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1 Introduction

This paper is devoted to the precise analytical derivation of the numeri-
cal/discretized Poincaré map of an ordinary differential equation possessing
a periodic orbit. We have been motivated by papers [11,19], where numeri-
cal tools are used for computing the Poincaré map. On the other hand there
is a nice theory studying dynamics of numerical approximations of ODE, see
for instance [6–9,17,18]. This paper is a contribution to this direction.

The continuous Poincaré map P for the smooth ODE with a 1-periodic
orbit γ is a well understood topic and is contained in almost every text-
book on continuous dynamical systems (e.g. [14]). In order to define the
discretized version of Poincaré map, designated by Pm, for the discrete dy-
namical system obtained from the one-step discretization procedure ψ we
have chosen a method originated in [11] (m is the number of steps real-
ized by the discretization scheme). Our goal is to give a precise analytical
meaning of Pm and to establish various error bounds between P and Pm. It
has to be noted that there are various possibilities how to define Pm. Our
approach is in some sense a natural one, it can be loosely summed up as:
applying recurrently ψ with a constant step-size until the resulting elements
are located on the “one side” of the Poincaré section and then establishing
the suitable step-size needed to hit by ψ exactly that section. Precise setting
and the corresponding analysis are treated in Section 2 and 3 (there arises
a slight complication forcing us to assume p ≥ 2 for the order p of ψ – see
Remark 2 in Section 3). Error bounds related to |P − Pm| are given in a
form C

mq for m large enough and for a constant C essentially dependent on
the right hand side of the ODE and the numerical scheme ψ (to be more
precise, q = p in C0 and q = p− 1 in C1 norm estimates). Achieved results,
as we have anticipated, correspond to [8] where the author examined the
Cj-closeness, j ≥ 0, between the flow and its numerical approximation. Our
approach uses the techniques of a moving orthonormal system (introduced
rigorously in [10] and then used successfully in [1, 2, 17]) and the Newton–
Kantorovich type theorem (cf. [13, 15, 20]). Hence, Pm is not unique but
naturally depending on the choice of the Poincaré section and consequently
on the corresponding tubular neighbourhood of the periodic orbit created by
the mentioned moving orthonormal system. Sections 2, 3 and 4 are devoted
to this topic.

In the last Section 5 we give an application of the previously developed
results. It is a slight completion of [4], where two closed curves were found
in a neighborhood of γ for the discrete dynamical system. The first one
was found basically under the nondegeneracy of γ (that is when the trivial
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Floquet multiplier 1 of γ is simple). This curve is the set of m-periodic
points x, where the step h of the scheme depends on x and is close enough
to 1/m. The second, the maximal compact invariant set of the scheme in
a neighborhood of γ, was derived under the hyperbolicity of γ, for any
sufficiently small step (this is a historically well-known topic, it was treated
for example in [1, 2, 5, 16]). We also show using the nondegeneracy of γ
that in a small neighborhood of γ the set of those points, which return into
themselves under the action of Pm, forms another new type of closed curves
for any m large and h close enough to 1/m. Of course this curve in general
differs from the compact maximal invariant set and depends on Pm and the
chosen tubular neighborhood. Hence, it might be considered as somewhat
artificial. However, at the end of the paper, we show a simplification which
leads us to the natural curve of m-periodic points depending only on the
choice of the discretization mapping. We conclude Section 5 by a short
remark on spectral properties of our detected curve, which is undoubtedly an
interesting application of our achieved results about the numerical Poincaré
map.

Finally we note that this paper is a starting point for our future study
of discretized bifurcations near periodic orbits of parametrized ODEs.

2 General settings and tools

Assumptions made here are going to be valid for the whole paper. Let us
have f ∈ C3(RN ), N ∈ N \ {1} such that

ϕ : R× RN → RN is the global flow of ẋ = f(x).

For a numerical scheme ψ : [0, h0]×RN → RN , h0 ∈ (0, 1) suppose for some
p ∈ N that

ψ(h, x) = ϕ(h, x) + Υ(h, x)hp+1. (2.1)

Assume again ψ,Υ ∈ C3([0, h0] × RN ,RN ). Some technical reasons cause
that we are forced to assume also p ≥ 2 (see below Remark 2 for more
details).

Let γ(s) := ϕ(s, ξ0) be a 1-periodic solution for fixed ξ0 ∈ RN . Then
there is a system {ei(s)}N−1

i=1 of vectors in RN for any s ∈ R such that

ei ∈ C3(R,RN ), ei(s+ 1) = ei(s),

〈ei(s), ej(s)〉 = δi,j , 〈ei(s), f(γ(s))〉 = 0,

}
(2.2)

where i, j ∈ {1, . . . , N − 1}, δi,j is a Kronecker’s delta and 〈·, ·〉 is the
standard Euclidean scalar product. Introduce an N × (N − 1) matrix
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E(s) = [e1, . . . , eN−1] (i-th column is ei, i = 1, . . . , N − 1). Let us also set a
tubular coordinate function ξ(s, c) := γ(s) +E(s)c for s ∈ R, c ∈ RN−1. For
standard Euclidean norm |c|2 :=

√
〈c, c〉 note that |E(s)c|2 = |c|2, c ∈ RN−1.

For δ > 0 introduce the notation Bδ
N−1 :=

{
c ∈ RN−1 : |c|2 < δ

}
. Using

the Implicit Function Theorem finite number of times we get that there is
a δtr > 0 such that

ξ : [0, 1)×Bδtr
N−1 → RN is a C3-transformation,

in other words ξ|
[0,1)×BδtrN−1

is a C3-diffeomorphism between its domain and

range (cf. the moving orthonormal system along γ in [10, Chapter VI.I., p.
214–219]) .

For values

h ∈ [0, h0], s ∈ R, c ∈ RN−1, ∆ ∈ [0, h0],

X := (x1, x2, . . . , xm−1) ∈ RN(m−1), xi ∈ RN , m ∈ N, m ≥ 4,

define the following useful functions

Fm(h, s, c,X,∆) :=(Gm(h, s, c,X), Hm(h, s, c,X,∆)),

Gm(h, s, c,X) :=
(
ψ(h, ξ(s, c))− x1, ψ(h, x1)− x2, ψ(h, x2)− x3,

. . . , ψ(h, xm−2)− xm−1
)
,

Hm(h, s, c,X,∆) :=
〈
ψ
(
∆, xm−1

)
− γ(s), f(γ(s))

〉
.

X̄m :=X̄m(h, s, c) :=
(
x̄1, x̄2, . . . , x̄m−1

)
,

x̄j :=x̄j(h, s, c) := ϕ(jh, ξ(s, c)), j = 1, 2, . . . ,m− 1.

Further let B be a compact set such that γ(R) is contained in the interior
of B. Hence there is a constant R > 0 such that{

x ∈ RN : min
s∈R
{|x− γ(s)|} ≤ R

}
⊂ B. (2.3)

We mean by | · | the standard maximum norm |v| := max{|vi| : i = 1, . . . , l}
for v ∈ Rl, l ∈ N. Notation | · | is used also for linear operators A : Rl1 → Rl2
defined as |A| := maxv∈Rl1 ,|v|=1 |Av|. Further by L(X,Y ) for Banach spaces
X,Y we mean the Banach space of continuous and linear operators A : X →
Y, in the case X = Y we set L(X) := L(X,X). In general | · |X will denote
the norm in a Banach space X, however in most of the cases there are no
arising confusions so we use again simply | · |. An open ball will be denoted
as B(x, %) := {y ∈ X : |y − x| < %} for any x ∈ X and % > 0.

Several times we will use the following well-known result.
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Lemma 2.1 (Neumann’s Inversion Lemma). Suppose that X is a Banach
space and A ∈ L(X) is invertible. Then for B ∈ L(X) such that |A−1B| < 1
we have (A+B)−1 ∈ L(X), and

(A+B)−1 =
∑
n≥0

(A−1B)nA−1,
∣∣(A+B)−1

∣∣ ≤ |A−1|
1− |A−1B|

.

Our central tool will be the following lemma. We also give a short proof
in the Appendix.

Lemma 2.2 (Newton–Kantorovich method). Let us have Banach spaces X,
Y, Z and open nonempty sets U ⊂ X,V ⊂ Y. Let ȳ : U → V be any function
such that

B(ȳ(x), %) ⊂ V for every x ∈ U and for some % > 0.

Let us have a function F ∈ Cr(U × V,Z) for r ≥ 1. Suppose that

DyF (x, ȳ(x))−1 ∈ L(Z, Y ),

|F (x, ȳ(x))| ≤ α, |DyF (x, ȳ(x))−1| ≤ β

for every x ∈ U and for some α, β > 0. Let

|DyF (x, y1)−DyF (x, y2)| ≤ l|y1 − y2|, x ∈ U, y1, y2 ∈ B(ȳ(x), %) (2.4)

hold for some l ≥ 0. For constants α, β, l, % finally suppose

βl% < 1, (2.5)

αβ < %(1− βl%). (2.6)

Then there is a unique function y : U → V such that

|y(x)− ȳ(x)| ≤ % and F (x, y(x)) = 0 for all x ∈ U.

