On a time-dependent subdifferential evolution inclusion with a nonconvex upper-semicontinuous perturbation

S. Guillaume¹, A. Syam²

¹ Département de mathématiques, Université d'Avignon, 33, rue Pasteur, 84000 Avignon, France, sophie.guillaume@univ-avignon.fr

² Département de mathématiques et informatique, Université Cadi Ayyad, 618 Marrakech, Maroc, syam@fstg-marrakech.ac.ma

Abstract. We investigate the existence of local approximate and strong solutions for a time-dependent subdifferential evolution inclusion with a nonconvex upper-semicontinuous perturbation.

Keywords. Convex function, Evolution equation, Nonconvex perturbation, Subdifferential, Upper-semicontinuous operator.

AMS (MOS) Subject Classifications. 35G25, 47J35, 47H14

1 Introduction

For a given family of convex lower-semicontinuous functions $(f^t)_{t\in[0,T]}$, defined on a separable real Hilbert space X with range in $\mathbb{R} \cup \{\infty\}$, and a family of multivalued operators $(B(t, .))_{t\in[0,T]}$ on X, we shall prove an existence theorem for evolution equations of type:

$$u'(t) + \partial f^{t}(u(t)) + B(t, u(t)) \ge 0, \ t \in [0, T].$$
(1)

For each t, ∂f^t denotes the ordinary subdifferential of convex analysis. The operator $B(t, .): X \rightrightarrows X$ is a multivalued perturbation of ∂f^t , dependent on the time t.

When the perturbation B(t, .) is single valued and monotone, many existence, uniqueness and regularity results have been established, see Brezis [3] (if f^t is independent of

t), Attouch-Damlamian [2] and Yamada [18]. The study of case B(t, .) nonmonotone and upper-semicontinuous with convex closed values has been developed under some assumptions of compactness on dom $f^t = \{x \in X \mid f^t(x) < \infty\}$ the *effective domain of* f^t . For example, Attouch-Damlamian [1] have studied the case f independent of time. Otani [15] has extended this result with more general assumptions (the convex function f^t depends on time). He has also studied the case where -B(t, .) is the subdifferential of a lower semicontinuous convex function, see [14].

In this article, the operator B(t, .) will be assumed upper-semicontinuous with compact values which are not necessary convex, and it is not assumed be a contraction map. Nevertheless, -B(t, .) will be assumed cyclically monotone. Cellina and Staicu [7] have studied this type of inclusion when f^t and B(t, .) are not dependent on t.

This paper is organized as follows. In Section 2 we recall some definitions and results on time-dependent subdifferential evolution inclusions and upper-semicontinuity of operators which will be used in the sequel. We also introduce the assumptions of our main result. In Section 3 we obtain existence of approximate solutions for the problem (1) and give properties of these solutions. In Section 4 we establish existence theorem for the problem (1). We particularly study two cases where the family $(f^t)_t$ satisfies more restricted assumptions. Examples illustrate our results in Section 5.

2 Perturbed problem

Assume that X is a real separable Hilbert space. We denote by $\|.\|$ the norm associated with the inner product $\langle ., . \rangle$ and the topological dual space is identified with the Hilbert space. Let T > 0 and $(f^t)_{t \in [0,T]}$ be a family of convex lower-semicontinuous (lsc, in short) proper functions on X. We will denote by ∂f^t the ordinary subdifferential of convex analysis.

Definition 2.1 A function $u : [0,T] \to X$ is said strong solution of

$$u' + \partial f^t(u) + B(t, u) \ni 0$$

$$\begin{array}{ll} \text{if }^{1}: & \text{(i) there exists } \beta \in L^{2}(0,T;X) \text{ such that } \beta(t) \in B(t,u(t)) \text{ for a.e. } t \in [0,T],\\ \text{(ii) } u \text{ is a solution of } \begin{cases} u'(t) + \partial f^{t}(u(t)) + \beta(t) \ni 0 & \text{for a.e. } t \in [0,T]\\ u(t) \in \text{dom } f^{t} & \text{for any } t \in [0,T]. \end{cases} \end{array}$$

The aim result of this article is, for each $u_0 \in \text{dom } f^0$, the existence of a local strong solution u of $u' + \partial f^t(u) + B(t, u) \ni 0$ with $u(0) = u_0$, when the values of the upper-semicontinuous multiapplication B(t, .) are not convex.

