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MULTIPLE SOLUTIONS FOR A CLASS OF p(x)-LAPLACIAN PROBLEMS

INVOLVING CONCAVE-CONVEX NONLINEARITIES

NGUYEN THANH CHUNG

Abstract. Using variational methods, we prove a multiplicity result for a class of p(x)-

Laplacian problems of the form
8

<

:

−div
`

|∇u|p(x)−2∇u
´

= λ|u|r(x)−2u + f(x, u) in Ω,

u = 0, on ∂Ω,

where Ω ⊂ R
N (N ≥ 3) is a smooth bounded domain, p, r ∈ C(Ω), 1 < r− ≤ r+ < p− ≤ p+ <

min
n

N, Np−

N−p−

o

, λ is a positive parameter, f : Ω × R → R is continuous and p+-superlinear

at infinity but does not satisfy the (A-R) type condition.

1. Introduction

In this paper, we are interested in the existence of solutions for a class of p(x)-Laplacian

problems of the form
{

−div
(

|∇u|p(x)−2∇u
)

= g(x, u) in Ω,

u = 0, on ∂Ω,
(1.1)

where Ω ⊂ R
N (N ≥ 3) is a smooth bounded domain, p ∈ C(Ω), 1 < p− ≤ p+ < N , and

g : Ω × R → R is a continuous function satisfying subcritical growth condition.

In the case when p(x) = p is a constant, problem (1.1) becomes the p-Laplacian problem of

the form
{

−∆pu = g(x, u) in Ω,

u = 0, on ∂Ω.
(1.2)

Since A. Ambrosetti and P.H. Rabinowitz proposed the mountain pass theorem in 1973 (see

[1]), critical point theory has become one of the main tools for finding solutions to elliptic

problems of variational type. Especially, elliptic problem (1.2) has been intensively studied for

many years. One of the very important hypotheses usually imposed on the nonlinearities is

the following Ambrosetti-Rabinowitz type condition ((A-R) type condition for short): There

exists µ > p such that

0 < µG(x, t) := µ

∫ t

0
g(x, s)ds ≤ g(x, t)t (1.3)

Key words and phrases. p(x)-Laplacian problems; Concave-convex nonlinearities; Multiple solutions; With-

out (A-R) type conditions; Variational methods
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for all x ∈ Ω and t ∈ R\{0}. This condition ensures that the energy functional associated

to the problem satisfies the Palais-Smale condition ((PS) condition for short). Clearly, if the

condition (A-R) is satisfied then there exist two positive constants d1, d2 such that

G(x, t) ≥ d1|t|
µ − d2, ∀(x, t) ∈ Ω × R.

This means that g is p-superlinear at infinity in the sense that

lim
|t|→+∞

G(x, t)

|t|p
= +∞.

In recent years, there have been many authors considering elliptic problem (1.2) without the

(A-R) type condition, we refer to some interesting papers on this topic [11, 13, 18, 19, 20, 22,

23, 24, 27, 28, 30, 31, 32] and the references cited there. In [28], O.H. Miyagaki et al. studied

problem (1.2) in the semilinear case p = 2 by proposing the following non-global condition on

the superlinear term g(x, t): There exists t0 > 0 such that

g(x, t)

t
is increasing in t ≥ t0 and decreasing in t ≤ −t0, ∀x ∈ Ω.

Using the mountain pass theorem with the (PS) condition in [1], the authors obtained the

existence of a non-trivial weak solution. This result was extended to the p-Laplace operator

−∆pu by G. Li et al [23] and to the p(x)-Laplace operator ∆p(x)u = −div
(

|∇u|p(x)−2∇u
)

by

C. Ji [19]. Especially, in [23], the authors gave a simpler proof for the existence result by using

the mountain pass theorem in [13] with the Cerami condition (see Definition 2.3).

In [2, 3, 4, 33, 34], the authors studied the existence and multiplicity of solutions for problem

(1.2) involving concave-convex nonlinearities of the form g(x, t) = λ|t|q−2t + µ|t|r−2t, where

1 < q < p < r < p∗. We also refer the readers to some similar results for the p(x)-Laplace

operator in recent papers by M. Mihăilescu [26] and R.A. Mashiyev et al. [25].