Moreover
|y(x)− ȳ(x)| < %, DyF (x, y(x))−1 ∈ L(Z, Y )

for all x ∈ U with an estimate∣∣DyF (x, y(x))−1
∣∣ ≤ β

1− βl%
.

We also get y ∈ Cr(U, V ) if we additionally assume the continuity of ȳ.
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3 Discretized Poincaré map

At first we state a lemma about the continuous Poincaré map, the proof can
be found in the Appendix.

Lemma 3.1 (Poincaré’s time return map). There is an ε? ∈ (0, 1/2) such
that for every ε ∈ (0, ε?] there is δre = δre(ε) ∈ (0, δtr] and a C3-function

τ : R×Bδre(ε)
N−1 → (1− ε, 1 + ε)

such that for t ∈ (1− ε, 1 + ε), s ∈ R and c ∈ Bδre(ε)
N−1 we have

z(t, s, c) = 0 for z(t, s, c) := 〈ϕ(t, ξ(s, c))− γ(s), f(γ(s))〉 (3.1)

if and only if t = τ(s, c). In addition τ(s+ 1, ·) = τ(s, ·), s ∈ R.

In this context the usual Poincaré map is defined as

P(s, c) := ϕ(τ(s, c), ξ(s, c)).

Further for admissible values of (h, s, c) using τ from the above lemma in-
troduce

∆̄m := ∆̄m(h, s, c) := τ(s, c)− (m− 1)h.

To get the exact meaning of Pm mentioned informally in the introduc-
tion we have to solve the equation Fm(h, s, c,X,∆) = 0 near (X̄, ∆̄). Here
comes the first application of Lemma 2.2. Before this let us introduce some
technicalities, at first the following positive constants

CΥ ≥ max
h∈[0,h0], x∈B,
k∈{0,1,2,3}

{
|D[k]Υ(h, x)|

}
,

Cϕ ≥ max

{
max

h∈[0,h0], x∈B,
k∈{1,2,3}

{
|D[k]ϕ(h, x)|},

max
h∈[0,3/2]

{
|ϕ′x(h, x)|

}
, max
h∈[0,h0]

{
|ϕ[4]
txxx(h, x)|

}}
,

Cmin ≤ min
x∈γ(R)

{|f(x)|22},

Cτ ≥ max
s∈[0,1], k∈{1,2},
c∈Bδre(ε?)/2

N−1

{
|D[k]τ(s, c)|

}
,

CE ≥ max{|E′(s)|, s ∈ [0, 1]},
Cψ ≥ max

h∈[0,h0], x∈B
k∈{1,2,3}

{
|D[k]ψ(h, x)|

}
.



(3.2)
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Here D[k] is the k-th Fréchet differential. Note that an upper bound of a
type Cψ could be given simply using (2.1) and constants Cϕ,CΥ. Next, let
us have δ > 0, µ ∈ (0, 1) and introduce

dm := dm(p, δ, µ) :=
µ− Cτ δ

mp−1

m(m− 1)
,

for

m ≥ m0(p, δ, µ) := max

{⌈
2

h0

⌉
,

⌈(
δ

δre(ε?)

)1/p
⌉
,

⌊(
Cτδ

µ

) 1
p−1

⌋
+ 1

}
,

where dxe := min{k ∈ Z : k ≥ x} and bxc := −d−xe for any x ∈ R. Further

Im := Im(p, δ, µ) :=

(
1

m
− dm,

1

m
+ dm

)
,

Bm := Bm(p, δ) := B
δ/mp

N−1 ,

Hm := Hm(p, δ, µ) := Im × R× Bm,

 (3.3)

also for m ≥ m0.
The simple goal of these complicated assumptions is that for (h, s, c) ∈

Hm it is straightforward to show

dm > 0, Im ⊂ (0, h0], c ∈ Bδre(ε?)
N−1 ,

and
1− µ
m

< ∆̄m <
1 + µ

m
. (3.4)

Theorem 3.2. Choose any constants CX ,C∆ such that

CX > CX := CϕCΥ, C∆ > C∆ :=
NC3

ϕCΥ

Cmin
. (3.5)

Fix δ > 0, then for every m large, µ small enough and (h, s, c) ∈ Hm(p, δ, µ)
there exists a unique pair (Xm,∆m) = (Xm(h, s, c),∆m(h, s, c)) such that

F (Xm,∆m) = Fm(h, s, c,Xm(h, s, c),∆m(h, s, c)) = 0

and
|Xm − X̄m| < CX/m

p, |∆m − ∆̄m| < C∆/m
p. (3.6)

Moreover the functions Xm,∆m are C3-smooth in their arguments and

(Xm,∆m)(h, s+ 1, c) = (Xm,∆m)(h, s, c), (h, s, c) ∈ Hm. (3.7)
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Proof. The proof is divided into several steps. Two main parts are the
following ones:

Part 1. The solution Xm close to X̄m of Gm(h, s, c,X) = 0 is found.
Part 2. We solve Hm(h, s, c,Xm(h, s, c),∆) = 0 for ∆ near ∆̄m.
These parts are handled using Lemma 2.2 and contain four steps.
Step 1.1. We show that

|Gm(h, s, c, X̄m)| ≤ CΥh
p+1 (3.8)

is valid for all (h, s, c) ∈ Hm and m large enough. From (2.1) we have for
j = 1, . . . ,m− 1 if m is large enough that

|(Gm(h, s, c, X̄m))j | = |(ψ(h, x̄j−1)− ϕ(h, x̄j−1))|
≤ hp+1|Υ(h, x̄j−1)| ≤ CΥh

p+1

where x̄0 := ξ(s, c). Indeed, noting that δ/mp ≤ min{R/Cϕ, δre(ε
?)/2} and

jh ≤ (m− 1)
(

1
m + dm

)
≤ 3

2 are valid for m large enough we get using (3.2)
that

|x̄j − γ(jh+ s)| =
∣∣∣∣∫ 1

0
ϕ′x(jh, γ(s) + ϑE(s)c)E(s)cdϑ

∣∣∣∣
≤ Cϕ|E(s)c| ≤ Cϕ|E(s)c|2 = Cϕ|c|2 ≤ Cϕδ/m

p ≤ R.

Hence using (2.3) we have

x̄j = ϕ(jh, ξ) ∈ B for j = 0, 1, . . . ,m− 1, (3.9)

and so |Υ(h, x̄j−1)| ≤ CΥ and we are done.
Step 1.2. We show that for any µ1 ∈ (0, 1)∣∣DXGm(h, s, c, X̄m)−1

∣∣ ≤ Cϕm

1− µ1
(3.10)

holds if (h, s, c) ∈ Hm, and m is large enough (the main point is of course
that the lower threshold of m-s depends also on µ1, its limit is∞ as µ1 → 0+

– from now on we omit remarks of this type).
Using (2.1) again we get DXGm(h, s, c, X̄m)[Y ] = AY +BY where

AY :=
(
− y1, ϕ′x(h, x̄1)y1 − y2, ϕ′x(h, x̄2)y2 − y3, . . .

. . . , ϕ′x(h, x̄m−2)ym−2 − ym−1
)
,

BY :=
(
0, hp+1Υ′x(h, x̄1)y1, hp+1Υ′x(h, x̄2)y2, . . . , hp+1Υ′x(h, x̄m−2)ym−2

)
.
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Now AY = Z is solvable. Straightforward computation shows

y1 = −z1,

yj = −zj −
j−1∑
r=1

ϕ′x(rh, x̄j−r)zj−r, j = 2, . . . ,m− 1.