We shall consider the following assumption on $(f^t)_{t \in [0,T]}$, see Kenmochi [10, 11]:

¹As usual, $L^r(0,T;X)$ $(T \in]0,\infty]$) denotes the space of X-valued measurable functions on [0,T) which are r^{th} power integrable (if $r = \infty$, then essentially bounded). For r = 2, $L^2(0,T;X)$ is a Hilbert space, in which $\|.\|_{L^2(0,T;X)}$ and $\langle ., \rangle_{L^2(0,T;X)}$ are the norm and the scalar product.

(H₀): for each $r \ge 0$, there are absolutely continuous real-valued functions h_r and k_r on [0,T] such that:

(i) $h'_r \in L^2(0,T)$ and $k'_r \in L^1(0,T)$, (ii) for each $s, t \in [0,T]$ with $s \leq t$ and each $x_s \in \text{dom } f^s$ with $||x_s|| \leq r$ there exists $x_t \in \text{dom } f^t$ satisfying

$$\begin{cases} ||x_t - x_s|| \leq |h_r(t) - h_r(s)|(1 + |f^s(x_s)|^{1/2}) \\ f^t(x_t) \leq f^s(x_s) + |k_r(t) - k_r(s)|(1 + |f^s(x_s)|) \end{cases}$$

or the slightly stronger assumption, see Yamada [18], denoted by **(H)**, when (ii) holds for any s, t in [0, T].

The following existence theorem have been proved in [19]:

Theorem 2.1 Let T > 0 and $\beta \in L^2(0,T;X)$. Let $u_0 \in \text{dom } f^0$. If (H_0) holds, then the problem

$$\begin{cases} u'(t) + \partial f^t(u(t)) + \beta(t) \ni 0, & \text{a.e. } t \in [0,T] \\ u(t) \in \operatorname{dom} f^t, & t \in [0,T] \\ u(0) = u_0 \end{cases}$$

has a unique solution $u: [0,T] \to X$ which is absolutely continuous.

Furthermore, we have the following type of energy inequality, see [11, Chapter 1]: if ||u(t)|| < r for $t \in [0, T]$, then

$$f^{t}(u(t)) - f^{s}(u(s)) + \frac{1}{2} \int_{s}^{t} \|u'(\tau)\|^{2} d\tau \leq \frac{1}{2} \int_{s}^{t} \|\beta(\tau)\|^{2} d\tau + \int_{s}^{t} c_{r}(\tau) \left[1 + |f^{\tau}(u(\tau))|\right] d\tau$$

$$\tag{2}$$

for any $s \leq t$ in [0,T], where $c_r : \tau \mapsto 4|h'_r(\tau)|^2 + |k'_r(\tau)|$ is an element of $L^1(0,T)$.

Let us add a compactness assumption on each f^t by using the following definition:

Definition 2.2 A function $f : X \to \mathbb{R} \cup \{+\infty\}$ is said of compact type if the set $\{x \in X \mid |f(x)| + ||x||^2 \le c\}$ is compact at each level c.

Denote by $L^2_w(0,T;X)$ the space $L^2(0,T;X)$ endowed with the weak topology. Under this compactness assumption on each f^t , the map

$$p: \left(\begin{array}{ccc} L^2_w(0,T;X) & \to & \mathcal{C}([0,T];X) \\ \beta & \mapsto & u \end{array}\right)$$

is continuous and maps bounded set into relatively compact sets following [9, proposition 3.3], β and u being defined in Theorem 2.1.

Recall the definition of upper-semicontinuity of operators.

Definition 2.3 Let E_1 and E_2 be two Hausdorff topological sets. A multivalued operator $B: E_1 \rightrightarrows E_2$ is said upper-semicontinuous (**usc** in short) at $x \in \text{Dom } B$ if for all neighborhood \mathcal{V}_2 of the subset Bx of E_2 , there exists a neighborhood \mathcal{V}_1 of x in E_1 such that $B(\mathcal{V}_1) \subset \mathcal{V}_2$.

