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COMPARISON THEOREM FOR OSCILLATION OF

FOURTH-ORDER NONLINEAR RETARDED

DYNAMIC EQUATIONS

CHENGHUI ZHANG∗, RAVI P. AGARWAL, AND TONGXING LI

Abstract. This work is concerned with oscillation of a class of
fourth-order nonlinear delay dynamic equations on a time scale.
A new comparison theorem is established that improves related
results reported in the literature.

1. Introduction

Fourth-order differential equations naturally appear in models con-
cerning physical, biological, and chemical phenomena, for instance,
problems of elasticity, deformation of structures, or soil settlement;
see [5]. In this work, we study oscillation of a fourth-order nonlinear
delay dynamic equation

(1.1) x∆4

(t) + p(t)xγ(τ(t)) = 0

on an arbitrary time scale T, where γ > 0 is the quotient of odd positive
integers, p is a real-valued positive rd-continuous function defined on
T, τ ∈ Crd(T, T), τ(t) ≤ t, and τ(t) → ∞ as t → ∞.

Since we are interested in oscillatory behavior, we assume throughout
this paper that the given time scale T is unbounded above, i.e., it is a
time scale interval of the form [t0,∞)T := [t0,∞) ∩ T with t0 ∈ T.

By a solution of (1.1) we mean a nontrivial real-valued function
x ∈ C4

rd[Tx,∞)T, Tx ∈ [t0,∞)T which satisfies (1.1) on [Tx,∞)T. The
solutions vanishing in some neighbourhood of infinity will be excluded
from our consideration. A solution x of (1.1) is said to be oscillatory
if it is neither eventually positive nor eventually negative; otherwise, it
is nonoscillatory. Equation (1.1) is called oscillatory if all its solutions
oscillate.

The theory of time scales, which has recently received a lot of atten-
tion, was introduced by Stefan Hilger [16] in his PhD thesis in order to
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unify continuous and discrete analysis. The study of the oscillation of
dynamic equations on time scales is a new area of applied mathematics,
and work in this topic is rapidly growing. In recent years, there has
been increasing interest in obtaining sufficient conditions for oscillatory
and nonoscillatory of solutions of different classes of dynamic equations
on time scales. We refer the reader to [1–4, 6–24] and the references
cited therein. Agarwal et al. [1], Erbe et al. [8], Şahiner [21], Zhang
and Zhu [23] considered a second-order delay dynamic equation

x∆2

(t) + p(t)x(τ(t)) = 0.

Akın-Bohner et al. [4] investigated a second-order Emden–Fowler dy-
namic equation

x∆2

(t) + p(t)xγ(σ(t)) = 0.

Han et al. [15] studied a second-order Emden–Fowler delay dynamic
equation

x∆2

(t) + p(t)xγ(τ(t)) = 0.

For the oscillation of higher-order dynamic equations on time scales,
Erbe et al. [9] considered a third-order dynamic equation

x∆3

(t) + p(t)x(t) = 0.

Grace et al. [11] studied a fourth-order dynamic equation

x∆4

(t) + p(t)(xσ)γ(t) = 0.

Monotone and oscillatory behavior of solutions to a fourth-order dy-
namic equation

(a(x∆2

)α)∆2

(t) + p(t)(xσ)β(t) = 0

with the property that

x(t)
∫ t

t0

∫ s

t0
a−1/α(τ)∆τ∆s

→ 0 as t → ∞

were established by Grace et al. [12]. Grace et al. [14] studied a fourth-
order dynamic equation

(1.2) x∆4

(t) + p(t)xγ(t) = 0.

They obtained some oscillation criteria for (1.2), one of which we
present below for the convenience of the reader.
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Theorem 1.1 (See [14, Theorem 2.2]). Assume
∫

∞

t0
p(s)σ(s)∆s < ∞

and define Q1(t) :=
∫

∞

t

∫

∞

s
p(τ)∆τ∆s and Q2(t) := [(α−t0)h2(t, α)/(t−

t0)]
γp(t) for α ∈ T

k, t ∈ T, and t ≥ α > t0. If both second-order dy-

namic equations

y∆2

(t) + Q1(t)y
γ(t) = 0

and

z∆2

(t) + Q2(t)z
γ(t) = 0

are oscillatory, then (1.2) is oscillatory.

The purpose of this paper is to improve those results obtained in [14].
This paper is organized as follows: In the next section, we present the
basic definitions and the theory of calculus on time scales. In Section
3, we establish some new oscillation results for (1.1).