Motivated by the papers mentioned above, in this work, we will study the existence of

multiple solutions for problem (1.1) in a more general case when g(x, t) is defined by

g(x, t) = λ|t|r(x)−2t+ f(x, t), (x, t) ∈ Ω × R,

where

1 < r− ≤ r+ < p− ≤ p+ < min

{

N,
Np−

N − p−

}

, (1.4)

and λ is a positive parameter, the function f : Ω × R → R is continuous and p+-superlinear

at infinity but does not satisfy the (A-R) condition (1.3). More precisely, we consider the
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following p(x)-Laplacian problem

{

−div
(

|∇u|p(x)−2∇u
)

= λ|u|r(x)−2u+ f(x, u) in Ω,

u = 0, on ∂Ω.
(1.5)

Using the mountain pass theorem with the Cerami condition in [13] combined with the Ekeland

variational principle in [15] we show the existence of at least two non-trivial weak solutions

for (1.5) provided that λ ∈ (0, λ∗), λ∗ > 0 is small enough. In the case when λ = 0, our

result is exactly the one introduced in [19] but our arguments in this present work are clearly

different from those presented in [19]. Regarding some estimates of the constant λ∗, we refer

the readers to some recent papers [5, 6, 7, 8, 9, 10, 12] in which the authors have studied the

existence and multiplicity of weak solutions for elliptic problems involving the p(x)-Laplacian.

We emphasize that the extension from the p-Laplace operator ∆pu to the p(x)-Laplace operator

involved in (1.5) is interesting and not trivial, since the new operators have a more complicated

structure than the p-Laplace operator, for example they are non-homogeneous. Finally, it

should be noticed that our result is new even in the case when p(x) = p is a constant, see

[2, 3, 4, 23, 28, 33, 34].

Our paper is organized as follows. In Section 2, we will recall some useful results on Sobolev

spaces with variable exponents and the mountain pass theorem with the Cerami condition. In

section 3, we will state and prove the main result of this paper.

2. Preliminaries

In this section, we recall some definitions and basic properties of the generalized Lebesgue-

Sobolev spaces Lp(x)(Ω) and W 1,p(x)(Ω) where Ω is an open subset of R
N . In that context,

we refer to the book of Musielak [29] and the papers of Kováčik and Rákosńık [21], Fan et al.

[16, 17] and the lecture notes by L. Diening et al. [14]. Set

C+(Ω) := {h : h ∈ C(Ω), h(x) > 1 for all x ∈ Ω}.

For any h ∈ C+(Ω) we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

For any p(x) ∈ C+(Ω), we define the variable exponent Lebesgue space

Lp(x)(Ω) =

{

u : u is a measurable real-valued function such that

∫

Ω
|u(x)|p(x) dx <∞

}

.
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We recall the following so-called Luxemburg norm on this space defined by the formula

|u|p(x) = inf

{

µ > 0 :

∫

Ω

∣

∣

∣

∣

u(x)

µ

∣

∣

∣

∣

p(x)

dx ≤ 1

}

.

Variable exponent Lebesgue spaces resemble classical Lebesgue spaces in many respects: they

are Banach spaces, the Hölder inequality holds, they are reflexive if and only if 1 < p− ≤

p+ < +∞ and continuous functions are dense if p+ < +∞. The inclusion between Lebesgue

spaces also generalizes naturally: if 0 < |Ω| < +∞ and p1, p2 are variable exponents so that

p1(x) ≤ p2(x) a.e. x ∈ Ω then there exists a continuous embedding Lp2(x)(Ω) →֒ Lp1(x)(Ω).

We denote by Lp
′(x)(Ω) the conjugate space of Lp(x)(Ω), where 1

p(x) + 1
p′(x) = 1. For any

u ∈ Lp(x)(Ω) and v ∈ Lp
′(x)(Ω) the Hölder inequality
∣

∣

∣

∣

∫

Ω
uv dx

∣

∣

∣

∣

≤

(

1

p−
+

1

(p′)−

)

|u|p(x)|v|p′(x)

holds true.

An important role in manipulating the generalized Lebesgue-Sobolev spaces is played by the

modular of the Lp(x)(Ω) space, which is the mapping ρp(x) : Lp(x)(Ω) → R defined by

ρp(x)(u) =

∫

Ω
|u|p(x) dx.

Proposition 2.1 (see [17]). If u ∈ Lp(x)(Ω) and p+ < +∞ then the following relations hold

|u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x) (2.1)

provided |u|p(x) > 1 while

|u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x) (2.2)

provided |u|p(x) < 1 and

|un − u|p(x) → 0 ⇔ ρp(x)(un − u) → 0. (2.3)

In this paper, we assume that p ∈ C
log
+ (Ω), where C log

+ (Ω) is the space of all the functions

of C+(Ω) which are logarithmic Hölder continuous, that is, there exists R > 0 such that for

all x, y ∈ Ω with 0 < |x − y| ≤ 1
2 , |p(x) − p(y)| ≤ − R

log|x−y| , see [14]. We define the space

W
1,p(x)
0 (Ω) as the closure of C∞

0 (Ω) under the norm

‖u‖ = |∇u|p(x).