Furthermore, if E_1 and E_2 are two Hausdorff topological spaces with E_2 compact and $B: E_1 \rightrightarrows E_2$ is a multivalued map with Bx closed for any $x \in E_1$, then B is use if and only if the graph of B is closed in $E_1 \times E_2$. We introduce following conditions on the multifunction $B: [0,T] \times X \rightrightarrows X$:

- (B_o) : (i) $\text{Dom}(\partial f^t) \subset \text{Dom} B(t, .)$ for any $t \in [0, T]$, (ii) there exist nonnegative constants ρ, M such that $||x - u_0|| \leq \rho$ implies $B(t, x) \subset M\mathbb{B}_X$ for any $t \in [0, T]$ and $x \in \text{Dom} \partial f^t$.
- (B)
- (i) $\operatorname{Dom}(\partial f^t) \subset \operatorname{Dom} B(t, .)$ and the set B(t, x) is compact for any $t \in [0, T]$ and $x \in \operatorname{Dom}(\partial f^t)$,
- (ii) there exist a nonnegative real ρ and a convex lsc function $\varphi : X \to \mathbb{R}$ such that $||x u_0|| \leq \rho$ implies $B(t, x) \subset -\partial \varphi(x)$ for any $t \in [0, T]$ and $x \in \text{Dom}(\partial f^t)$,
- (iii) for a.e. $t \in [0,T]$, the restriction of B(t,.) to $\text{Dom}(\partial f^t)$ is use,
- (iv) for each $r \ge 0$, there is a nonnegative real-valued function g_r on $[0,T]^2$ such that
 - (a) $\lim_{t \to s_{-}} g_r(t,s) = 0,$

(b) for each $s, t \in [0, T]$ with $t \leq s$ and each $x_s \in \text{Dom }\partial f^s$ and $\beta_s \in B(s, x_s)$ with $||x_s|| \vee ||\beta_s|| \leq r$ there exists $x_t \in \text{Dom }B(t, .)$ and $\beta_t \in B(t, x_t)$ satisfying

$$||x_t - x_s|| \vee ||\beta_t - \beta_s|| \leq g_r(t, s).$$

By convexity, the function φ of (B)(ii) is *M*-Lipschitz continuous on some closed ball $u_0 + \rho \mathbb{B}_X$ and the inclusion $\partial \varphi(x) \subset M \mathbb{B}_X$ holds for any $x \in u_0 + \rho \mathbb{B}_X$. In fact, we could take φ with extended real values and u_0 in the interior of the effective domain of φ . Thus, (B)(ii) implies (B_o)(ii).

The condition (B)(ii) means that -B(t, .) is cyclically monotone uniformly in t. An example is the multiapplication $B(t, .) : \mathbb{R}^n \stackrel{\sim}{\to} \mathbb{R}^n$ defined by

$$\beta = (\beta_1, \dots, \beta_n) \in B(t, x) \iff \beta_1 \in \begin{cases} \{1\} & \text{if } x_1 < 0\\ \{-1, 1\} & \text{if } x_1 = 0\\ \{-1\} & \text{if } x_1 > 0 \end{cases} \text{ and } \beta_2 = \dots = \beta_n = 0$$

for any $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$. When $B(t, .) = -\partial \psi^t$ with $\psi^t : X \to \mathbb{R} \cup \{+\infty\}$ a lsc proper function, then ψ^t is convex if this operator is monotone and (B)(ii) is equivalent to the existence of a real constant α_t with $\psi^t = \varphi + \alpha_t$. In this case we deals with the problem $u' + \partial f^t(u) - \partial \varphi(u) \ge 0$, see Otani [14] when f^t is not dependent on t. This

condition (ii) could be extended to a function φ^t which depends on the time t, and also with a nonconvex function: for example, a convex composite function, see [8].

The condition (B)(iii) is always satisfied if B(t, .) or -B(t, .) is a maximal monotone operator of X, and more generally if they are ϕ -monotone of order 2.

The condition (B)(iv) is always satisfied if $B(t, .) = B : X \rightrightarrows X$ is not depending on the time t. It can also be written for any $t \leq s$ in [0, T]:

$$\lim_{t \to \infty} e(\operatorname{gph}B(t,.) \cap r\mathbb{B}_{X^2}, \operatorname{gph}B(s,.)) = 0,$$

e standing for the excess between two sets. When B(t, .) or -B(t, .) is the subdifferential of a convex lsc function ψ^t which satisfies (H₀), the condition (iv) is satisfied.