In what follows, all functional inequalities are assumed to hold even-
tually, that is, for all sufficiently large t.

2. Some preliminaries

A time scale T is an arbitrary nonempty closed subset of the real
numbers R. Since we are interested in oscillatory behavior, we suppose
that the time scale under consideration is not bounded above and is a
time scale interval of the form [t0,∞)T. On any time scale we define
the forward and backward jump operators by

σ(t) := inf{s ∈ T|s > t} and ρ(t) := sup{s ∈ T|s < t},

where inf ∅ := sup T and sup ∅ := inf T, ∅ denotes the empty set.
A point t ∈ T is said to be left-dense if ρ(t) = t and t > inf T,

right-dense if σ(t) = t and t < sup T, left-scattered if ρ(t) < t, and
right-scattered if σ(t) > t. The graininess µ of the time scale is defined
by µ(t) := σ(t) − t.

A function f : T → R is said to be rd-continuous if it is continuous
at each right-dense point and if there exists a finite left limit in all left-
dense points. The set of rd-continuous functions f : T → R is denoted
by Crd(T, R).

Fix t ∈ T and let f : T → R. Define f∆(t) to be the number
(provided it exists) with the property that given any ε > 0, there is a
neighborhood U of t (i.e., U = (t − δ, t + δ) ∩ T for some δ > 0) such
that

|[f(σ(t)) − f(s)] − f∆(t)[σ(t) − s]| ≤ ε|σ(t) − s| for all s ∈ U.
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In this case, f∆(t) is called the (delta) derivative of f at t. f is said to
be differentiable if its derivative exists. The set of functions f : T → R

that are differentiable and whose derivative is rd-continuous function is
denoted by C1

rd(T, R). If f is differentiable at t, then f is continuous at
t. If f is continuous at t and t is right-scattered, then f is differentiable
at t with

f∆(t) =
f(σ(t)) − f(t)

µ(t)
.

If t is right-dense, then f is differentiable at t iff the limit

f∆(t) = lim
s→t

f(t) − f(s)

t − s

exists as a finite number. In this case

f∆(t) = lim
s→t

f(t) − f(s)

t − s
.

If f is differentiable at t, then

fσ(t) = f(σ(t)) = f(t) + µ(t)f∆(t).

Let f be a real-valued function defined on an interval [a, b]T. We
say that f is increasing, decreasing, nondecreasing, and nonincreasing
on [a, b]T if t1, t2 ∈ [a, b]T and t2 > t1 imply f(t2) > f(t1), f(t2) <
f(t1), f(t2) ≥ f(t1), and f(t2) ≤ f(t1), respectively. Let f be a dif-
ferentiable function on [a, b]T. Then f is increasing, decreasing, non-
decreasing, and nonincreasing on [a, b]T if f∆(t) > 0, f∆(t) < 0,
f∆(t) ≥ 0, and f∆(t) ≤ 0 for all t ∈ [a, b)T, respectively.

We will make use of the following product and quotient rules for the
derivative of the product fg and the quotient f/g (where g(t)g(σ(t)) 6=
0) of two differentiable functions f and g

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t) = f(t)g∆(t) + f∆(t)g(σ(t)),
(

f

g

)∆

(t) =
f∆(t)g(t) − f(t)g∆(t)

g(t)g(σ(t))
.

For a, b ∈ T and a differentiable function f, the Cauchy integral of
f∆ is defined by

∫ b

a

f∆(t)∆t = f(b) − f(a).

The integration by parts formula reads
∫ b

a

f∆(t)g(t)∆t = f(b)g(b) − f(a)g(a) −

∫ b

a

fσ(t)g∆(t)∆t,
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and infinite integrals are defined as
∫

∞

a

f(s)∆s = lim
t→∞

∫ t

a

f(s)∆s.

3. Main results

In this section, we present some sufficient conditions which ensure
that every solution of (1.1) is oscillatory. We begin with the following
lemma.

Lemma 3.1. Assume there exists T ∈ [t0,∞)T such that

y(t) > 0, y∆(t) > 0, y∆2

(t) < 0 for t ∈ [T,∞)T.

Then, there exists a constant Tk ∈ [T,∞)T such that

y(τ(t))

y(σ(t))
≥

τ(t) − T

σ(t) − T
≥ k

τ(t)

σ(t)
and

y(τ(t))

y(t)
≥

τ(t) − T

t − T
≥ k

τ(t)

t

for each k ∈ (0, 1) and for t ∈ [Tk,∞)T.