 (3.11)

Therefore |A−1Z| ≤ Cϕm (because (3.11) implies |yj | ≤ (1 + (m− 2)Cϕ)|Z|
for j = 1, . . . ,m− 1, noticing Cϕ ≥ 1 and (3.9) we arrive at the statement).
Next we also obtain in a moment |BY | ≤ CΥh

p+1 ((3.9) is used again). Now
using

h <
1

m
+ dm <

1 + µ

m
(3.12)

we get

|A−1B| ≤ CϕmCΥh
p+1 <

CϕCΥ(1 + µ)p+1

mp

and so we have |A−1B| ≤ µ1 < 1 if m is large enough. Lemma 2.1 implies
the invertibility of A+B and also that

∣∣(A+B)−1
∣∣ ≤ |A−1|

1− |A−1B|
≤ Cϕm

1− µ1

and we have arrived at (3.10).
Step 1.3. We show that for any µ2 > 0 we have

|DXGm(h, s, c,X1)−DXGm(h, s, c,X2)| ≤ (1 + µ)Cϕ + µ2

m
|X1 −X2|

(3.13)

for all X1, X2 ∈ B(X̄m, R/2), (h, s, c) ∈ Hm and m large enough.
At first notice that from

ϕ(h, x) = ϕ(0, x) +

∫ 1

0

∂

∂η
(ϕ(ηh, x))dη

= x+ h

∫ 1

0
ϕ′t(ηh, x)dη

we have

ϕ′′xx(h, x) = h

∫ 1

0
ϕ′′′txx(ηh, x)dη

which readily implies (cf. (3.2))

|ϕ′x(h, x1)− ϕ′x(h, x2)| ≤ hCϕ|x1 − x2| (3.14)
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for all x1, x2 such that x1 + ϑ(x2 − x1) ∈ B, ϑ ∈ [0, 1].
For m large enough we have that

∀X1, X2 ∈ B(X̄m, R/2) : xj1 + ϑ(xj2 − x
j
1) ∈ B, j = 1, . . . ,m− 1. (3.15)

This follows from the following considerations. The condition δ/mp ≤
min{R/2Cϕ, δre(ε

?)/2} is fulfilled for m large enough, this implies that
|x̄j − γ(jh+ s)| < R/2 (similar considerations as we obtained (3.9)). Now

|xj1 + ϑ(xj2 − x
j
1)− γ(jh+ s)|

≤(1− ϑ)|xj1 − x̄
j |+ ϑ|xj2 − x̄

j |+ |x̄j − γ(jh+ s)|

<(1− ϑ)
R

2
+ ϑ

R

2
+
R

2
= R

so from (2.3) we have xj1 + ϑ(xj2 − x
j
1) ∈ B which is exactly (3.15).

For such an X1, X2 using (2.1) we derive that

(DXGm(h, s, c,X1)−DXGm(h, s, c,X2)) [Y ]

=
(

0,
(
ϕ′x(h, x1

1)− ϕ′x(h, x1
2)
)
y1,
(
ϕ′x(h, x2

1)− ϕ′x(h, x2
2)
)
y2, . . .

. . . ,
(
ϕ′x(h, xm−2

1 )− ϕ′x(h, xm−2
2 )

)
ym−2

)
+
(

0, hp+1
(
Υ′x(h, x1

1)−Υ′x(h, x1
2)
)
y1, hp+1

(
Υ′x(h, x2

1)−Υ′x(h, x2
2)
)
y2, . . .

. . . , hp+1
(
Υ′x(h, xm−2

1 )−Υ′x(h, xm−2
2 )

)
ym−2

)
.

Using (3.14) and (3.2) we obtain

|DXGm(h, s, c,X1)−DXGm(h, s, c,X2)| ≤ h(Cϕ + hpCΥ)|X1 −X2|.

Note again that (3.12) is valid, therefore for every m large enough we have

h(Cϕ + hpCΥ) <
(1 + µ)Cϕ + (1+µ)p+1CΥ

mp

m
≤ (1 + µ)Cϕ + µ2

m

and we have obtained exactly (3.13).
Step 1.4. Now the final step of the first part is coming. To fit into the

framework of Lemma 2.2 with an equation Gm(h, s, c,X) = 0 set

U := Hm, V := RN(m−1), x = (h, s, c), ȳ(x) := X̄m(h, s, c),

α :=
CΥ

mp+1
, β :=

Cϕm

1− µ1
, l :=

(1 + µ)Cϕ + µ2

m
, % :=

CX

mp
.

 (3.16)
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It has to be noted that for large m, CX/m
p ≤ R is valid and so (2.4) holds

on B(ȳ(x), %). Conditions (2.5) and (2.6) have to be fulfilled. For (2.5) pick
µ3 ∈ (0, 1), then for m large enough we get

βl% =
(1 + µ)C2

ϕ + µ2CXCϕ

mp
≤ µ3 < 1.

Further using (3.12) we get

αβ

%(1− βl%)
<

CϕCΥ(1 + µ)p+1

CX(1−m1)(1− µ3)
,

so (2.6) in this setting will be valid if

CϕCΥ
(1 + µ)p+1

(1− µ1)(1− µ3)
< CX . (3.17)

According to the assumption CX < CX and that (1+µ)p+1

(1−µ1)(1−µ3) → 1+ as

µ, µ1, µ3 → 0+, there are always such suitably small parameters µ, µ1, µ3 ∈
(0, 1) that (3.17) is valid. Therefore Lemma 2.2 can be used (the remaining
assumptions are trivially satisfied) and it gives a unique elementXm(h, s, c) ∈
B(X̄m,CX/mp) such that

Gm(h, s, c,Xm(h, s, c)) = 0.

Moreover Xm is C3-smooth, |Xm − X̄m| < CX/m
p and

|DXGm(h, s, c,Xm)−1| ≤ β

1− βl%
≤ Cϕm

(1− µ1)(1− µ3)
.

Step 2.1. Set

z(h, s, c,∆) : = Hm(h, s, c,Xm(h, s, c),∆)

=
〈
ψ(∆, xm−1

m )− γ(s), f(γ(s))
〉
.

}
(3.18)

We show that for any µ4 > 0 we have

|z(h, s, c, ∆̄m)| ≤
NC2

ϕCX + µ4

mp
(3.19)

for all (h, s, c) ∈ Hm and m large enough. At first note that

z(h, s, c, ∆̄m) =
〈
ϕ(∆̄m, x̄

m−1)− γ(s), f(γ(s))
〉

+
〈
ϕ(∆̄m, x

m−1
m )− ϕ(∆̄m, x̄

m−1) + ∆̄p+1
m Υ(∆̄m, x

m−1
m ), f(γ(s))

〉
EJQTDE, 2013 No. 1, p. 11



where the first term vanishes because of Lemma 3.1. From (3.4) we infer
∆̄m ∈ (0, h0/2) for m large enough. Next

|ϕ(∆̄m, x
m−1
m )− ϕ(∆̄m, x̄

m−1)| ≤ Cϕ|xm−1
m − x̄m−1| < CϕCX/m

p,

|∆̄p+1
m Υ(∆̄m, x

m−1
m )| ≤ (1 + µ)p+1CΥ

mp+1
.

From |〈a, b〉| ≤ N |a||b| and ϕ′t(0, x) = f(x) we obtain

|z(h, s, c, ∆̄m)| ≤
NCϕ

(
CϕCX + (1+µ)p+1CΥ

m

)
mp

.

For m large enough
NCϕ(1+µ)p+1CΥ

m ≤ µ4 is valid, therefore (3.19) holds.
Step 2.2. We show for any µ5 > 0 that

|D∆z(h, s, c, ∆̄m)−1| ≤ 1 + µ5

Cmin
(3.20)

where (h, s, c) ∈ Hm and m is large enough. Straightforward computation
yields D∆z(h, s, c,∆m) = |f(γ(s))|22 + wm(h, s, c) where

wm(h, s, c) :=
〈
f(ϕ(∆̄m, x

m−1
m ))− f(ϕ(∆̄0

m, x̄
m−1,0))

+ ∆̄p+1
m Υ′h(∆̄m, x

m−1
m ), f(γ(s))

〉
,

∆̄0
m :=∆̄m(h, s, 0) = 1− (m− 1)h,

x̄m−1,0 :=x̄m−1(h, s, 0) = γ(s+ (m− 1)h).

Elementary considerations show that

|wm| ≤
NC2

ϕδ(CX + δ(Cτ +
√
NCϕ))

mp
,

therefore for m large enough we obtain

|D∆z(h, s, c, ∆̄m)| ≥ |f(γ(s))|22
1 + µ5

≥ Cmin

1 + µ5
.

This shows (3.20) and we are done.
Step 2.3. We have that

|D∆z(h, s, c,∆1)−D∆z(h, s, c,∆2)| ≤ NCϕCψ|∆1 −∆2| (3.21)
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is valid for all (h, s, c) ∈ Hm,∆1,∆2 ∈ [0, h0] and m large. We easily derive
that

D∆z(h, s, c,∆1)−D∆z(h, s, c,∆2)

=
〈
ψ′h(∆1, x

m−1
m )− ψ′h(∆2, x

m−1
m ), f(γ(s))

〉
=

〈∫ 1

0
ψ′′hh(∆2 + ϑ(∆1 −∆2), xm−1

m )dϑ, f(γ(s))

〉
(∆1 −∆2)

which immediately yields (3.21).
Step 2.4. Finally we solve z(h, s, c,∆) with Lemma 2.2 (see (3.18)). Set

U := Hm, V := (0, h0), x := (h, s, c), ȳ(x) := ∆̄m(h, s, c),

α :=
NC2

ϕCX + µ4

mp
, β :=

1 + µ5

Cmin
, l := NCϕCψ, % := C∆/m

p.