3 Existence of approximate solutions

For any real $\lambda > 0$ and $t \in [0, T]$, the function f_{λ}^{t} shall denote the *Moreau-Yosida proximal* function of index λ of f^{t} , and we set

$$J_{\lambda}^{t} = (I + \lambda \partial f^{t})^{-1}, \quad Df_{\lambda}^{t} = \lambda^{-1}(I - J_{\lambda}^{t}).$$

We first prove the approximate result of existence :

Theorem 3.1 Let $(f^t)_{t\in[0,T]}$ be a family of proper convex lsc functions on X with each f^t of compact type. Assume that (H) and (B_o) are satisfied. For each $u_0 \in \text{dom } f^0$, there exists $T_0 \in [0,T]$ such that $u' + \partial f^t(u) + B(t,u) \ni 0$ has at least an approximate solution $x : [0,T_0] \to X$ with $x(0) = u_0$ in the following sense: there exist sequences $(x_n)_n$ of absolutely continuous functions from $[0,T_0]$ to X, $(u_n)_n$ and $(\beta_n)_n$ of piecewise constant functions from $[0,T_0]$ to X which satisfy:

1. for a.e. $t \in [0, T_0]$

$$\begin{cases} x'_n(t) + \partial f^t(x_n(t)) + \beta_n(t) \ge 0\\ x_n(0) = u_0 \end{cases} \quad and \quad \beta_n(t) \in B(\theta_n(t), u_n(t))$$

where $0 \leq t - \theta_n(t) \leq 2^{-n}T$,

2. there exists $N \in \mathbb{N}$ such that for any $n \ge N$:

$$\forall t \in [0, T] \qquad \|x_n(t) - u_0\| \leqslant \rho \quad and \quad \|\beta_n(t)\| \leqslant M,$$

3. $(x_n)_n$ and $(u_n)_n$ converge uniformly to x on $[0, T_0]$, $(\beta_n)_n$ converges weakly to β in $L^2(0, T_0; X)$, $(x'_n)_n$ converges weakly to x' in $L^2(0, T_0; X)$ and x is the solution of $x'(t) + \partial f^t(x(t)) + \beta(t) \ge 0$, $x(0) = u_0$ on $[0, T_0]$.

3.1 Proof of Theorem 3.1

Lemma 3.1 We can find a set $\{z_t : t \in [0, T]\}$ and $\rho_0 > 0$ such that $z_t \in \rho_0 \mathbb{B}$, $f^t(z_t) \leq \rho_0$ for every $t \in [0, T]$.

Proof. Let $z_0 \in \text{dom } f^0$ and r > 0 such that $r \ge ||z_0|| \lor |f^0(z_0)|$. For all $t \in [0, T]$, there exists $z_t \in \text{dom } f^t$ satisfying

$$\begin{cases} ||z_t - z_0|| \leq |h_r(t) - h_r(0)|(1 + |f^0(z_0)|^{1/2}) \\ f^t(z_t) \leq f^0(z_0) + |k_r(t) - k_r(0)|(1 + |f^0(z_0)|). \end{cases}$$

The lemma holds with $\rho_0 = (r + ||h'_r||_{L^1}(1 + r^{1/2})) \vee (r + ||k'_r||_{L^1}(1 + r)).$

Lemma 3.2 [18, Proposition 3.1]. Let $x \in X$ and $\lambda > 0$. The map $t \mapsto J_{\lambda}^{t} x$ is continuous on [0, T].

Proof. ¿From Kenmochi [11, Chapter 1, Section 1.5, Theorem 1.5.1], there is a nonnegative constant α such that $f^t(x) \ge -\alpha(||x|| + 1)$ for all $x \in X$ and $t \in [0, T]$. Thus,

$$f_{\lambda}^{t}(x) - \frac{1}{2\lambda} \|x - J_{\lambda}^{t}x\|^{2} = f^{t}(J_{\lambda}^{t}x) \ge -\alpha(1 + \|J_{\lambda}^{t}x\|),$$

which implies

$$\|x - J_{\lambda}^{t}x\|^{2} \leq 2\lambda\alpha(1 + \|J_{\lambda}^{t}x - x\| + \|x\|) + 2\lambda f_{\lambda}^{t}(x).$$
(3)