Proof. The proof is similar to that of [21, Lemma 1], and hence is
omitted. �

Lemma 3.2 (See [9, Lemma 4]). Assume y satisfies

y(t) > 0, y∆(t) > 0, y∆2

(t) > 0, y∆3

(t) ≤ 0

for t ∈ [t1,∞)T. Then

lim inf
t→∞

ty(t)

h2(t, t0)y∆(t)
≥ 1,

where h2(t, s) is the Taylor monomial of degree 2 (see Bohner and
Peterson [6, Section 1.6]).

Lemma 3.3. Assume x is an eventually positive solution of (1.1). Then
there are only the following two possible cases for t ∈ [t1,∞)T ⊆
[t0,∞)T sufficiently large:

(1) x > 0, x∆ > 0, x∆2

> 0, x∆3

> 0, x∆4

< 0;

(2) x > 0, x∆ > 0, x∆2

< 0, x∆3

> 0, x∆4

< 0.

Proof. The proof is simple, and so is omitted. �
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Theorem 3.4. Assume there exists a positive function m ∈ C1
rd(T, R)

such that

(3.1)
tm(t)

lh2(t, t0)
− m∆(t) ≤ 0

for some l ∈ (0, 1). Suppose further that there exists a positive function

v ∈ C1
rd(T, R) such that

(3.2)
m(t)v(t)

∫ t

tl
m(s)∆s

− v∆(t) ≤ 0

for all t ∈ [t∗,∞)T ⊂ (tl,∞)T, sufficiently large. If both second-order

dynamic equations

(3.3) z∆2

(t) + lγp(t)

[

v(τ(t))

v(t)

h2(t, t0)

tm(t)

∫ t

tl

m(s)∆s

]γ

zγ(t) = 0

and

(3.4) u∆2

(t) + kγ

[
∫

∞

t

∫

∞

s

p(ς)

(

τ(ς)

ς

)γ

∆ς∆s

]

uγ(t) = 0

are oscillatory for all sufficiently large tl and for some k ∈ (0, 1), then

(1.1) is oscillatory.

Proof. Suppose that (1.1) has a nonoscillatory solution x on [t0,∞)T.
We may assume without loss of generality that there exists a t1 ∈
[t0,∞)T such that x(t) > 0 and x(τ(t)) > 0 for t ∈ [t1,∞)T. It follows
from Lemma 3.3 that x satisfies either case (1) or case (2).

Assume case (1). Set y := x∆. It follows from Lemma 3.2 that

(3.5) x∆(t) ≥ l
h2(t, t0)

t
x∆2

(t)

for t ∈ [tl,∞)T and for given l ∈ (0, 1). Since
(

x∆

m

)∆

(t) =
x∆2

(t)m(t) − x∆(t)m∆(t)

m(t)mσ(t)

≤
x∆(t)

m(t)mσ(t)

[

tm(t)

lh2(t, t0)
− m∆(t)

]

≤ 0,

we see that x∆/m is nonincreasing. Then, we obtain

(3.6) x(t) = x(tl) +

∫ t

tl

x∆(s)

m(s)
m(s)∆s ≥

x∆(t)

m(t)

∫ t

tl

m(s)∆s.
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Using (3.5) and (3.6), we have

(3.7) x(t) ≥ l

[

h2(t, t0)

tm(t)

∫ t

tl

m(s)∆s

]

x∆2

(t).

On the other hand, we find by (3.6) that

(x

v

)∆

(t) =
x∆(t)v(t) − x(t)v∆(t)

v(t)vσ(t)

≤
x(t)

v(t)vσ(t)

[

m(t)v(t)
∫ t

tl
m(s)∆s

− v∆(t)

]

≤ 0.

Hence x/v is nonincreasing. Thus, we get

(3.8)
x(τ(t))

v(τ(t))
≥

x(t)

v(t)
, since τ(t) ≤ t.

Using (3.7) and (3.8), we obtain

x(τ(t)) ≥
v(τ(t))

v(t)
x(t)

≥ l

[

v(τ(t))

v(t)

h2(t, t0)

tm(t)

∫ t

tl

m(s)∆s

]

x∆2

(t).

Substituting the latter inequality into (1.1), we have

x∆4

(t) + lγp(t)

[

v(τ(t))

v(t)

h2(t, t0)

tm(t)

∫ t

tl

m(s)∆s

]γ

(x∆2

)γ(t) ≤ 0.

Let z := x∆2

. Then we see that z is a positive solution of

z∆2

(t) + lγp(t)

[

v(τ(t))

v(t)

h2(t, t0)

tm(t)

∫ t

tl

m(s)∆s

]γ

zγ(t) ≤ 0.

