or t ≥ θ + δ′′n,

for n > m0, where θ−δ′n and θ +δ′′n, δ′n, δ′′n > 0, are, respectively, the points closest
to θ, at left and at right, so that

M(θ − δ′n) = M(θ + δ′′n) = n.

We point out that, in this case, δ′n, δ′′n → 0 as n → ∞.
Take n > m0 and observe that the horizontal lines y = n cross the graph of M .

Hence Mn is continuous and satisfies (M1), for each n > m0. In view of this, for
each n like above, there is un ∈ H1

0 (Ω)
⋂

H2(Ω) satisfying

Mn(‖un‖
2)((un, ω)) +

1

ε
(β(un), ω) = (f, ω),

for all ω ∈ H1
0 (Ω) ∩ H2(Ω).

(3.2)
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Taking ω = un in the above equation one has

Mn(‖un‖
2)‖un‖

2 +
1

ε
(β(un), un) = (f, un),

and so

Mn(‖un‖
2)‖un‖ ≤ ‖f‖,

since 0 ≤ (β(un), un). Because of (M3) the sequence (‖un‖) must be bounded.
Hence

un ⇀ u in H1
0 (Ω),

un → u in L2(Ω),

‖un‖
2 → θ0, for some θ0,

(3.3)

perhaps for subsequences. We note that if (Mn(‖un‖
2) converges its limit is different

of zero. Suppose that ‖un‖
2 → θ. If ‖un‖

2 > θ+δ′′n or ‖un‖
2 < θ−δ′n, for infinitely

many n, we would get Mn(‖un‖
2) = M(‖un‖

2), for such n, and so

M(‖un‖
2)‖un‖

2 ≤ (f, un) ⇒ +∞ ≤ (f, u)

which is a contradiction. On the other hand, if there are infinitely many n so that
θ − δ′n ≤ ‖un‖

2 ≤ θ + δ′′n ⇒ Mn(‖un‖
2) = n and so n‖un‖

2 ≤ (f, un) ⇒ +∞ ≤
(f, u) and we arrive again in a contradiction.

Consequently ‖un‖
2 → θ0 6= θ which implies that for n large enough

‖un‖
2 < θ − δ′n or ‖un‖

2 > θ + δ′′n

and so Mn(‖un‖
2) = M(‖un‖

2) which yields

M(‖un‖
2)((un, ω)) +

1

ε
(β(un), ω) = (f, ω), ∀ω ∈ H1

0 (Ω) ∩ H2(Ω). (3.4)

Taking ω = −∆un in (3.4), using(2.1) and arguments of compactness as in the
proof of theorem 2.1, we obtain that

un → u ∈ H1
0 (Ω) (3.5)

The estimates (3.3) and (3.5) are sufficient to pass to the limit in the approximate
equation and to obtain

M(‖u‖2)((u, ω)) +
1

ε
(β(u), ω) = (f, ω), ∀ω ∈ H1

0 (Ω) ∩ H2(Ω). (3.6)

�

Proof. of Theorem 3.1
As in the proof of Theorem 2.1, let (εn)n∈N be a sequence of real numbers such,
that

0 < εn < 1 for all n ∈ N and lim
n→∞

εn = 0.

Applying Theorem 3.1, for each n ∈ N, we get a function uεn
∈ H1

0 (Ω) ∩ H2(Ω)
which satisfies

M(‖uεn
‖2)((uεn

, ω)) +
1

εn

(β(uεn
), ω) = (f, ω), ∀ω ∈ H1

0 (Ω) ∩ H2(Ω). (3.7)
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Since the estimates were uniform on ε and n, we can see that there exists a sub-
sequence of (uεn

), again called (uεn
), and a function u ∈ H1

0 (Ω) ∩ H2(Ω) such
that

uεn
→ u in H1

0 (Ω). (3.8)

We note that ‖uεn
‖ does not converges to θ. In fact, we assume by contradiction

that ‖uεn
‖ → θ. By (3.7) and (3.8), with ω = uεn

, we get

M(‖uεn
‖2)‖uεn

‖ ≤ C

By hyphotese (M2), letting n → ∞, we have a contradiction. Thus

M(‖uεn
‖2) → M(‖u‖2),

since ‖uεn
‖ → ‖u‖ and M is continuous in an neighboard of ‖u‖ 6= θ.