 (3.22)

Note (3.4) again, so B(∆̄m, %) ⊂ V holds for m large enough. Now

βl% =
(1 + µ5)NCϕCψC∆

mp
≤ µ6 < 1

is valid for any µ6 ∈ (0, 1) if m is sufficiently large which fulfills (2.5). Now

αβ

%(1− βl%)
≤

(NC2
ϕCX + µ4)(1 + µ5)

C∆(1− µ6)
,

therefore (2.6) holds if

(NC2
ϕCX + µ4)(1 + µ5)

C∆(1− µ6)
< 1. (3.23)

Because of C∆ < C∆ and the already proven part of our theorem – that is CX

can be chosen arbitrarily close to CX for m large enough – we conclude that
(3.23) can be fulfilled (with sufficiently small µ, µ4, µ5, µ6 > 0). Now Lemma

2.2 gives a unique element ∆m ∈ B(∆̄m,C∆/mp) with z(h, s, c,∆m) = 0.
Moreover

|∆m − ∆̄m| < C∆/m
p, |D∆z(h, s, c,∆m)−1| ≤ β

1− βl%
≤ 1 + µ5

Cmin(1− µ4)

are valid and the proof is finished ((3.7) is a straightforward consequence of
the 1-periodicity of Gm, X̄m, Hm, z, ∆̄m in the variable s, and the uniqueness
parts of the steps 1.4. and 2.4.).
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Remark 1. In the framework of Theorem 3.2 a natural approximation of P
is

Pm(h, s, c) := ψ
(
∆m(h, s, c), xm−1

m (h, s, c)
)
.

Now

|P(s, c)− Pm(h, s, c)| ≤
∣∣ϕ(τ, ξ)− ϕ(∆m, x

m−1
m )

∣∣+
∣∣∆p+1

m Υ(∆m, x
m−1
m )

∣∣ .
Notice that∣∣ϕ(τ, ξ)− ϕ(∆m, X

m−1
m )

∣∣ =
∣∣ϕ(∆̄m, x̄

m−1)− ϕ(∆m, x
m−1
m )

∣∣
≤
∣∣ϕ(∆̄m, x̄

m−1)− ϕ(∆m, x̄
m−1)

∣∣+
∣∣ϕ(∆m, x̄

m−1)− ϕ(∆m, x
m−1
m )

∣∣
≤
∫ 1

0
|ϕ′t(∆m + ϑ(∆̄m −∆m), x̄m−1)|dϑ|∆̄m −∆m|

+

∫ 1

0
|ϕ′x(∆m, x

m−1
m + ϑ(x̄m−1 − xm−1

m ))|dϑ|x̄m−1 − xm−1
m |,

therefore |ϕ(τ, ξ) − ϕ(∆m, X
m−1
m )| ≤ Cϕ(CX + C∆)/mp (we used (3.2) and

(3.15)). In addition from (3.4) and (3.6) we have

|∆m| ≤ |∆̄m|+ |∆m − ∆̄m| ≤
1 + µ

m
+

C∆

mp

so ∣∣∆p+1
m Υ(∆m, x

m−1
m )

∣∣ ≤
(

1 + µ+ C∆
mp−1

)p+1
CΥ

mp+1
.

Hence for any fixed µ7 > 0 we have
∣∣∣∆p+1

m Υ(∆m, x
m−1
m )

∣∣∣ ≤ µ7

mp for every m

sufficiently large.
Putting all this together we arrive at

|P(s, c)− Pm(h, s, c)| ≤ κ/mp, (3.24)

where κ > κ := Cϕ(CX + C∆) is an arbitrary constant, m is sufficiently
large and µ, µ7 are small enough (c.f. (3.5)).

Remark 2. With minor modifications in our settings p ≥ 1 would be possible
until now (basically to tackle the additional case p = 1 we would need: the
extension ψ to be a function defined on [−h0, h0]×RN ; enlarging constants
in (3.2) by replacing [0, h0] with [−h0, h0]; suitable changes in the definitions
of dm,m0, Im,Bm). The fundamental difference in the case p = 1 would be
that the natural requirement 0 < ∆m < 2h is generally not satisfied, even
for m large. So the last step-size is inappropriate. Possible correction would
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be to find the right number of iterations of ψ(h, ·) to ensure that the next
iteration with a step ∆̂ near h (at least satisfying 0 < ∆̂ < 2h) we hit
the Poincaré section. This procedure does not fit to our approach based on
Lemma 2.2 therefore we are not going to specify the details.

4 Closeness of differentials

Now we would like to get an upper bound in the spirit of (3.24) but for
various differentials |Dv[P(s, c)− Pm(h, s, c)]| for v ∈ {h, s, c}. At first we
upgrade Lemma 2.2. Undoubtedly it is of its own interest in this abstract
setting.

Lemma 4.1. Suppose all the assumption of Lemma 2.2. Moreover let us
have α1, α2, l1 ≥ 0 such that

ȳ ∈ C1(U, V ) and |ȳ′(x)| ≤ α1,

|ϑ′(x)| ≤ α2, x ∈ U, for ϑ(x) := F (x, ȳ(x)),

|F ′x(x, y1)− F ′x(x, y2)| ≤ l1|y1 − y2| for x ∈ U, y1, y2 ∈ B(ȳ(x), %).

 (4.1)

Then we are able to extend the results of Lemma 2.2 by an estimate

|y′(x)− ȳ′(x)| ≤ %1, x ∈ U, (4.2)

where

%1 :=
β

1− βl%
(l%α1 + l1%+ α2) . (4.3)

Proof. From the equations F (x, y(x)) = 0 and F (x, ȳ(x)) = ϑ(x) after dif-
ferentiation we infer for x ∈ U that

y′(x) = −(F ′y(x, y(x)))−1F ′x(x, y(x)),

ȳ′(x) = (F ′y(x, ȳ(x)))−1(ϑ′(x)− F ′x(x, ȳ(x))).

From now we omit (x, y(x)) and (x, ȳ(x)), the superscript ¯ above F will
indicate the substitution of (x, ȳ(x)), otherwise we substitute (x, y(x)). We
have

y′ − ȳ′ = (F ′y)
−1
(
−F ′x − F ′yȳ′

)
= (F ′y)

−1
(
(F̄ ′y − F ′y)ȳ′ − F̄ ′yȳ′ − F ′x

)
= (F ′y)

−1
(
(F̄ ′y − F ′y)ȳ′ + F̄ ′x − F ′x − ϑ′

)
,

from which we get exactly (4.2) (using (4.1) and the assumptions and results
of Lemma 2.2) and the proof is finished.
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Adopting the notations of Theorem 3.2 and applying the previous lemma
we may obtain the following statement, which is a continuation of Theorem
3.2.

Theorem 4.2. There are constants CV,v for V ∈ {X,∆} and v ∈ {h, s, c}
such that ∣∣Dv[Vm − V̄m]

∣∣ ≤CV,v/m
p, V ∈ {X,∆}, v ∈ {s, c},∣∣Dh[Vm − V̄m]

∣∣ ≤CV,h/m
p−1, V ∈ {X,∆},

}
(4.4)

where δ > 0 is an arbitrary constant, m is large enough, µ is sufficiently
small and (h, s, c) ∈ Hm(p, δ, µ).

Proof. To be able to apply Lemma 4.1 twice with frameworks described in
(3.16) and (3.22) we have to find additional constants (for the sake of (4.1))

α1 = α1[V, v], α2 = α2[V, v], l1 = l1[V, v]

for all V ∈ {X,∆}, v ∈ {h, s, c}. This will be a bit sweating task.
Part 1.1 – about α1[X, v] for v ∈ {h, s, c}. After differentiation we get

Dh(x̄j) = f(x̄j)j, Ds(x̄
j) = ϕ′x(jh, ξ)(f(γ(s)) + E′(s)c),

Dc(x̄
j) = ϕ′x(jh, ξ)E(s)

for j = 1, 2, . . . ,m− 1. Therefore (using (3.2) and that |E(s)| ≤
√
N)

|Dh(X̄m)| ≤ Cϕm, |Ds(X̄m)| ≤ C2
ϕ + µ9, |Dc(X̄m)| ≤ Cϕ

√
N

where µ9 > 0 is an arbitrary parameter and m is large enough (CϕCEδ/m
p ≤

µ9 is valid for m large enough). So

α1[X,h] := Cϕm, α1[X, s] := C2
ϕ + µ9, α1[X, c] := Cϕ

√
N. (4.5)

Part 1.2 – about α2[X, v] for v ∈ {h, s, c}. Note that

Ḡjm :=Gm(h, s, c, X̄m(h, s, c))j = ψ(h, x̄j−1)− ϕ(h, x̄j−1)

=hp+1Υ(h, x̄j−1), j = 1, 2, . . . ,m− 1.

This implies

Dh(Ḡjm) =hp[(p+ 1)Υ(h, x̄j−1)

+ h(Υ′h(h, x̄j−1) + Υ′x(h, x̄j−1)Dh(x̄j−1))],

Ds(Ḡ
j
m) =hp+1Υ′x(h, x̄j−1)Ds(x̄

j−1),

Dc(Ḡ
j
m) =hp+1Υ′x(h, x̄j−1)Dc(x̄

j−1).
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Using Part 1.1. of this proof and h < 1+µ
m for Ḡm := (Ḡ1

m, Ḡ
2
m, . . . , Ḡ

m−1
m )

we infer

|Dh(Ḡm)| ≤ CΥ(Cϕ + p+ 1) + µ10

mp
,

|Ds(Ḡm)| ≤
CΥC2

ϕ + µ10

mp+1
, |Dc(Ḡm)| ≤ CΥCϕ

√
N + µ10

mp+1
.

for any fixed µ10 > 0, every m large enough and µ sufficiently small. This
yields

α2[X,h] :=
CΥ(Cϕ + p+ 1) + µ10

mp
, α2[X, s] :=

CΥC2
ϕ + µ10

mp+1
,

α2[X, c] :=
CΥCϕ

√
N + µ10

mp+1
.

