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Abstract

By using the Guo-Krasnoselskii fixed point theorem, we investigate the following third-

order three-point boundary value problem






u′′′(t) = f(t, u(t)), t ∈ [0, 1],

u′(0) = u(1) = 0, u′′(η) + αu(0) = 0,

where α ∈ [0, 2) and η ∈ [
√

121+24α−5
3(4+α) , 1). The emphasis is mainly that although the cor-

responding Green’s function is sign-changing, the solution obtained is still positive.
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1 Introduction

Third-order differential equations arise from a variety of different areas of applied mathe-

matics and physics, e.g., in the deflection of a curved beam having a constant or varying cross

section, a three-layer beam, electromagnetic waves or gravity driven flows and so on [3].

Recently, the existence of single or multiple positive solutions to some third-order three-point

boundary value problems (BVPs for short) has received much attention from many authors,

see [1, 2, 5, 12, 15, 16] and the references therein.

However, all the above-mentioned papers are achieved when the corresponding Green’s

functions are positive, which is a very important condition. A natural question is that whether

we can obtain the existence of positive solutions to some third-order three-point BVPs when

the corresponding Green’s functions are sign-changing.

In 2008, Palamides and Smyrlis [11] studied the existence of at least one positive solution

to the singular third-order three-point BVP with an indefinitely signed Green’s function






u′′′(t) = a(t)f(t, u(t)), t ∈ (0, 1),

u(0) = u(1) = u′′(η) = 0,

where η ∈
(

17
24

, 1
)

. Their technique was a combination of the Guo-Krasnoselskii fixed point

theorem and properties of the corresponding vector field.

In 2012, by using the Guo-Krasnoselskii and Leggett-Williams fixed point theorems, Sun and

Zhao [13, 14] discussed the third-order three-point BVP with sign-changing Green’s function







u′′′(t) = f(t, u(t)), t ∈ [0, 1],

u′(0) = u(1) = u′′(η) = 0,
(1.1)

where η ∈ (1
2
, 1). They obtained the existence of single or multiple positive solutions to the

BVP (1.1) and proved that the obtained solutions were concave on [0, η] and convex on [η, 1].

It is worth mentioning that there are other type of works on sign-changing Green’s functions

which prove the existence of sign-changing solutions, positive in some cases, see Infante and

Webb’s papers [6–8].
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In this paper we study the following third-order three-point BVP






u′′′(t) = f(t, u(t)), t ∈ [0, 1],

u′(0) = u(1) = 0, u′′(η) + αu(0) = 0.
(1.2)

Throughout this paper, we always assume that α ∈ [0, 2) and η ∈ [
√

121+24α−5
3(4+α)

, 1). Obviously,

the BVP (1.1) is a special case of the BVP (1.2). However, it is necessary to point out that

this paper is not a simple extension of [13]. In fact, if we let α = 0, then η ∈ [1
2
, 1), which is

different from the restriction in [13]. On the other hand, compared with [13], we can only prove

that the obtained solution is concave on [0, η].

Our main tool is the following well-known Guo-Krasnoselskii fixed point theorem [4, 9]:

Theorem 1.1 Let E be a Banach space and K be a cone in E. Assume that Ω1 and Ω2 are

bounded open subsets of E such that 0 ∈ Ω1, Ω1 ⊂ Ω2, and let T : K ∩ (Ω2\Ω1) → K be a

completely continuous operator such that either

(1) ‖Tu‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω2, or

(2) ‖Tu‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω2.

Then T has a fixed point in K ∩ (Ω2 \ Ω1).

2 Preliminaries

For the BVP






u′′′(t) = 0, t ∈ [0, 1],

u′(0) = u(1) = 0, u′′(η) + αu(0) = 0,
(2.1)

we have the following lemma.

Lemma 2.1 The BVP (2.1) has only trivial solution.