Proposition 2.2 (see [17]). The space
(

W
1,p(x)
0 (Ω), ‖.‖

)

is a separable and Banach space

when 1 < p− ≤ p+ < +∞. Moreover, if q ∈ C+(Ω) and q(x) < p∗(x) for all x ∈ Ω then
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the embedding W
1,p(x)
0 (Ω) →֒ Lq(x)(Ω) is continuous and compact, where p∗(x) = Np(x)

N−p(x) if

p(x) < N or p∗(x) = +∞ if p(x) ≥ N .

In our proof of the main result, we will use the mountain pass theorem with the Cerami

condition in [13]. For the reader’s convenience, we recall it below.

Definition 2.3. Let (X, ‖.‖) be a real Banach space, J ∈ C1(X,R). We say that J satisfies

the Cerami condition (write (Cc) condition for short) if any sequence {um} ⊂ X such that

J(um) → c and ‖J ′(um)‖∗(1 + ‖um‖) → 0 as m→ ∞ has a convergent subsequence.

Proposition 2.4 (see [13]). Let (X, ‖.‖) be a real Banach space, J ∈ C1(X,R) satisfies the

(Cc) condition for any c > 0, J(0) = 0 and the following conditions hold:

(i) There exists a function φ ∈ X such that ‖φ‖ > ρ and J(φ) < 0;

(ii) There exist two positive constants ρ and R such that J(u) ≥ R for any u ∈ X with

‖u‖ = ρ.

Then the functional J has a critical value c ≥ R, i.e. there exists u ∈ X such that J ′(u) = 0

and J(u) = c.

3. Multiple solutions

In this section, we state and prove the main result of this paper. We will use the letter Ci

to denote a positive constant whose value may change from line to line. Let us introduce the

following hypotheses:

(F0) There exists C > 0 such that

|f(x, t)| ≤ C(1 + |t|q(x)−1)

for all (x, t) ∈ Ω × R, where q ∈ C(Ω) and p(x) ≤ p+ < q− ≤ q(x) < p∗(x) = Np(x)
N−p(x)

for all x ∈ Ω;

(F1) There exists a positive constant t > 0 such that F (x, t) ≥ 0 a.e. x ∈ Ω and all t ∈ [0, t],

where F (x, t) :=
∫ t

0 f(x, s) ds;

(F2) f(x, t) = o(|t|p
+−1), t→ 0, uniformly in x ∈ Ω;

(F3) lim|t|→+∞
F (x,t)

tp
+ = +∞ uniformly in x ∈ Ω, i.e., f is p+-superlinear at infinity;

(F4) There exists a constant C∗ > 0 such that

F(x, t) ≤ F(x, s) + C∗

for any x ∈ Ω and 0 < t < s or s < t < 0, where F(x, t) := tf(x, t) − p+F (x, t).
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It should be noticed that the condition (F4) is a consequence of the following condition,

which was firstly introduced by O.H. Miyagaki et al. [28] for problem (1.2) in the case p = 2

and developed by G. Li et al. [23] and C. Ji [19]:

(F ′
4) There exists t0 > 0 such that f(x,t)

|t|p+−2t
is increasing in t ≥ t0 and decreasing in t ≤ −t0

for any x ∈ Ω.

The readers may consult the proof and comments on this assertion in the papers by G. Li et

al. [23] or by O.H. Miyagaki et al. [28] and the references cited there.

Definition 3.1. We say that u ∈W
1,p(x)
0 (Ω) is a weak solution of problem (1.5) if

∫

Ω
|∇u|p(x)−2∇u · ∇ϕdx− λ

∫

Ω
|u|r(x)−2uϕdx−

∫

Ω
f(x, u)ϕdx = 0

for all ϕ ∈W
1,p(x)
0 (Ω).

Our main result of this paper is given by the following theorem.

Theorem 3.2. Assume that the conditions (1.4), and (F0)-(F4) are satisfied. Then there exists

a positive constant λ∗ such that for all λ ∈ (0, λ∗), problem (1.5) has at least two non-trivial

weak solutions.

In the rest of this paper we will use the letter X to denote the Sobolev space W
1,p(x)
0 (Ω).