Consider v in H1
0 (Ω) with v belonging to K. By (3.7), we have

(−M(‖uεn
‖2)∆uεn

− f, v) = (−
1

ε
β(uεn

), v) (3.9)

and

(−M(‖uεn
‖2)∆uεn

− f,−uεn
) = (−

1

ε
β(uεn

),−uεn
). (3.10)

Follows of (3.9) and (3.10) that

(−M(‖uεn
‖2)∆uεn

− f, v − uεn
) =

1

ε
(−β(uεn

), v − uεn
)

=
1

ε
(β(v) − β(uεn

), v − uεn
) ≥ 0,

(3.11)

because v ∈ K and monotonicity of β. Hence

(−M(‖uεn
‖2)∆uεn

− f, v) + (f, uεn
) ≥ (−M(‖uεn

‖2)∆uεn
, uεn

). (3.12)

As in the proof of Theorem 2.1, letting n → ∞, we obtain that u satisfies the
conditions of Theorem 3.2.

�

4. Another Nonlocal Problem

Next, we make some remarks on a nonlocal problem which is a slight generaliza-
tion of one studied by Chipot-Lovat [6] and Chipot-Rodrigues [7]. More precisely,
the above authors studied the problem

−a
( ∫

Ω

u
)
∆u = f in Ω,

u = 0 on ∂Ω,
(4.1)

where Ω ⊂ R
N is a bounded domain, N ≥ 1, and a : R → (0, +∞) is a given

function. Equation (4.1) is the stationary version of the parabolic problem

ut − a
( ∫

Ω

u(x, t)dx
)
∆u = f in Ω × (0, T ),

u = 0 on ∂Ω × (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x).
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Here T is some arbitrary time and u represents, for instance, the density of a
population subject to spreading. See [6, 7] for more details. In particular, [6]
studies problem (4.1), with f ∈ H−1(Ω), and proves the following result.

Proposition 4.1. Let a : R → (0, +∞) be a positive function, f ∈ H−1(Ω). Then
problem (4.1) has as many solutions µ as the equation

a(µ)µ = 〈〈f, ϕ〉〉,

where ϕ is the function(unique) satisfying

−∆ϕ = 1 in Ω,

ϕ = 0 on ∂Ω.

In the present work, we consider the variational inequality

u ∈ K : (−a
( ∫

Ω

|u|q
)
∆u, ω) ≥ (f, ω) for all v ∈ K ∩ (H1

0 (Ω) ∩ H2(Ω)) (4.2)

where K and f are as before and 1 < q < 2N/(N − 2), N ≥ 3. When q = 2 we
have the well known Carrier model.

Theorem 4.2. If t 7→ a(t) is a decreasing and continuous function, for t ≥ 0,
limt→+∞ a(tq)t = +∞ and t 7→ a(tq)t is injective, for t ≥ 0, then, for each 0 6= f ∈
H−1(Ω), problem (4.2) possesses a weak solution.

The proof of Theorem 4.2 is given as in the proof of Theorem 2.1. We will
formulate the penalized problem, associated with the variational inequality (4.2),
as follows: Given ε > 0, find a function uε ∈ H1

0 (Ω) solution of the problem

−a
( ∫

Ω

|uε|
q
)
∆uε +

1

ε
β(uε) = f in Ω,

uε = 0 on ∂Ω,
(4.3)

where f is given in H1
0 (Ω).

The existence of one solution of the penalized problem (4.3) is given by the

Theorem 4.3. Under the hypotheses of Theorem 4.2, then for each 0 6= f ∈
H−1(Ω) there exists at least one uε ∈ H1

0 (Ω) solution of the problem (4.3) .