 (4.6)

Part 1.3 – about l1[X, v] for v ∈ {h, s, c}. We have in a moment that
l1[X, v] = 0 for v ∈ {s, c}. Further note at first that

DhGm(h, s, c,Xi) = (ψh(h, ξ), ψh(h, x1
i ), . . . , ψh(h, xm−1

i ))

for Xi ∈ B(X̄m,CX/mp), i ∈ {1, 2}. Now for x1, x2 such that x1 + ϑ(x2 −
x1) ∈ B for all ϑ ∈ [0, 1] we have

|ψh(h, x1)− ψh(h, x2)| ≤
∫ 1

0
|ψ′′hx(h, x2 + ϑ(x1 − x2))|dϑ|x1 − x2|

≤Cψ|x1 − x2|

which implies that l1[X,h] := Cψ is a good choice. Therefore

l1[X,h] := Cψ, l1[X, s] := 0, l1[X, c] := 0. (4.7)

Part 1.4 – determining CX,v for v ∈ {h, s, c}. Now we are ready to apply
Lemma 4.1 in a setting (3.16) extended with (4.5),(4.6) and (4.7). From
(4.2) we obtain exactly (4.4) in a case V = X, v ∈ {h, s, c} with

CX,h >CX,h := Cϕ[C2
ϕCX + CψCX + CΥ(Cϕ + p+ 1)],

CX,s >CX,s := C3
ϕ[CϕCX + CΥ],

CX,c >CX,c :=
√
NC2

ϕ[CϕCX + CΥ]
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for every m large enough. Indeed, for example in the case v = h (others are
treated similarly) we get from (4.3) for µ11 > 0 that

∣∣Dh(Xm − X̄m)
∣∣ ≤ β

1− βl%

[
l%α1[X,h] + l1[X,h]%+ α2[X,h]

]
=

Cϕm

(1− µ1)(1− µ3)

[
(1 + µ)Cϕ + µ2

m

CX

mp
Cϕm+ Cψ

CX

mp

+
CΥ(Cϕ + p+ 1) + µ10

mp

]
≤

CX,h + µ11

mp−1

for m large and µ small enough (we have also used (3.5) from Theorem 3.2).
Part 2.1 – about α1[∆, v] for v ∈ {h, s, c}. We easily get

Dh(∆̄m) = −m+ 1, Ds(∆̄m) = τ ′s, Dc(∆̄m) = τ ′c.

Therefore

α1[∆, h] := m, α1[∆, s] := Cτ , α1[X, c] := Cτ . (4.8)

Part 2.2 – about α2[∆, v] for v ∈ {h, s, c}. Lemma 3.1 implies (see also
the definition (3.18))

z(h, s, c, ∆̄m) =
〈
ϕ(∆̄m, x̄

m−1)− γ(s), f(γ(s))
〉

+ 〈wm(h, s, c), f(γ(s))〉
= 〈wm(h, s, c), f(γ(s))〉 ,

where

wm := ϕ(∆̄m, x
m−1
m )− ϕ(∆̄m, x̄

m−1) + ∆̄p+1
m Υ(∆̄m, x

m−1
m ).

Now

Dvz(h, s, c,∆m) =〈Dvwm, f(γ(s))〉, s ∈ {h, c},
Dsz(h, s, c,∆m) =〈Dswm, f(γ(s))〉+ 〈wm, f ′x(γ(s))f(γ(s))〉.

So at first we handle terms Dvwm for v ∈ {h, s, c}. Straightforward compu-
tation shows that

Dvwm =(A1 +A2)Dv∆̄m + (A3 +A4)Dvx̄
m−1

+ (A5 +A4)Dv(x
m−1
m − x̄m−1), v ∈ {h, s, c}

}
(4.9)
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where

A1 :=ϕ′t(∆̄m, x
m−1
m )− ϕ′t(∆̄m, x̄

m−1),

A2 :=(p+ 1)∆̄p
mΥ(∆̄m, x

m−1
m ) + ∆̄p+1

m Υ′h(∆̄m, x
m−1
m ),

A3 :=ϕ′x(∆̄m, x
m−1
m )− ϕ′x(∆̄m, x̄

m−1),

A4 :=∆̄p+1
m Υ′x(∆̄m, x

m−1
m ),

A5 :=ϕ′x(∆̄m, x
m−1
m ).

Let us have µ12 > 0, then computations as in the previous parts show that
for m large and µ small enough we have

|A1 +A2| ≤
CϕCX + CΥ(p+ 1) + µ12

mp
,

|A3 +A4| ≤
CϕCX + µ12

mp
, |A5 +A4| ≤ Cϕ + µ12

For the remaining parts of the right side of (4.9) we have upper bounds in
(4.5), (4.8) and in the already proved case of (4.4) (c.f. Part 1.4). Putting
this together we get for any µ13 > 0 that

|Dhwm| ≤
C1 + µ13

mp−1
, |Dswm| ≤

C2 + µ13

mp
, |Dcwm| ≤

C3 + µ13

mp
,

where m is sufficiently large, µ is small enough and

C1 :=CϕCX + CΥ(p+ 1) + C2
ϕCX + CX,hCϕ,

C2 :=
(
CϕCX + CΥ(p+ 1)

)
Cτ + C3

ϕCX + CX,sCϕ,

C3 :=
(
CϕCX + CΥ(p+ 1)

)
Cτ +

√
NC2

ϕCX + CX,cCϕ.

Furthermore, for C4 := CϕCX similar computations show also |wm| ≤ (C4 +
µ13)/mp. Therefore we can finish this step with the following choices

α2[∆, h] :=
NCϕC1 + µ14

mp−1
,

α2[∆, s] :=
NCϕ(C2 + C4) + µ14

mp
,

α2[∆, c] :=
NCϕC3 + µ14

mp
,


(4.10)

where µ14 > 0 is an arbitrary parameter, m is large and µ is small enough.
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Part 2.3 – about l1[∆, v] for v ∈ {h, s, c}. For ∆ ∈ B(∆̄m,C∆/mp) dif-
ferentiating yields

Dvz(h, s, c,∆) =〈ψ′x(∆, xm−1
m )Dvx

m−1
m , f(γ(s))〉, v ∈ {h, c},

Dsz(h, s, c,∆) =〈ψ′x(∆, xm−1
m )Dsx

m−1
m , f(γ(s))〉

+ 〈ψ(∆, xm−1
m )− γ(s), ϕ′′tx(s, ξ0)〉.

Note that from a triangle inequality we have

|Dhx
m−1
m | ≤ |Dhx̄

m−1|+ |Dh(xm−1
m − x̄m−1)| ≤ Cϕm+ CX,h/m

p,

|Dsx
m−1
m | ≤ C2

ϕ + µ9 + CX,s/m
p, |Dcx

m−1
m | ≤

√
NCϕ + CX,c/m

p.

Employing Newton–Leibniz formula straightforward computation implies
that for any µ15 > 0 and m large enough we have the choices

l1[∆, h] := NCψC2
ϕm+ µ15, l1[∆, s] := NCψCϕ(1 + C2

ϕ) + µ15,

l1[∆, c] := N3/2CψC2
ϕ + µ15.

}
(4.11)

Part 2.4 – determining C∆,v for v ∈ {h, s, c}. As in Part 1.4 we apply
Lemma 4.1 in a setting (3.22) extended with (4.8), (4.10) and (4.11). From
(4.2) we obtain (4.4) in a case V = ∆, v ∈ {h, s, c} with

C∆,h >C∆,h :=
NCϕ[CψC∆(1 + Cϕ) + C1]

Cmin
,

C∆,s >C∆,s :=
NCϕ[CψC∆(Cτ + C2

ϕ) + C2 + C4]

Cmin
,

C∆,c >C∆,c :=
NCϕ[CψC∆(Cτ +

√
NCϕ) + C3]

Cmin

for every m large, µ small. The proof is complete.