Let us introduce the functional J : W
1,p(x)
0 (Ω) → R by

J(u) =

∫

Ω

1

p(x)
|∇u|p(x) dx− λ

∫

Ω

1

r(x)
|u|r(x) dx−

∫

Ω
F (x, u) dx, u ∈W

1,p(x)
0 (Ω).

where F (x, t) =
∫ t

0 f(x, s) ds.

By the continuous embeddings obtained from the hypotheses (F0) and (1.4), some standard

arguments assure that the functional J is well defined on X and J ∈ C1(X) with the derivative

given by

J ′(u)(ϕ) =

∫

Ω
|∇u|p(x)−2∇u · ∇ϕdx− λ

∫

Ω
|u|r(x)−2uϕdx−

∫

Ω
f(x, u)ϕdx

for all u, ϕ ∈ X. Thus, non-trivial weak solutions of problem (1.5) are exactly the non-trivial

critical points of the functional J .

Lemma 3.3. The functional J satisfies the (Cc) condition for any c > 0.

Proof. Let {um} ⊂ X be a (Cc) sequence of the functional J , that is,

J(um) → c, ‖J ′(um)‖∗(1 + ‖um‖) → 0 as m→ ∞,
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which shows that

c = J(um) + o(1), J ′(um)(um) = o(1), (3.1)

where o(1) → 0 as m→ ∞.

We will prove that the sequence {um} is bounded in X. Indeed, if {um} is unbounded

in X, we may assume that ‖um‖ → +∞ as m → ∞. We define the sequence {wm} by

wm = um

‖um‖ , m = 1, 2, ... It is clear that {wm} ⊂ X and ‖wm‖ = 1 for any m. Therefore, up to

a subsequence, still denoted by {wm}, we have that {wm} converges weakly to some function

w ∈ X and

wm(x) → w(x), a.e. in Ω, m→ ∞, (3.2)

wm → w strongly in Lq(x)(Ω), m→ ∞, (3.3)

wm → w strongly in Lr(x)(Ω), m→ ∞, (3.4)

wm → w strongly in Lp
+
(Ω), m→ ∞. (3.5)

Let Ω 6= := {x ∈ Ω : w(x) 6= 0}. If x ∈ Ω 6= then it follows from (3.2) that |um(x)| =

|wm(x)|‖um‖ → +∞ as m→ ∞. Moreover, from (F3), we have

lim
m→∞

F (x, um(x))

|um(x)|p+
|wm(x)|p

+
= +∞, x ∈ Ω 6=. (3.6)

Using the condition (F3), there exists t0 > 0 such that

F (x, t)

|t|p+
> 1 (3.7)

for all x ∈ Ω and |t| > t0 > 0. Since F (x, t) is continuous on Ω× [−t0, t0], there exists a positive

constant C1 such that

|F (x, t)| ≤ C1 (3.8)

for all (x, t) ∈ Ω × [−t0, t0]. From (3.7) and (3.8) there exists C2 ∈ R such that

F (x, t) ≥ C2 (3.9)

for all (x, t) ∈ Ω × R. From (3.9), for all x ∈ Ω and m, we have

F (x, um(x)) − C2

‖um‖p
+ ≥ 0

or

F (x, um(x))

|um(x)|p
+ |wm(x)|p

+
−

C2

‖um‖p
+ ≥ 0, ∀x ∈ Ω, ∀m. (3.10)
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By (3.1) and the Sobolev embedding, there exists C3 > 0 such that, for m large enough so

that ‖um‖ > 1, we have

c = J(um) + o(1)

=

∫

Ω

1

p(x)
|∇um|

p(x) dx− λ

∫

Ω

1

r(x)
|um|

r(x) dx−

∫

Ω
F (x, um) dx+ o(1)

≥
1

p+
‖um‖

p− −
λC3

r−
‖um‖

r+ −

∫

Ω
F (x, um) dx+ o(1),

which implies since 1 < r− ≤ r+ < p− that

∫

Ω
F (x, um) dx ≥

1

p+
‖um‖

p− −
λC3

r−
‖um‖

r+ − c+ o(1) → +∞ as m→ ∞. (3.11)

We also have

c = J(um) + o(1)

=

∫

Ω

1

p(x)
|∇um|

p(x) dx− λ

∫

Ω

1

r(x)
|um|

r(x) dx−

∫

Ω
F (x, um) dx+ o(1)

≤
1

p−
‖um‖

p+ − λ

∫

Ω

1

r(x)
|um|

r(x) dx−

∫

Ω
F (x, um) dx+ o(1)

and by (3.11),

‖um‖
p+ ≥ p−

∫

Ω
F (x, um) dx+ λp−

∫

Ω

1

r(x)
|um|

r(x) dx+ p−c− o(1)

≥ p−
∫

Ω
F (x, um) dx+ p−c− o(1) > 0 for m large enough.