Proof. As in the proof of Theorem 2.1, let
∑

= {e1, . . . , em, . . .} be an orthonormal
basis of the Hilbert space H1

0 (Ω). For each m ∈ N consider the finite dimensional
Hilbert space

Vm = span{e1, . . . , em},

P : R
m → R

m be the function P (ξ) = (P1(ξ), . . . , Pm(ξ)), where

Pi(ξ) = a(‖u‖q
q)((u, ei)) +

1

ε
(β(u), ei) − 〈〈f, ei〉〉, i = 1, . . . , m

with u =
∑m

j=1 ξjej and the identifications of R
m and Vm mentioned before. So

Pi(ξ) = a(‖u‖q
q)ξi +

1

ε
(β(u), ei) − 〈〈f, ei〉〉, i = 1, . . . , m

and then

< P (ξ), ξ >= a(‖u‖q
q)‖u‖

2 +
1

ε
((β(u), u)) − 〈〈f, u〉〉
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We have to show that there is r > 0 so that 〈P (ξ), ξ〉 ≥ 0, for all ‖ξ‖Rm = r in Vm.
Suppose, on the contrary, that for each r > 0 there is ur ∈ Vm such that ‖ur‖ = r
and

〈P (ξr), ξr〉 < 0, ξr ↔ ur.

Taking r = n ∈ N we obtain a sequence (un), ‖un‖ = n, un ∈ Vm and

〈P (un), un〉 = a(‖un‖
q
q)‖un‖

2 +
1

ε
(β(un), un) − 〈〈f, un〉〉 < 0

and so

a(‖un‖
q
q)‖un‖ < C‖f‖, ∀n = 1, 2, . . . ,

since(β(un), un) > 0. Because of the continuous immersion H1
0 (Ω) ⊂ Lq(Ω) one

gets ‖u‖q ≤ C‖u‖ and the monotonicity of a yields a(‖u‖q
q) ≥ a(C‖u‖q) and so

a(C‖un‖
q)‖un‖ < C‖f‖.

In view of limt→+∞ a(tq)t = +∞ one has that ‖un‖ ≤ C, ∀n ∈ N, which contradicts
‖un‖ = n. So, there is rm > 0 such that 〈F (ξ), ξ〉 ≥ 0, for all |ξ| = rm. In view of
the sharp angle lemma there is um ∈ Vm, ‖um‖ ≤ rm such that Pi(um) = 0, i =
1, . . . , m, that is,

a
(
‖um‖q

q

)
((um, ω)) +

1

ε
(β(um), ω) = 〈〈f, ω〉〉, ∀ω ∈ Vm. (4.4)

Reasoning as before, by using the facts that t → a(t) is decreasing for t ≥ 0 ,
limt→+∞ a(tq)t = +∞ and

∫
Ω

β(u)u > 0 we conclude that ‖um‖ ≤ C, ∀m = 1, 2 . . .

for some constant C that does not depend on m. Hence, um ⇀ u in H1
0 (Ω), um → u

in Lq(Ω), 1 < q < 2N
N−2

, and so ‖um‖q → ‖u‖q. Taking limits on both sides of

equation (4.4) we conclude that the function u is a solution of problem (4.3). �

Remark 4.4. The function

a(t) =
1

t2β + 1
,

where β and q are related by 2βq < 1, satisfies the assumptions of Theorem 4.2

Proof. of Theorem 4.2
Let (εn)n∈N be a sequence of real numbers such, that

0 < εn < 1 for all n ∈ N and lim
n→∞

εn = 0.

For each n ∈ N, we get function uεn
which satisfies Theorem 4.3. Since the estimates

were uniform on ε and n, we can see that there exists a subsequence of uεn
, again

called uεn
, and a function u ∈ H1

0 (Ω) ∩ Lq(Ω), 1 ≤ q ≤ 2N
N−2

such that

uεn
⇀ u in H1

0 (Ω) ∩ H2(Ω) (4.5)

uεn
→ u in Lq(Ω), 1 ≤ q ≤

2N

N − 2
(4.6)

‖uεn
‖q → ‖u‖q (4.7)

Consider v in H1
0 (Ω) with v belongs to K. By (4.3), we have
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(−a(‖uεn
‖p

q)∆uεn
− f, v − uεn

) = (−
1

ε
β(uεn

), v − uεn
) =

1

ε
(β(v) − β(uεn

), v − uεn
) ≥ 0

(4.8)

because v ∈ K and monotonicity of β.
As in the proof of Theorem 2.1, when εn → 0 we obtain that u satisfies the condi-
tions of Theorem 4.2.

�
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