It follows from [14, Lemma 2.1] that equation (3.3) has positive solu-
tions, which is a contradiction.

Assume now case (2). Using (1.1), we calculate

x∆3

(z) − x∆3

(t) +

∫ z

t

p(s)xγ(τ(s))∆s = 0.

Set y := x. By Lemma 3.1, we find

x(τ(t))

x(t)
≥ k

τ(t)

t
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for given k ∈ (0, 1). Thus, we get by x∆ > 0 that

x∆3

(z) − x∆3

(t) + kγxγ(t)

∫ z

t

p(s)

(

τ(s)

s

)γ

∆s ≤ 0.

Letting z → ∞ in the above inequality, we obtain

−x∆3

(t) + kγxγ(t)

∫

∞

t

p(s)

(

τ(s)

s

)γ

∆s ≤ 0

due to limz→∞ x∆3

(z) ≥ l1 ≥ 0. Therefore,

−x∆2

(z) + x∆2

(t) + kγxγ(t)

∫ z

t

∫

∞

s

p(ς)

(

τ(ς)

ς

)γ

∆ς∆s ≤ 0.

Letting z → ∞ in the last inequality, from limz→∞(−x∆2

(z)) ≥ l2 ≥ 0,
we have

x∆2

(t) + kγxγ(t)

∫

∞

t

∫

∞

s

p(ς)

(

τ(ς)

ς

)γ

∆ς∆s ≤ 0.

It follows from [14, Lemma 2.1] that equation (3.4) has positive solu-
tions, which is a contradiction. The proof is complete. �

Remark 3.5. From Theorem 3.4, one can obtain some corollaries for
the oscillation of (1.1). For example, if we use some related results
in [15], then we get the following results.

Corollary 3.6. Let γ > 1 and assume there exists a positive function
m ∈ C1

rd(T, R) such that (3.1) holds for some l ∈ (0, 1). Suppose also
that there exists a positive function v ∈ C1

rd(T, R) such that (3.2) holds
for all t ∈ [t∗,∞)T ⊂ (tl,∞)T, sufficiently large. If

(3.9)

∫

∞ p(t)

σγ−1(t)

[

v(τ(t))

v(t)

h2(t, t0)

m(t)

∫ t

tl

m(s)∆s

]γ

∆t = ∞

and

(3.10)

∫

∞
[
∫

∞

t

∫

∞

s

p(ς)

(

τ(ς)

ς

)γ

∆ς∆s

]

tγ

σγ−1(t)
∆t = ∞,

then (1.1) is oscillatory.

Corollary 3.7. Let γ < 1 and assume there exists a positive function
m ∈ C1

rd(T, R) such that (3.1) holds for some l ∈ (0, 1). Suppose
EJQTDE, 2013 No. 22, p. 8



further that there exists a positive function v ∈ C1
rd(T, R) such that

(3.2) holds for all t ∈ [t∗,∞)T ⊂ (tl,∞)T, sufficiently large. If

(3.11)

∫

∞

p(t)

[

v(τ(t))

v(t)

h2(t, t0)

m(t)

∫ t

tl

m(s)∆s

]γ

∆t = ∞

and

(3.12)

∫

∞
[
∫

∞

t

∫

∞

s

p(ς)

(

τ(ς)

ς

)γ

∆ς∆s

]

tγ∆t = ∞,

then (1.1) is oscillatory.

Now, we give an example to illustrate the main results.
It is well known that the second-order sublinear Emden–Fowler dif-

ferential equation

x′′(t) + q(t)xγ(t) = 0, γ < 1

is oscillatory if
∫

∞

q(t)tγdt = ∞.

Using this result, we consider the following equation

(3.13) x(4)(t) +
k0

t1+3γ
xγ(t) = 0,

2

3
< γ < 1,

where k0 > 0 is a constant. Let m(t) = t3 and v(t) = t5. Applying
Corollary 3.7, we see that equation (3.13) is oscillatory. At the same
time, we find that [14, Theorem 2.2] cannot be applied in equation
(3.13). Hence our result improves those of [14].
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[5] M. Bartušek, M. Cecchi, Z. Došlá and M. Marini, Fourth-order differential equa-

tion with deviating argument. Abstr. Appl. Anal., 2012 (2012) 1–17.
[6] Martin Bohner and Allan Peterson, Dynamic Equations on Time Scales: An

Introduction with Applications. Birkhäuser, Boston, 2001.
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