(3.12)
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Next, we will claim that |Ω 6=| = 0. In fact, if |Ω 6=| 6= 0, then by relations (3.6), (3.10), (3.12)

and the Fatou lemma, we have

+ = (+∞)|Ω 6=|

=

∫

Ω 6=

lim inf
m→∞

F (x, um(x))

|um(x)|p
+ |wm(x)|p

+
dx−

∫

Ω 6=

lim sup
m→∞

C2

‖um‖p
+ dx

=

∫

Ω 6=

lim inf
m→∞

(

F (x, um(x))

|um(x)|p+
|wm(x)|p

+
−

C2

‖um‖p
+

)

dx

≤ lim inf
m→∞

∫

Ω 6=

(

F (x, um(x))

|um(x)|p+
|wm(x)|p

+
−

C2

‖um‖p
+

)

dx

≤ lim inf
m→∞

∫

Ω

(

F (x, um(x))

|um(x)|p+
|wm(x)|p

+
−

C2

‖um‖p
+

)

dx

= lim inf
m→∞

∫

Ω

F (x, um(x))

‖um‖p
+ dx− lim sup

m→∞

∫

Ω

C2

‖um‖p
+ dx

= lim inf
m→∞

∫

Ω

F (x, um(x))

‖um‖p
+ dx

≤ lim inf
m→∞

∫

Ω F (x, um(x)) dx

p−
∫

Ω F (x, um) dx+ p−c− o(1)
.

(3.13)

From (3.11) and (3.13), we obtain

+∞ ≤
1

p−
,

which is a contradiction. This shows that |Ω 6=| = 0 and thus w(x) = 0 a.e. in Ω.

Since the function t 7→ J(tum) is continuous in t ∈ [0, 1], for each m there exists tm ∈ [0, 1]

such that

J(tmum) := max
t∈[0,1]

J(tum), m = 1, 2, ... (3.14)

It is clear that tm > 0 and J(tmum) ≥ c > 0 = J(0) = J(0.um). If tm < 1 then d
dt
J(tum)|t=tm =

0 which gives J ′(tmum)(tmum) = 0. If tm = 1, then J ′(um)(um) = o(1). So we always have

J ′(tmum)(tmum) = o(1). (3.15)

Now, we fix a big integer k ≥ 1 so that ‖uk‖ > 1 and define the sequence {vm} by

vm =
(

2p+‖uk‖
p−
) 1

p−

wm, m = 1, 2, ... (3.16)

From (F0) and (F2), for any ǫ > 0, there exists a positive constant C(ǫ) such that

|F (x, t)| ≤ ǫ|t|p
+

+C(ǫ)|t|q(x), ∀(x, t) ∈ Ω × R. (3.17)
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Fix k, since wm → 0 strongly in the spaces Lq(x)(Ω), Lr(x)(Ω) and Lp
+
(Ω) as m→ ∞, using

(3.17), we deduce that there exists a constant C4 > 0 such that

∣

∣

∣

∣

∫

Ω
F (x, vm) dx

∣

∣

∣

∣

≤ C4

∫

Ω
|vm|

p+ dx+ C4

∫

Ω
|vm|

q(x) dx→ 0 as m→ ∞. (3.18)

We also have

lim
m→∞

∫

Ω
|vm|

r(x) dx = 0. (3.19)

Since ‖um‖ → +∞ as m→ ∞, we can find a constant mk > k depending on k such that

0 <

(

2p+‖uk‖
p−
) 1

p−

‖um‖
< 1 for all m > mk. (3.20)

Hence, using relations (3.14), (3.18)-(3.20), it follows that

J(tmum)

≥ J







(

2p+‖uk‖
p−
) 1

p−

‖um‖
um







= J(vm)

=

∫

Ω

1

p(x)
|∇vm|

p(x) dx− λ

∫

Ω

1

r(x)
|vm|

r(x) dx−

∫

Ω
F (x, vm) dx

≥
1

p+

∫

Ω

(

‖uk‖
p(x).(2p+)

p(x)

p− .|∇wm|
p(x)