Since $2\lambda f_{\lambda}^{t}(x) \leq 2\lambda f^{t}(z_{t}) + ||z_{t} - x||^{2} \leq 2\lambda \rho_{0} + (\rho_{0} + ||x||)^{2}$ by Lemma 3.1, we can conclude:

$$\sup\{\|J_{\lambda}^{t}x\| \mid t \in [0,T], \ \lambda \in]0,1], \ x \in r\mathbb{B}\} < \infty$$
$$\sup\{|f^{t}(J_{\lambda}^{t}x)| \mid t \in [0,T], \ x \in r\mathbb{B}\} < \infty$$

for any r > 0.

Let $t \in [0, T]$ and $r \ge ||J_{\lambda}^t x||$. By assumption (H₀), for each $s \in [0, T]$ with $s \ge t$ there exists $x_s \in \text{dom } f^s$ satisfying

$$\begin{cases} \|J_{\lambda}^{t}x - x_{s}\| \leq |h_{r}(t) - h_{r}(s)|(1 + |f^{t}(J_{\lambda}^{t}x)|^{1/2}) \\ f^{s}(x_{s}) \leq f^{t}(J_{\lambda}^{t}x) + |k_{r}(t) - k_{r}(s)|(1 + |f^{t}(J_{\lambda}^{t}x)|) \end{cases} \end{cases}$$

Since $\lambda^{-1}(x - J^s_{\lambda}x) \in \partial f^s(J^s_{\lambda}x)$, we have

$$f^{s}(J^{s}_{\lambda}x) + \frac{1}{\lambda} \langle x - J^{s}_{\lambda}x, x_{s} - J^{s}_{\lambda}x \rangle \leqslant f^{s}(x_{s}) \leqslant f^{t}(J^{t}_{\lambda}x) + |k_{r}(t) - k_{r}(s)|(1 + |f^{t}(J^{t}_{\lambda}x)|).$$

Hence, for any $s \ge t$, we have

$$\frac{1}{\lambda} \langle x - J_{\lambda}^{s} x, J_{\lambda}^{t} x - J_{\lambda}^{s} x \rangle$$

$$\leq \frac{1}{\lambda} \langle x - J_{\lambda}^{s} x, J_{\lambda}^{t} x - x_{s} \rangle + f^{t} (J_{\lambda}^{t} x) - f^{s} (J_{\lambda}^{s} x) + |k_{r}(t) - k_{r}(s)|(1 + |f^{t} (J_{\lambda}^{t} x)|))$$

$$\leq \|Df_{\lambda}^{s}(x)\| |h_{r}(t) - h_{r}(s)|(1 + |f^{t} (J_{\lambda}^{t} x)|^{1/2}) + f^{t} (J_{\lambda}^{t} x) - f^{s} (J_{\lambda}^{s} x) + |k_{r}(t) - k_{r}(s)|(1 + |f^{t} (J_{\lambda}^{t} x)|).$$

EJQTDE, 2005 No. 11, p. 6

By symmetry it is true for any $s \in [0, T]$. In the same way for t, s in [0, T], we have

$$\frac{1}{\lambda} \langle x - J_{\lambda}^{t} x, J_{\lambda}^{s} x - J_{\lambda}^{t} x \rangle \leq \|Df_{\lambda}^{t}(x)\| |h_{r}(t) - h_{r}(s)| (1 + |f^{s}(J_{\lambda}^{s} x)|^{1/2}) + f^{s}(J_{\lambda}^{s} x) - f^{t}(J_{\lambda}^{t} x) + |k_{r}(t) - k_{r}(s)| (1 + |f^{s}(J_{\lambda}^{s} x)|).$$

Adding these two inequalities we obtain

$$\begin{aligned} \frac{1}{\lambda} \|J_{\lambda}^{s}x - J_{\lambda}^{t}x\|^{2} &\leqslant [\|Df_{\lambda}^{t}(x)\| \vee \|Df_{\lambda}^{s}(x)\|] |h_{r}(t) - h_{r}(s)|(1 + |f^{s}(J_{\lambda}^{s}x)|^{1/2} \vee |f^{t}(J_{\lambda}^{t}x)|^{1/2}) \\ &+ |k_{r}(t) - k_{r}(s)|(1 + |f^{s}(J_{\lambda}^{s}x)| \vee |f^{t}(J_{\lambda}^{t}x)|). \end{aligned}$$