Remark 3. Now as in the proof of Theorem 4.2 (see (4.9)) we get

DvP(s, c)−DvP(h, s, c) = (Ā1 − Ā2)Dv∆̄m + (Ā3 − Ā4)Dvx̄
m−1

−(Ā5 + Ā2)Dv(∆m − ∆̄m)− (Ā6 + Ā4)Dv(X
m−1
m − x̄m−1)

(4.12)

for v ∈ {h, s, c}, where

Ā1 :=ϕ′t(∆̄m, x̄
m−1)− ϕ′t(∆m, x

m−1
m ),

Ā2 :=(p+ 1)∆p
mΥ(∆m, x

m−1
m ) + ∆p+1

m Υ′h(∆m, x
m−1
m ),

Ā3 :=ϕ′x(∆̄m, x̄
m−1)− ϕ′x(∆m, x

m−1
m ),

Ā4 :=∆p+1
m Υ′x(∆m, x

m−1
m ),

Ā5 :=ϕ′t(∆m, x
m−1
m ), Ā6 := ϕ′x(∆m, x

m−1
m ).
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From (3.4) we infer

|∆m| ≤ |∆̄m|+ |∆m − ∆̄m| ≤
1 + µ

m
+

C∆

mp
=

1 + µ+ C∆
mp−1

m
.

After a lengthy computation for µ16 > 0 we get

|Ā1 − Ā2| ≤
C5 + µ16

mp
, |Ā3 − Ā4| ≤

CϕC∆ + µ16

mp
,

|Ā5 + Ā2| ≤ Cϕ + µ16, |Ā6 + Ā4| ≤ Cϕ + µ16,

where C5 := Cϕ(C∆ + CX) + (p + 1)Cp5CΥ, m is large µ is small enough.
Using in addition (4.4), (4.5) and (4.8) for remaining terms in (4.12) we
finally obtain

|Dh[P(s, c)− Pm(h, s, c)]| ≤κh/mp−1,

|Dv[P(s, c)− Pm(h, s, c)]| ≤κv/mp, v ∈ {s, c},

}
(4.13)

where

κh >C5 + CϕC∆Cϕ + Cϕ(C∆,h + CX,h),

κs >C5Cτ + CϕC∆C2
ϕ + Cϕ(C∆,s + CX,s),

κc >C5Cτ + CϕC∆Cϕ

√
N + Cϕ(C∆,c + CX,c).

One may wish to continue in this direction developing bounds for

D2
v1v2

[Pm(h, s, c)− P(s, c)], v1, v2 ∈ {h, s, c}.

This is quite technical (computations rather for computer), therefore we
only show the key equipment namely the natural extension of Lemma 2.2
to the next level in the spirit of Lemma 4.1.

Lemma 4.3. Suppose all the assumptions of Lemma 2.2 with X = X1 ×
X2×X3 (Xi, i ∈ {1, 2, 3} are Banach spaces, and | · |X := maxi∈{1,2,3} | · |Xi).
Let us have F ∈ Cr(U × V,Z) for r ≥ 2 and also ȳ ∈ C2(U, V ). Suppose
(like in (4.1)) that

|Dxi ȳ| ≤ α1,i, |Dxiϑ| ≤ α2,i,

|F ′xi(x, y1)− F ′xi(x, y2)| ≤ l1,i|y1 − y2|, x ∈ U, y1, y2 ∈ B(ȳ(x), %)

}
(4.14)
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for i ∈ {1, 2, 3}. Introduce also %1,i := β
1−βl% (l%α1,i + l1,i%+ α2,i) accordingly

to (4.2). Further let us have

|D2
xixj ȳ| ≤ α3,i,j , |D2

xixjϑ| ≤ α4,i,j ,

|F ′′xiy(x, ȳ(x))| ≤ α5,i, |F ′′yy(x, ȳ(x))| ≤ α6,

|F ′′xixj (x, y1)− F ′′xixj (x, y2)| ≤ l2,i,j |y1 − y2|,
|F ′′xiy(x, y1)− F ′′xiy(x, y2)| ≤ l3,i|y1 − y2|,
|F ′′yy(x, y1)− F ′′yy(x, y2)| ≤ l4|y1 − y2|


(4.15)

for i, j ∈ {1, 2, 3}, i ≤ j and for all x ∈ U and y1, y2 ∈ B(ȳ(x), %). Then

|Dxixjy(x)−Dxixj ȳ(x)| ≤ %2,i,j , x ∈ U, i, j ∈ {1, 2, 3}, i ≤ j, (4.16)

where

%2,i,j :=
β

1− βl%

(
l%α3,i,j + α4,i,j + %l2,i,j + %1,jα5,i + %l3,i(α1,j + %1,j)

+ %1,iα5,j + %l3,j(α1,i + %1,i) + %1,iα6α1,j + %1,jα6(α1,i + %1,i)

+ %l4(α1,i + %1,i)(α1,j + %1,j)
)
.

Proof. Partial derivations with respect to xi into the direction δv ∈ Xi of
the equations F (x, y(x)) = 0 and F (x, ȳ(x)) = ϑ(x) gives (we use notation
F̄ from the proof of Lemma 4.1)

F ′xiδv + F ′yy
′
xiδv = 0, F̄ ′xiδv + F̄ ′yȳ

′
xiδv = ϑ′xiδv.

Now differentiating once more with respect to xj into the direction δw ∈ Xj

we get

F ′′xixj [δv, δw] + F ′′xiy[δv, y
′
xjδw] + F ′′yxj [y

′
xiδv, δw] + F ′′yy[y

′
xiδv, y

′
xjδw]

+F ′yy
′′
xixj [δv, δw] = 0,

F̄ ′′xixj [δv, δw] + F̄ ′′xiy[δv, ȳ
′
xjδw] + F̄ ′′yxj [ȳ

′
xiδv, δw] + F̄ ′′yy[ȳ

′
xiδv, ȳ

′
xjδw]

+F̄ ′yȳ
′′
xixj [δv, δw] = ϑ′′xixj [δv, δw].
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Therefore as in the proof of Lemma 4.1 we infer

(y′′xixj − ȳ
′′
xixj )[δv, δw]

=(F ′y)
−1
{

(F̄ ′y − F ′y)ȳ′′xixj + F ′yy
′′
xixj − F̄

′
yȳ
′′
xixj

}
[δv, δw]

=(F ′y)
−1
{[

(F̄ ′y − F ′y)ȳ′′xixj − ϑ
′′
xixj + (F̄ ′′xixj − F

′′
xixj )

]
[δv, δw]

+ F̄ ′′xiy[δv, (ȳ
′
xj − y′xj )δw] + (F̄ ′′xiy − F

′′
xiy)[δv, y

′
xjδw]

+ F̄ ′′yxj [(ȳ
′
xi − y′xi)δv, δw] + (F̄ ′′yxj − F

′′
yxj )[y

′
xiδv, δw]

+ F̄ ′′yy[(ȳ
′
xi − y′xi)δv, ȳ

′
xjδw] + F̄ ′′yy[y

′
xiδv, (ȳ

′
xj − y′xj )δw]

+ (F̄ ′′yy − F ′′yy)[ȳ′xiδv, ȳ
′
xjδw]

}
.

Now using the symmetry of the second derivatives, switching to the norms
and employing the assumptions of the theorem the final statement (4.16)
follows and the proof is finished.

Now we show a sketch of one possible application of Lemma 4.3. Let the
equation Gm(h, s, c,X) = 0 be in the role of F (x1, x2, x3, y) = 0 with a basic
framework given in (3.16). We only deal with the case i = j = 3, when we
are looking for a bound of |D2

ccXm −D2
ccX̄m|. The proof of Theorem 4.2 –

namely (4.5), (4.6) and (4.7) – using notations of (4.14) implies

α1 =
√
NCϕ, α2 =

√
NCϕCΥ + µ10

mp+1
, l1 = 0

needed in (4.14). Remaining constants in (4.15), skipping the details of the
lengthy computation, are

α3 = NCϕ, α4 =
N(1 + µ)p+1CϕCΥ(1 + Cϕ)

mp+1
, α5 = 0,

α6 :=
(1 + µ)Cϕ + µ2

m
, l2 = l3 = 0, l4 =

(1 + µ)Cϕ + µ2

m
.

Now application of Lemma 4.3 yields that for CX,cc > CX,cc, m large and µ
small enough we have

|D2
ccXm −D2

ccX̄m| ≤ CX,cc/m
p, (4.17)

where CX,cc := C2
ϕ[NCϕCX +NCΥ(1 + Cϕ) + 2

√
NCϕCX,c +NC2

ϕCX ].
Similarly it is possible to handle the equation z(h, s, c,∆) = 0 in a setting

(3.22). From (4.8), (4.10) and (4.11) we get

α1 = Cτ , α2 =
NCϕC3 + µ14

mp
, l1 = N3/2C2

ϕCψ + µ15.
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Omitting again the details we get for µ17 > 0, m large and µ small enough
that

α3 = Cτ , α4 =
N(p+ 1)pCϕCΥ + µ17

mp−1
,

α5 = N3/2C2
ϕCψ + µ17, α6 = NCϕCψ,

l2 = N2C2
ϕCψ(Cϕ + 1) + µ17. l3 = α5, l4 = α6.

So Lemma 4.3 gives

|D2
cc∆m −D2

cc∆̄m| ≤ C∆,cc/m
p−1 (4.18)

for m large enough where C∆,cc > C∆,cc :=
N(p+1)pCϕCΥ

Cmin
.