)

dx−
λ

r−

∫

Ω
|vm|

r(x) dx−

∫

Ω
F (x, vm) dx

≥ 2‖uk‖
p− −

λ

r−

∫

Ω
|vm|

r(x) dx−

∫

Ω
F (x, vm) dx

≥ ‖uk‖
p−

(3.21)

for any m > mk > k large enough.
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On the other hand, using the conditions (F4) and relation (3.15), for all m > mk > k large

enough, we have

J(tmum)

= J(tmum) −
1

p+
J ′(tmum)(tmum) + o(1)

=

∫

Ω

1

p(x)
|∇tmum|

p(x) dx− λ

∫

Ω

1

r(x)
|tmum|

r(x) dx−

∫

Ω
F (x, tmum) dx

−
1

p+

∫

Ω
|∇tmum|

p(x) dx+
λ

p+

∫

Ω
|tmum|

r(x) dx+
1

p+

∫

Ω
f(x, tmum)tmum dx+ o(1)

=

∫

Ω

(

1

p(x)
−

1

p+

)

|∇tmum|
p(x) dx− λ

∫

Ω

(

1

r(x)
−

1

p+

)

|tmum|
r(x) dx

+
1

p+

∫

Ω
F(x, tmum) dx

≤

∫

Ω

(

1

p(x)
−

1

p+

)

|∇um|
p(x) dx+

1

p+

∫

Ω

(

F(x, um) + C∗

)

dx+ o(1)

=

∫

Ω

1

p(x)
|∇um|

p(x) dx− λ

∫

Ω

1

r(x)
|um|

r(x) dx−

∫

Ω
F (x, um) dx

−
1

p+

(∫

Ω
|∇um|

p(x) dx− λ

∫

Ω
|um|

r(x) dx−

∫

Ω
f(x, um)um dx

)

+ λ

∫

Ω

(

1

r(x)
−

1

p+

)

|um|
r(x) dx+

C∗|Ω|

p+
+ o(1)

= J(um) −
1

p+
J ′(um)(um) + λ

∫

Ω

(

1

r(x)
−

1

p+

)

|um|
r(x) dx+

C∗|Ω|

p+
+ o(1)

≤ J(um) −
1

p+
J ′(um)(um) + λC3

(

1

r−
−

1

p+

)

‖um‖
r+ +

C∗|Ω|

p+
+ o(1),

(3.22)

where C3 is given by (3.11).

From (3.21) and (3.22), we deduce that for all m > mk > k large enough,

‖uk‖
p− ≤ J(um) −

1

p+
J ′(um)(um) + λC3

(

1

r−
−

1

p+

)

‖um‖
r+ +

C∗|Ω|

p+
+ o(1)

or

‖uk‖
p− − λC3

(

1

r−
−

1

p+

)

‖um‖
r+ ≤ J(um) −

1

p+
J ′(um)(um) +

C∗|Ω|

p+
+ o(1) (3.23)

Recall that k ≥ 1 is an arbitrarily big integer and m > mk > k. In (3.23), let k → ∞ we have

m→ ∞ and the left hand side of (3.23) tends to +∞ since r+ < p−. In the right hand side of

(3.23), J(um) → c and 1
p+
J ′(um)(um) → 0 as m → ∞. Thus, we have a contradiction. This

proves that the sequence {um} is bounded in X.
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Now, since the Banach space X is reflexive, there exists u ∈ X such that passing to a

subsequence, still denoted by {um}, it converges weakly to u in X and converges strongly to

u in the spaces Lq(x)(Ω) and Lr(x)(Ω). Using the condition (F0) and the Hölder inequality, we

deduce that
∣

∣

∣

∣

∫

Ω
f(x, um)(um − u) dx

∣

∣

∣

∣

≤

∫

Ω
|f(x, um)||um − u| dx

≤ C

∫

Ω
(1 + |um|

q(x)−1)|um − u| dx

≤ C5

(

|1|
L

q(x)
q(x)−1

+
∣

∣

∣|um|
q(x)−1

∣

∣

∣

L
q(x)

q(x)−1 (Ω)

)

‖um − u‖Lq(x)(Ω)

→ 0 as m→ ∞,

which yields

lim
m→∞

∫

Ω
f(x, um)(um − u) dx = 0. (3.24)

We also have
∣

∣

∣

∣

∫

Ω
|um|

r(x)−2um(um − u) dx

∣

∣

∣

∣

≤

∫

Ω
|um|

r(x)−1|um − u| dx

≤ C6

∣

∣

∣|um|
r(x)−1

∣

∣

∣

L
r(x)

r(x)−1 (Ω)
‖um − u‖Lr(x)(Ω)

→ 0 as m→ ∞.