Since both $||Df_{\lambda}^{t}(x)||$ and $|f^{t}(J_{\lambda}^{t}x)|$ are bounded, $t \mapsto J_{\lambda}^{t}x$ is continuous on [0, T]. \Box

By [11, Lemma 1.5.3], for $r \ge ||u_0|| + 1$, $M_1 \ge |f^0(u_0)| + \alpha r + \alpha + 1$ and $T_1 \in]0, T[$ such that

$$\left[1 + M_1 \exp \int_0^T |k'_r|\right] \int_0^{T_1} |h'_r| \le 1,$$

there exists an absolutely continuous function v on $[0, T_1]$ satisfying:

* $v(0) = u_0$ and $\limsup_{t \to 0_+} f^t(v(t)) \leq f^0(u_0)$ * $||v(t)|| \leq r$ for any $t \in [0, T_1]$ * for any $t \in [0, T_1], |f^t(v(t))| \leq M_1 + M_1 \exp \int_0^T |k'_r| \int_0^t |h'_r|$ * for almost any $t \in [0, T_1], ||v'(t)|| \leq [1 + M_1 \exp \int_0^T |k'_r|] |h'_r(t)|.$

For $r \ge ||u_0|| + \rho$, let us choose $T_2 > 0$ such that

$$\left(|f^{0}(u_{0})| + \frac{M^{2}}{2}T_{2} + \int_{0}^{T_{2}} c_{r}(\tau) d\tau\right) \left(1 + T_{2} \exp \int_{0}^{T_{2}} c_{r}(\tau) d\tau\right) \leq |f^{0}(u_{0})| + \rho.$$

Let $r \ge (||u_0|| \lor |f^0(u_0)|) + \rho + 1$ be fixed. Let us choose $T_0 > 0$ small enough in order to have

$$(1+r^{1/2})^2 T_0 \int_0^{T_0} |h'_r| \leq \frac{\rho^2}{32}, \quad T_0 \leq T_1 \wedge T_2 \quad and$$
$$M_T \sqrt{T_0} + [M+\alpha] T_0 + \left[1+M_1 \exp(\int_0^T |k'_r|)\right] \int_0^{T_0} |h'_r(s)| \, ds \leq \frac{\rho}{4}$$
where $M_T = 2 \left[M_1 + M_1 \left(\exp \int_0^T |k'_r|\right) \int_0^T |h'_r(s)| \, ds + \alpha r + \alpha\right]^{1/2}.$

Lemma 3.3 Let $\beta : [0,T] \to X$ be a measurable function with $\|\beta(t)\| \leq M$ for a.e. $t \in [0,T]$. Then,

 $\forall t \in [0, T_0] \qquad \|p(\beta)(t) - u_0\| \leqslant \frac{\rho}{2},$

the map p being defined in Section 2.

Proof. The curve $u = p(\beta)$ exists on [0, T] following Theorem 2.1. We have for a.e. $t \in [0, T_0]$:

$$\frac{d}{dt}\frac{1}{2}\|u(t) - v(t)\|^2 \leqslant f^t(v(t)) - f^t(u(t)) + [M + \|v'(t)\|] \|u(t) - v(t)\|$$
$$\leqslant \frac{1}{2}M_T^2 + [M + \|v'(t)\| + \alpha] \|u(t) - v(t)\|.$$

We thus obtain for any $t \in [0, T_0]$

$$\frac{1}{2}\|u(t) - v(t)\|^2 \leq \frac{1}{2}M_T^2 T_0 + \int_0^t [M + \|v'(s)\| + \alpha] \|u(s) - v(s)\| \, ds.$$

Gronwall's lemma yields for any $t \in [0, T_0]$

$$\begin{aligned} \|u(t) - v(t)\| &\leqslant M_T \sqrt{T_0} + \int_0^t [M + \|v'(s)\| + \alpha] \, ds \\ &\leqslant M_T \sqrt{T_0} + [M + \alpha] T_0 + \left[1 + M_1 \exp \int_0^T |k'_r|\right] \int_0^{T_0} |h'_r(s)| \, ds \leqslant \frac{\rho}{4} \end{aligned}$$

Furthermore,

$$\|v(t) - u_0\| \leqslant \int_0^t \|v'(s)\| \, ds \leqslant \left[1 + M_1 \exp \int_0^T |k'_r|\right] \int_0^{T_0} |h'_r(s)| \, ds \leqslant \frac{\rho}{4}.$$

By choice of $T_0 > 0$, we obtain $||u(t) - u_0|| \leq \rho/2$ for any $t \in [0, T_0]$.