Now as in the Remark 1 it would be possible to derive

|D2
ccPm(h, s, c)−D2

ccP(s, c)| ≤ C/mp−1

for some constant C. Instead of this we show a weaker result, namely that
|D2

ccPm(h, s, c)| is uniformly bounded for every m large enough (uniformity
is related to m-s).

Differentiation yields

D2
ccPm(h, s, c)[δv, δw] = ψ′′hh(∆m, x

m−1
m )[Dc∆mδv,Dc∆mδw]

+ ψ′′hx(∆m, x
m−1
m )[Dc∆mδv,Dcx

m−1
m δw] + ψ′h(∆m, x

m−1
m )D2

cc∆m[δv, δw]

+ ψ′′xh(∆m, x
m−1
m )[Dcx

m−1
m δv,Dc∆mδw]

+ ψ′′xx(∆m, x
m−1
m )[Dcx

m−1
m δv,Dcx

m−1
m δw] + ψ′x(∆m, x

m−1
m )D2

ccx
m−1
m [δv, δw].

Switching to the norms, using (3.2), (4.4), (4.17) and (4.18) after some
computations we obtain

|D2
ccPm(h, s, c)| ≤ C6 (4.19)

for C6 > C6 := Cψ

[
(Cτ +

√
NCϕ)2 + Cτ +NCϕ

]
, large m and small µ.

5 A closed curve for a discrete dynamics

The nondegeneracy condition of γ

1 is a simple eigenvalue of ϕ′x(1, ξ0) (5.1)

is in the central role in this section.
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The word simple means that the algebraic multiplicity of the eigenvalue 1
is one, in other words λ = 1 is a simple root of the characteristic polynomial

det
(
λI − ϕ′x(1, ξ0)

)
.

Noting

ϕ′x(1, γ(s)) = Qϕ′x(1, ξ0)Q−1, Q := ϕ′x(s, ξ0), s ∈ R

we have that (5.1) is equivalent to

1 is a simple eigenvalue of ϕ′x(1, γ(s)) (5.2)

for any s ∈ R.
Introduce As := E(s)Tϕ′x(1, γ(s))E(s)−IN−1 where IN−1 is an (N − 1)×

(N−1) identity matrix. Condition (5.1) implies that As is invertible. Indeed,
suppose on the contrary that Asv = 0 for v ∈ RN−1, v 6= 0. Then for
w := E(s)v 6= 0 we infer

ϕ′x(1, γ(s))w = αf(γ(s)) + w, for some α ∈ R.

Using also that ϕ′x(1, γ(s))f(γ(s)) = f(γ(s)) we get (I−ϕ′x(1, γ(s)))2w = 0.
Therefore the geometric multiplicity of the eigenvalue 1 is at least 2 (w and
f(γ(s)) are linearly independent vectors from the generalized eigenspace).
This is a contradiction with (5.2) (geometric multiplicity is always less than
or equal to algebraic multiplicity – for more details see [12, Chapter 6 and
Appendix III]).

Theorem 5.1. Suppose that (5.1) holds and we have δ >
√
Nκa where

a := maxs∈[0,1]

∣∣A−1
s

∣∣ . Then for every m large enough and µ sufficiently
small there is a unique function

ζm : Im(p, δ, µ)× R→ Bm(p, δ)

such that

Pm(h, s, ζm(h, s)) = ξ(s, ζm(h, s)), (h, s) ∈ Im × R. (5.3)

In addition ζm is C3-smooth in its arguments and ζm(h, s + 1) = ζm(h, s)
for all (h, s) ∈ Im × R.
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Proof. Introduce g(h, s, c) := E(s)T (Pm(h, s, c)− γ(s)) − c for (h, s, c) ∈
Hm. Then it is easy to see that (5.3) is equivalent to g(h, s, ζm(h, s)) = 0.
To settle this we apply again Lemma 2.2 in the framework

U = Im × R, V = RN−1, x = (h, s), ȳ(x) = 0 ∈ RN−1.

From (3.24) we get

|g(h, s, 0)| = |E(s)T ||Pm(h, s, 0)− P(s, 0)| ≤
√
Nκ

mp
.

Further using P ′c(s, 0) = f(γ(s))τ ′c(s, 0) + ϕ′x(1, γ(s))E(s) and (2.2) it is
straightforward to verify that

g′c(h, s, 0) = As +W, W := E(s)T
[
(Pm)′c (h, s, 0)− P ′c(s, 0)

]
.

From (4.13) we have |W | ≤
√
Nκc
mp . Picking up any µ18 ∈ [0, 1) for every m

large enough we obtain

|A−1
s W | ≤ a

√
Nκc
mp

≤ µ18 < 1.

So from Lemma 2.1 we infer that g′c(h, s, 0) is invertible with

|g′c(h, s, 0)−1| ≤ a

1− µ18
.

Next (4.19) easily gives for c1, c2 ∈ Bm that

|g′c(h, s, c1)− g′c(h, s, c2)|

=
∣∣E(s)T

∣∣ ∫ 1

0

∣∣(Pm)′′cc(h, s, c2 + ϑ(c1 − c2))
∣∣dϑ|c1 − c2|

≤
√
NC6|c1 − c2|.

In the context of the setting of Lemma (2.2) we have derived

α =

√
Nκ

mp
, β =

a

1− µ18
, l =

√
NC6

and we have also % = δ
mp . Now for any µ19 ∈ (0, 1) we get

βl% =
a
√
NC6δ

(1− µ18)mp
≤ µ19 < 1
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for m large enough. So (2.5) holds. Further

αβ

%(1− βl%)
=

√
Nκa

(1− µ18)(1− µ19)δ

yields that (2.6) is valid if and only if

√
Nκa

(1− µ18)(1− µ19)
< δ.

This is satisfied for m large and κ − κ, µ, µ18, µ19 small enough because of
(3.24) and δ >

√
Nκa. Application of Lemma 2.2 gives ζm with the desired

properties and the proof is finished.

Remark 4. Introducing

Nm := Nm(p, δ) :=
{
ξ(s, c) ∈ RN : s ∈ R, c ∈ Bm(p, δ)

}
according to Theorem 5.1 we can state for the appropriate values of param-
eters that{

x ∈ Nm(p, δ) : Pm
(
h, ξ−1(x)

)
= x

}
= {ξ(s, ζm(h, s)) : s ∈ R} .

Thorough study of the set of m-periodic points for discretized dynamics
was done in [4]. Our approach implies some results also to this direction.

Theorem 5.2. Suppose all the assumptions of Theorem 5.1 and fix any
η ∈ (0, 1). Then for m large enough we have for every s ∈ R a unique
element h?(s) ∈ Im such that

∆m(h?(s), s, ζm(h?(s), s)) = h?(s).

Further h?(s+ 1) = h?(s) and h? ∈ C3(R, I?m) where

I?m :=

(
1

m
− d?m,

1

m
+ d?m

)
, d?m :=

C∆ + Cτδ

mp(m− η)
< dm.

Therefore{
x ∈ Nm(p, δ) : x = ψm(h, x)

}
=
{
ξ(s, ζm(h?(s), s)) : s ∈ R

}
.

EJQTDE, 2013 No. 1, p. 27



Proof. It is an elementary fact that for

g(h, s) := ∆m(h, sζm(h, s))− h, h ∈ Im, s ∈ R

we have

g(h, s) = g(1/m, s) +

∫ h

1/m
g′h(ϑ, s)dϑ. (5.4)

Now (3.2) and (4.4) yields

|g(1/m, s)| =|∆m(1/m, s, ζm(1/m, s))− ∆̄m(1/m, s, 0)|
≤|∆m(1/m, s, ζm(1/m, s))− ∆̄m(1/m, s, ζm(1/m, s))|
− |∆̄m(1/m, s, ζm(1/m, s))− ∆̄m(1/m, s, 0)|

≤C∆ + Cτδ

mp
.

Further

g′h(ϑ, s) = (∆m)′h(ϑ, s, ζm(ϑ, s)) + (∆m)′c(ϑ, s, ζm(ϑ, s))(ζm)′h(ϑ, s)− 1.

From Theorem 5.1 (using notation for g from its proof) we infer

(ζm)′h(ϑ, s) = −g′h(ϑ, s, ζm(ϑ, s))
[
g′c(ϑ, s, ζm(ϑ, s))

]−1

hence (cf. Lemma 2.2 and bound (4.13))

|(ζm)′h(ϑ, s)| ≤ a
√
Nκh

(1− µ18)(1− µ19)mp−1
.

In addition using (4.4) elementary computation shows

(∆m)′h(ϑ, s, ζm(ϑ, s)) = (∆̄m)′h(ϑ, s, ζm(ϑ, s)) + wm = −m+ 1 + vm,

vm := (∆m)′h(ϑ, s, ζm(ϑ, s))− (∆̄m)′h(ϑ, s, ζm(ϑ, s)), |vm| ≤
C∆,h

mp−1
,

|(∆m)′c(ϑ, s, ζm(ϑ, s))| ≤ Cτ +
C∆,c

mp
.