(3.25)

From (3.24) and (3.25) and the fact that

lim
m→∞

J ′(um)(um − u) = 0

we get

lim
m→∞

∫

Ω
|∇um|

p(x)−2∇um · (∇um −∇u) dx = 0. (3.26)

Now, using standard arguments we can show that the sequence {um} converges strongly to u

in X and the functional J satisfies the (Cc) condition for any c > 0. The proof of Lemma 3.3

is complete. �

Lemma 3.4.

(i) There exists λ∗ > 0 such that for any λ ∈ (0, λ∗), we can choose R > 0 and ρ > 0 so

that J(u) ≥ R > 0 for all u ∈ X with ‖u‖ = ρ;

(ii) There exists φ ∈ X, φ > 0 such that J(tφ) → −∞ as t→ +∞;

(iii) There exists ψ ∈ X, ψ > 0 such that J(tψ) < 0 for all t > 0 small enough.
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Proof. (i) Since the embeddings X →֒ Lp
+
(Ω) and X →֒ Lq(x)(Ω) are continuous and compact,

there exist constants C7, C8 > 0 such that

‖u‖
Lp+ (Ω) ≤ C7‖u‖, ‖u‖Lq(x)(Ω) ≤ C8‖u‖. (3.27)

Let 0 < ǫ < 1

2p+Cp+

7

, where C7 is given by (3.27). From (3.17) and (3.27), for all u ∈ X with

‖u‖ < 1, we have

J(u) =

∫

Ω

1

p(x)
|∇u|p(x) dx− λ

∫

Ω

1

r(x)
|u|r(x) dx−

∫

Ω
F (x, u) dx

≥
1

p+
‖u‖p

+
−
λC3

r−
‖u‖r

−

− ǫ

∫

Ω
|u|p

+
dx− C(ǫ)

∫

Ω
|u|q(x) dx

≥
1

p+
‖u‖p

+
− ǫC

p+

7 ‖u‖p
+
−
λC3

r−
‖u‖r

−

− C(ǫ)Cq
−

8 ‖u‖q
−

≥
( 1

2p+
−
λC3

r−
‖u‖r

−−p+ −C(ǫ)Cq
−

8 ‖u‖q
−−p+

)

‖u‖p
+
,

(3.28)

where C3 > 0 is given by (3.11).

For each λ > 0, we consider the function γλ : (0,+∞) → R defined by

γλ(t) =
λC3

r−
tr

−−p+ + C(ǫ)Cq
−

8 tq
−−p+ . (3.29)

It is clear that γλ(t) is a continuous function on (0,+∞). Since q− > p+ ≥ p− > r+ ≥ r− > 1,

it follows that

lim
t→0+

γλ(t) = lim
t→+∞

γλ(t) = +∞. (3.30)

Hence, we can find t∗ > 0 such that 0 < γλ(t∗) = mint∈(0,+∞) γλ(t), in which t∗ is defined by

the equation

0 = γ′λ(t∗) =
λC3

r−
(r− − p+)tr

−−p+−1
∗ + C(ǫ)Cq

−

8 (q− − p+)tq
−−p+−1

∗

or

t∗ =

(

λC3(p
+ − r−)

r−C(ǫ)Cq
−

8 (q− − p+)

)
1

q−−r−

.

Some simple computations imply that

γλ(t∗) = C9.λ
q−−p+

q−−r− → 0 as λ→ 0+. (3.31)

From relations (3.28), (3.29) and (3.31), there exists λ∗ > 0 such that for any λ ∈ (0, λ∗), we

can choose R > 0 and ρ > 0 so that J(u) ≥ R > 0 for all u ∈ X with ‖u‖ = ρ.

(ii) From (F3), it follows that for any M > 0 there exists a constant CM = C(M) > 0

depending on M , such that

F (x, t) ≥M |t|p
+
− CM , for a.e. x ∈ Ω, ∀t ∈ R. (3.32)
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Take φ ∈ C∞
0 (Ω) with φ > 0, from (3.32) and the definition of J , we get

J(tφ) =

∫

Ω

1

p(x)
|∇tφ|p(x) dx− λ

∫

Ω

1

r(x)
|tφ|r(x) dx−

∫

Ω
F (x, tφ) dx

≤
1

p−
‖tφ‖p

+
−M

∫

Ω
|tφ|p

+
dx−

λ

r+

∫

Ω
|tφ|r(x) dx+CM |Ω|

≤ tp
+

(

1

p−
‖φ‖p

+
−M

∫

Ω
|φ|p

+
dx

)

−
λtr

−

r+

∫

Ω
|φ|r(x) dx+ CM |Ω|,

(3.33)

where t > 1 is large enough to ensure that ‖tφ‖ > 1, and |Ω| denotes the Lebesgue measure of

Ω. From (3.33) and the fact that 1 < r− ≤ r+ < p− ≤ p+, if M is large enough such that

1

p−
‖φ‖p

+
−M

∫

Ω
|φ|p

+
dx < 0,

then we have

lim
t→+∞

J(tφ) = −∞,

which ends the proof of (ii).