Proof. It is simple to check. �

In the remainder of this paper, we always assume that Banach space C [0, 1] is equipped

with the norm ‖u‖ = max
t∈[0,1]

|u(t)|.
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Now, for any y ∈ C [0, 1], we consider the BVP






u′′′(t) = y(t), t ∈ [0, 1],

u′(0) = u(1) = 0, u′′(η) + αu(0) = 0.
(2.2)

After a direct computation, one may obtain the expression of Green’s function G(t, s) of

the BVP (2.2) as follows:

G(t, s) = g1(t, s) + g2(t, s) + g3(η, t, s),

where

g1(t, s) = −
(2 − αt2)(1 − s)2

2(2 − α)
, (t, s) ∈ [0, 1] × [0, 1],

g2(t, s) =







0, 0 ≤ t ≤ s ≤ 1,

(t−s)2

2
, 0 ≤ s ≤ t ≤ 1

and

g3(η, t, s) =







0, s ≥ η,

1−t2

2−α
, s < η.

It is not difficult to verify that the G(t, s) has the following properties:

G(t, s) ≥ 0 for 0 ≤ s ≤ η and G(t, s) ≤ 0 for η ≤ s ≤ 1.

Moreover, for s ≥ η,

max{G(t, s) : t ∈ [0, 1]} = G(1, s) = 0,

min{G(t, s) : t ∈ [0, 1]} = G(0, s) = −
(1 − s)2

2 − α

and for s < η,

max{G(t, s) : t ∈ [0, 1]} = G(0, s) =
2s − s2

2 − α
,

min{G(t, s) : t ∈ [0, 1]} = G(1, s) = 0.

Let

K0 = {y ∈ C [0, 1] : y(t) is nonnegative and decreasing on [0, 1]} .

Then K0 is a cone in C [0, 1].
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Lemma 2.2 Let y ∈ K0 and u(t) =
∫ 1

0
G(t, s)y(s)ds, t ∈ [0, 1]. Then u is the unique solution

of the BVP (2.2) and u ∈ K0. Moreover, u(t) is concave on [0, η].

Proof. For 0 ≤ t ≤ η, we have

u(t) =

∫ t

0

[

g1(t, s) +
(t − s)2

2
+

1 − t2

2 − α

]

y(s)ds +

∫ η

t

[

g1(t, s) +
1 − t2

2 − α

]

y(s)ds +

∫ 1

η

g1(t, s)y(s)ds.

Since η ≥
√

121+24α−5
3(4+α)

implies that η ≥ 2α
3α+6

, we get

u′(t) = −
αt

2 − α

∫ η

0

(2s − s2)y(s)ds −

∫ t

0

sy(s)ds − t

∫ η

t

y(s)ds +
αt

2 − α

∫ 1

η

(1 − s)2y(s)ds

≤ y(η)

[

−
αt

2 − α

∫ η

0

(2s − s2)ds −

∫ t

0

sds − t

∫ η

t

ds +
αt

2 − α

∫ 1

η

(1 − s)2ds

]

= ty(η)

[

α(1 − 3η)

3(2 − α)
− η +

t

2

]

≤ ty(η)

[

α(1 − 3η)

3(2 − α)
−

η

2

]

≤ 0.

At the same time, η ≥
√

121+24α−5
3(4+α)

> 1
3

shows that

u′′(t) = −
α

2 − α

∫ η

0

(2s − s2)y(s)ds −

∫ η

t

y(s)ds +
α

2 − α

∫ 1

η

(1 − s)2y(s)ds

≤ −
αy(η)

2 − α

∫ η

0

(2s − s2)ds − y(η)

∫ η

t

ds +
αy(η)

2 − α

∫ 1

η

(1 − s)2ds

≤
αy(η)(1− 3η)

3(2 − α)

≤ 0.