Combining these facts we get

g′h(ϑ, s) = −m+ wm, |wm| ≤ η (5.5)

for every m large enough.
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The relation d?m < dm holds evidently for m sufficiently large. Now (5.4)
implies after easy computations that

g(h, s) < 0, for h ∈
[

1

m
+ d?m,

1

m
+ dm

)
,

g(h, s) > 0, for h ∈
(

1

m
− dm,

1

m
− d?m

]
.

 (5.6)

Because of g(·, s) : Im → R is a C1-function with properties (5.6) and (5.5)
we get a unique element h?(s) ∈ Im such that g(h?(s), s) = 0 moreover
h?(s) ∈ I?m. Application of the Implicit Function Theorem for the equation
g(h, s) = 0 in the neighbourhood of the solution (h?(s′), s′) for any s′ ∈ R
yields also the C3-smoothness of h? : R → I?m and the proof is completed
(the periodicity of h? is straightforward).

Remark 5. Usual arguments yield that for any A0 ∈ L(RN−1) and r > 0 we
have that the following minimum is attained and

min
λ∈C\Br

z∈RN−1,|z|=1

|(λI −A0)z| := c(r) > 0,

where Br :=
⋃
µ∈σ(A0)B(µ, r) and σ(A0) ⊂ C is the spectrum of A0. There-

fore for any A ∈ L(RN−1) such that |A − A0| < c(r) we have σ(A) ⊂ Br
(for more general statement see [3, Corollary 2.6, pp. 470]). Indeed, for
λ ∈ C \Br we have

λI −A = (λI −A0)(I + (λI −A0)−1(A0 −A))

and ∣∣(λI −A0)−1(A0 −A)
∣∣ ≤ ∣∣(λI −A0)−1

∣∣ |A0 −A| <
1

c(r)
· c(r) = 1.

From Lemma 2.1 we get λ ∈ C \ σ(A) which gives C \ Br ⊂ C \ σ(A) and
we are done. Now set

A0 := E(s)TP ′c(s, 0), A := E(s)T (Pm)′c(h, s, c)

for any (h, s, c) ∈ Hm. Then after careful computations using primarily
(4.13) we get |A−A0| < c(r) for m large enough. This yields

σ(A) ⊂
⋃

µ∈σ(A0)

B(µ, r).

Hence with the substitution c = ζm(h, s), or h = h?(s) and c = ζm(h?(s), s),
we get for above detected curves the corresponding closeness statements
about their (h, s) and s dependent spectrums.
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Appendix

For the sake of completeness we collect here some proofs.

Proof of Lemma 2.2. We transform the task to the fixed point problem of
the mapping

G(x, y) := y − [DyF (x, ȳ(x))]−1F (x, y).

Choose an arbitrary x ∈ U. For y1, y2 ∈ B(ȳ(x), %) we have

|G(x, y1)−G(x, y2)| =
∣∣y1 − y2 −DyF (x, ȳ(x))−1(F (x, y1)− F (x, y2))

∣∣
≤ β

∣∣∣∣∫ 1

0
[DyF (x, ȳ(x))−DyF (x, y2 + s(y1 − y2))] (y1 − y2)ds

∣∣∣∣
≤ βl

∫ 1

0
|y2 + s(y1 − y2)| |y1 − y2|ds ≤ βl%|y1 − y2|,

where we used y2 + s(y1− y2) ∈ B(ȳ(x), %) which is caused by the convexity
of the closed ball B(ȳ(x), %).

On the other hand |G(x, ȳ(x)) − ȳ(x)| ≤ βα < %(1 − βl%) (cf. (2.6))
implies for any y ∈ B(ȳ(x), %) that

|G(x, y)− ȳ(x)| ≤|G(x, y)−G(x, ȳ(x))|+ |G(x, ȳ(x))− ȳ(x)|
<βl%|y − ȳ(x)|+ %(1− βl%) ≤ βl%2 + %(1− βl%) = %

therefore G(x, ·) : B(ȳ(x), %) → B(ȳ(x), %) ⊂ B(ȳ(x), %) and it is a con-
traction (from (2.5)). Banach’s theorem yields a unique fixed point y(x) ∈
B(ȳ(x), %) of this mapping which lies in B(ȳ(x), %).

Now because of

DyF (x, y(x)) = DyF (x, ȳ(x)) +DyF (x, y(x))−DyF (x, ȳ(x))

= DyF (x, ȳ(x))
[
I +DyF (x, ȳ(x))−1 (DyF (x, y(x))−DyF (x, ȳ(x)))

]
and ∣∣DyF (x, ȳ(x))−1 (DyF (x, y(x))−DyF (x, ȳ(x)))

∣∣ ≤ βl% < 1

we get from Lemma 2.1 that DyF (x, y(x)) is invertible with

∣∣DyF (x, y(x))−1
∣∣ ≤ ∣∣DyF (x, ȳ(x))−1

∣∣
1− |DyF (x, ȳ(x))−1(DyF (x, y(x))−DyF (x, ȳ(x))|

≤ β

1− βl%
.
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Now we show Cr-smoothness. Choose any x0 ∈ U and let y0 := y(x0). From
the results above we have F (x0, y0) = 0 and that DyF (x0, y0) is continuously
invertible. The Implicit Function Theorem yields a unique function y? ∈
Cr(U ′, V ′) such that F (x, y) = 0 holds for (x, y) ∈ U ′ × V ′ if and only if
y = y?(x). Here U ′, V ′ are sufficiently small open sets with properties

x0 ∈ U ′ ⊂ U, y0 ∈ V ′ ⊂ B(ȳ(x0), %).

Next

|y?(x)− ȳ(x)| ≤ |y?(x)− y0|+ |y0 − ȳ(x0)|+ |ȳ(x0)− ȳ(x)|.

Here the second term is smaller than % and other two terms are arbitrarily
small if x is sufficiently close to x0 (because of the continuity of y? and ȳ
at x0). Therefore we have an open set U ′′ such that x0 ∈ U ′′ ⊂ U ′ and
for which |y?(x) − ȳ(x)| < % for every x ∈ U ′′. The uniqueness of the first
part of this proof ensures that y = y? on U ′′, so y|U ′′ ∈ Cr(U ′′, V ). Because
x0 was chosen arbitrarily in U we also get y ∈ Cr(U, V ) and the proof is
finished.

Proof of Lemma 3.1. The C3-smoothness of z : R × R × RN−1 → R is
straightforward. It is easy to see that

z(1, s, 0) = 0 and Dtz(t, s, c)|t=1,c=0 = |f(γ(s))|22 6= 0.

From the Implicit Function Theorem we get for all s′ ∈ [0, 1] numbers δ(s′) >
0, η(s′) > 0, ε(s′) ∈ (0, 1/2) and C3-smooth implicit functions

τ s
′

: (s′ − η(s′), s′ + η(s′))×Bδ(s′)
N−1 → (1− ε(s′), 1 + ε(s′))

determined uniquely by the equation (3.1) for

(t, s, c) ∈ (1− ε(s′), 1 + ε(s′))× (s′ − η(s′), s′ + η(s′))×Bδ(s′)
N−1.

Now
⋃
s′∈[0,1]

(
s′− η(s′)/2, s′+ η(s′)/2

)
⊃ [0, 1] so we can choose a finite

number of elements 0 ≤ s1 ≤ · · · ≤ sk ≤ 1 such that
⋃k
i=1

(
si − η(si)/2, si +

η(si)/2
)
⊃ [0, 1]. Introduce

δ := min{δtr, min
i=1,...,k

{δ(si)}} and ε? := min
i=1,...,k

{ε(si)}.

Now τ si(s, 0) = 1 together with uniform continuity of τ si on [si−η(si)/2, si+

η(si)/2] × Bδ/2
N−1 implies that for every ε ∈ (0, ε?] there is a δre = δre(ε) ∈

(0, δ/2] such that
τ si(s, c) ∈ (1− ε, 1 + ε)
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for all i = 1, . . . , k, s ∈
(
si− η(si)/2, si + η(si)/2

)
and c ∈ Bδre(ε)

N−1 . Therefore

τ : [0, 1]×Bδre(ε)
N−1 → (1−ε, 1+ε) can be defined by functions τ si naturally as

follows, for s ∈ [0, 1] choose any si such that s ∈
(
si − η(si)/2, si + η(si)/2

)
then set τ(s, ·) := τ si(s, ·) (equality of τ si and τ sj on the intersection of
their domains comes from τ si(s, 0) = 1 = τ sj (s, 0) and the Implicit Function
Theorem – so τ is well-defined).

Because the determining equation (3.1) is 1-periodic in s we can easily

extend τ to become a function R×Bδre(ε)
N−1 → (1−ε, 1+ε) which is 1-periodic

in the first variable by the identity τ(s + k, c) := τ(s, c), k ∈ Z, s ∈ [0, 1].
The proof is complete.
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