(iii) Take ψ ∈ C∞
0 (Ω) with ψ > 0, from the definition of J and the condition (F1) we get

for all t ∈
(

0,min
{

1
‖ψ‖ ,

t
‖ψ‖L∞(Ω)

})

small enough,

J(tψ) =

∫

Ω

1

p(x)
|∇tψ|p(x) dx− λ

∫

Ω

1

r(x)
|tψ|r(x) dx−

∫

Ω
F (x, tψ) dx

≤
1

p−
‖tψ‖p

−

−
λ

r+

∫

Ω
|tψ|r(x) dx

=
tp

−

p−
‖ψ‖p

−

−
λtr

+

r+

∫

Ω
|ψ|r(x) dx.

(3.34)

From (3.34), taking

0 < δ <
λp−

∫

Ω |ψ|r(x) dx

r+‖ψ‖p−

we conclude that J(tψ) < 0 for all 0 < t < min
{

1
‖ψ‖ , δ

1
p−−r+ , t

‖ψ‖L∞(Ω)

}

. The proof of Lemma

3.4 is complete. �

Proof Theorem 3.2. By Lemmas 3.3 and 3.4, there exists λ∗ > 0 such that for any λ ∈ (0, λ∗),

the functional J satisfies all the assumptions of the mountain pass theorem, see Proposition

2.4. Then we deduce u1 as a non-trivial critical point of the functional J with J(u1) = c > 0

and thus a non-trivial weak solution of problem (1.5).

We now prove that there exists a second weak solution u2 ∈ X such that u2 6= u1. Indeed,

by (3.28), the functional J is bounded from below on the ball Bρ(0).
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Applying the Ekeland variational principle in [15] to the functional J : Bρ(0) → R, it follows

that there exists uǫ ∈ Bρ(0) such that

J(uǫ) < inf
u∈Bρ(0)

J(u) + ǫ,

J(uǫ) < J(u) + ǫ‖u− uǫ‖, u 6= uǫ.

By Lemma 3.4, we have

inf
u∈∂Bρ(0)

J(u) ≥ R > 0 and inf
u∈Bρ(0)

J(u) < 0.

Let us choose ǫ > 0 such that

0 < ǫ < inf
u∈∂Bρ(0)

J(u) − inf
u∈Bρ(0)

J(u).

Then, J(uǫ) < infu∈∂Bρ(0) J(u) and thus, uǫ ∈ Bρ(0).

Now, we define the functional I : Bρ(0) → R by I(u) = J(u) + ǫ‖u− uǫ‖. It is clear that uǫ

is a minimum point of I and thus

I(uǫ + tv) − I(uǫ)

t
≥ 0

for all t > 0 small enough and all v ∈ Bρ(0). The above information shows that

J(uǫ + tv) − J(uǫ)

t
+ ǫ‖v‖ ≥ 0.

Letting t → 0+, we deduce that
〈

J ′(uǫ), v
〉

≥ −ǫ‖v‖.

It should be noticed that −v also belongs to Bρ(0), so replacing v by −v, we get

〈

J ′(uǫ),−v
〉

≥ −ǫ‖ − v‖

or
〈

J ′(uǫ), v
〉

≤ ǫ‖v‖,

which helps us to deduce that ‖J ′(uǫ)‖X∗ ≤ ǫ.

Therefore, there exists a sequence {um} ⊂ Bρ(0) such that

J(um) → c = inf
u∈Bρ(0)

J(u) < 0 and J ′(um) → 0 in X∗ as m→ ∞. (3.35)

From Lemma 3.3, the sequence {um} converges strongly to some u2 ∈ X as m→ ∞. Moreover,

since J ∈ C1(X,R), by (3.35) it follows that J(u2) = c and J ′(u2) = 0. Thus, u2 is a non-trivial

weak solution of problem (1.5).
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Finally, we point out the fact that u1 6= u2 since J(u1) = c > 0 > c = J(u2). The proof of

Theorem 3.2 is complete. �
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