For η < t ≤ 1, we have

u(t) =

∫ η

0

[

g1(t, s) +
(t − s)2

2
+

1 − t2

2 − α

]

y(s)ds +

∫ t

η

[

g1(t, s) +
(t − s)2

2

]

y(s)ds +

∫ 1

t

g1(t, s)y(s)ds.
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Since η ≥
√

121+24α−5
3(4+α)

implies that η ≥ 6−α
12

, we get

u′(t) = −
αt

2 − α

∫ η

0

(2s − s2)y(s)ds +

∫ t

η

(t − s)y(s)ds −

∫ η

0

sy(s)ds +
αt

2 − α

∫ 1

η

(1 − s)2y(s)ds

≤ −
αty(η)

2 − α

∫ η

0

(2s − s2)ds +
y(η)(η − t)2

2
− y(η)

∫ η

0

sds +
αty(η)(1− η)3

3(2 − α)

= ty(η)

[

α(1 − 3η)

3(2 − α)
+

t − 2η

2

]

≤ 0.

Obviously, u′′′(t) = y(t) for t ∈ [0, 1], u′(0) = u(1) = 0 and u′′(η) + αu(0) = 0. This shows

that u is a solution of the BVP (2.2). The uniqueness follows immediately from Lemma 2.1.

Since u′(t) ≤ 0 for t ∈ [0, 1] and u(1) = 0, we have u(t) ≥ 0 for t ∈ [0, 1]. So, u ∈ K0. In view

of u′′(t) ≤ 0 for t ∈ [0, η], we know that u(t) is concave on [0, η]. �

Lemma 2.3 Let y ∈ K0. Then the unique solution u of the BVP (2.2) satisfies

min
t∈[0,θ]

u(t) ≥ θ∗ ‖u‖ ,

where θ ∈ (0, 1
3
] and θ∗ = η−θ

η
.

Proof. By Lemma 2.2, we know that u(t) is concave on [0, η], thus for t ∈ [0, η],

u(t) ≥ (1 −
t

η
)u(0) +

t

η
u(η). (2.3)

In view of u ∈ K0, we know that ‖u‖ = u(0), which together with (2.3) implies that

u(t) ≥
η − t

η
‖u‖ , 0 ≤ t ≤ η.

Consequently,

min
t∈[0,θ]

u(t) = u(θ) ≥
η − θ

η
‖u‖ = θ∗ ‖u‖ .

�
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3 Main results

For convenience, we denote

A =

∫ η

0

G(0, s)ds and B =

∫ θ

0

G(η, s)ds.

Then it is obvious that 0 < B < A.

Theorem 3.1 Assume that f : [0, 1] × [0, +∞) → [0, +∞) is continuous and satisfies the

following conditions:

(H1) For each u ∈ [0, +∞), the mapping t 7→ f(t, u) is decreasing;

(H2) For each t ∈ [0, 1], the mapping u 7→ f(t, u) is increasing;

(H3) There exist two positive constants r and R with r 6= R such that

f(0, r) ≤
r

A
and f(θ, θ∗R) ≥

R

B
.

Then the BVP (1.2) has a positive and decreasing solution u satisfying min{r, R} ≤ ‖u‖ ≤

max{r, R}. Moreover, the obtained solution u(t) is concave on [0, η].

Proof. Let

K =

{

u ∈ K0 : min
t∈[0,θ]

u(t) ≥ θ∗ ‖u‖

}

.

Then it is easy to see that K is a cone in C [0, 1]. Now, we define an operator T on K by

(Tu)(t) =

∫ 1

0

G(t, s)f(s, u(s))ds, t ∈ [0, 1].

Obviously, if u is a fixed point of T in K, then u is a nonnegative and decreasing solution of

the BVP (1.2). In what follows, we will seek a fixed point of T in K by using Theorem 1.1.

First, by Lemma 2.2 and Lemma 2.3, we know that T : K → K. Furthermore, although

G(t, s) is not continuous, it follows from known textbook results, for example see [10], that

T : K → K is completely continuous.

Next, for any u ∈ K, we claim that

∫ η

θ

G(η, s)f(s, u(s))ds +

∫ 1

η

G(η, s)f(s, u(s))ds ≥ 0. (3.1)
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In fact, if u ∈ K, recall that G(t, s) ≥ 0 for 0 ≤ s ≤ η and G(t, s) ≤ 0 for η ≤ s ≤ 1, then

it follows from η ≥
√

121+24α−5
3(4+α)

that

∫ η

θ

G(η, s)f(s, u(s))ds +

∫ 1

η

G(η, s)f(s, u(s))ds

≥ f(η, u(η))

[
∫ η

θ

G(η, s)ds +

∫ 1

η

G(η, s)ds

]

= f(η, u(η))

[
∫ η

θ

(

g1(η, s) +
(η − s)2

2
+

1 − η2

2 − α

)

ds +

∫ 1

η

g1(η, s)ds

]

=
(1 − η)f(η, u(η))

6(2 − α)

[

(4 + α)η2 + (4 + αθ3 − 3αθ2)η − 6θ2 + αθ3 − 2
]

≥
(1 − η)f(η, u(η))

6(2 − α)

[

(4 + α)η2 +
10

3
η −

8

3

]

≥ 0.

Now, without loss of generality, we assume that r < R. Let

Ω1 = {u ∈ C [0, 1] : ‖u‖ < r} and Ω2 = {u ∈ C [0, 1] : ‖u‖ < R} .

For any u ∈ K ∩ ∂Ω1, we get 0 ≤ u(s) ≤ r for s ∈ [0, 1], which together with (H3) implies

that

0 ≤ (Tu)(t) ≤

∫ η

0

max
t∈[0,1]

G(t, s)f(s, u(s))ds +

∫ 1

η

max
t∈[0,1]

G(t, s)f(s, u(s))ds

=

∫ η

0

G(0, s)f(s, u(s))ds

≤

∫ η

0

G(0, s)f(0, r)ds

≤ r = ‖u‖ , t ∈ [0, 1].

This shows that

‖Tu‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω1. (3.2)

For any u ∈ K ∩ ∂Ω2, we get θ∗R ≤ u(s) ≤ R for s ∈ [0, θ], which together with (3.1) and
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(H3) implies that

Tu(η) =

∫ 1

0

G(η, s)f(s, u(s))ds

=

∫ θ

0

G(η, s)f(s, u(s))ds +

∫ η

θ

G(η, s)f(s, u(s))ds +

∫ 1

η

G(η, s)f(s, u(s))ds

≥

∫ θ

0

G(η, s)f(s, u(s))ds

≥

∫ θ

0

G(η, s)f(θ, θ∗R)ds

≥ R = ‖u‖ ,

This indicates that

‖Tu‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω2. (3.3)

Therefore, it follows from Theorem 1.1, (3.2) and (3.3) that the operator T has a fixed point

u ∈ K ∩ (Ω2 \ Ω1), which is a desired positive and decreasing solution of the BVP (1.2) with

r ≤ ‖u‖ ≤ R. Moreover, similar to the proof of Lemma 2.2, we can prove that the obtained

solution u(t) is concave on [0, η]. �

Example 3.2 We consider the BVP






u′′′(t) = u2(t)
4

+ 9(1−t2)
2

, t ∈ [0, 1],

u′(0) = u(1) = 0, u′′(1
2
) + u(0) = 0.

(3.4)

Since α = 1 and η = 1
2
, if we choose θ = 1

3
, then a simple calculation shows that

θ∗ =
1

3
, A =

5

24
and B =

7

108
.

Let f(t, u) = u2

4
+ 9(1−t2)

2
, (t, u) ∈ [0, 1]× [0, +∞). Then (H1) and (H2) are satisfied. Moreover,

it is easy to verify that

f(θ,
θ∗

4
) ≥

1

4B
, f(0, 1) ≤

1

A

and

f(0, 18) ≤
18

A
, f(θ, 556θ∗) ≥

556

B
.
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Therefore, it follows from Theorem 3.1 that the BVP (3.4) has positive and decreasing solutions

u1 and u2 satisfying
1

4
≤ ‖u1‖ ≤ 1 < 18 ≤ ‖u2‖ ≤ 556.
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