For simplicity of notation, we now write T instead of T_0 . We also assume that $f^t(x) \ge 0$ for any $x \in X$ with $||x - u_0|| \le \rho$, since we have $f^t(x) \ge -\alpha(||u_0|| + \rho + 1)$. Let $n \in \mathbb{N}^*$ such that :

$$\alpha^2 2^{-6n} + 2^{-3n+1} \left[r + (1+r) \left(\int_0^T |k_r'| + \alpha \right) \right] \leqslant \frac{\rho^2}{32}.$$

Let us set $f_n^t = f_{2^{-3n}}^t$ and $J_n^t = J_{2^{-3n}}^t$. Let \mathcal{P} be a partition of [0, T]:

$$\mathcal{P} = \{ 0 = t_0^n < t_1^n < \dots < t_{2^n}^n = T \}$$

where $t_k^n = k 2^{-n} T$ for $k = 0, ..., 2^n$.

Let us set $u_0^n = J_n^{t_0^n} u_0$. By assumption $(B_o)(i)$, $B(t_0^n, u_0^n)$ is non empty and contains an element β_0^n . Let $t \in [0, T]$. Under the assumption (H_0) , there exists $u_{n,t} \in \text{dom } f^t$ satisfying

$$\begin{cases} ||u_{n,t} - u_0|| \leq |h_r(t) - h_r(0)|(1 + r^{1/2}) \\ f^t(u_{n,t}) \leq r + |k_r(t) - k_r(0)|(1 + r). \end{cases}$$

EJQTDE, 2005 No. 11, p. 8

Using the definition of the Moreau-Yosida approximate, we obtain

Thus, by choice of r, T and n we obtain

$$\begin{split} \|J_n^t u_0 - u_0\| \\ \leqslant \quad \alpha 2^{-3n} + \sqrt{\alpha^2 2^{-6n} + 2r 2^{-3n} + 2(1+r) 2^{-3n} (\int_0^T |k_r'| + \alpha) + (1+\sqrt{r})^2 T \int_0^T |h_r'|^2} \\ \leqslant \quad \frac{\rho}{2}. \end{split}$$

In particular, $||u_0^n - u_0|| \leq \rho/2$. Under $(B_o)(ii)$ it follows $||\beta_0^n|| \leq M$. Let us set $x_0^n = p(\beta_0^n)$. By Lemma 3.3,

$$\forall t \in [0,T] \qquad \|x_0^n(t) - u_0\| \leqslant \frac{\rho}{2}.$$

Let us set $u_1^n = J_n^{t_1^n} x_0^n(t_1^n)$ and take $\beta_1^n \in B(t_1^n, u_1^n)$. Since $J_n^{t_1^n}$ is 1-Lipschitz continuous, we have

$$||u_1^n - u_0|| \le ||x_0^n(t_1^n) - u_0|| + ||J_n^{t_1^n}u_0 - u_0|| \le \rho.$$

Next, $(B_o)(ii)$ implies $\|\beta_1^n\| \leq M$. We then set

$$\beta_1^n(t) = \begin{cases} \beta_0^n & \text{if } t \in [t_0^n, t_1^n] \\ \beta_1^n & \text{if } t \in [t_1^n, T] \end{cases}$$

Let us set $x_1^n = p(\beta_1^n)$. By unicity and continuity of the curve it follows $x_1^n(t) = x_0^n(t)$ if $t \in [t_0^n, t_1^n]$. Furthermore, $\|\beta_1^n(t)\| \leq M$ for any $t \in [0, T]$. By Lemma 3.3,

$$\forall t \in [0,T] \qquad \|x_1^n(t) - u_0\| \leqslant \frac{\rho}{2}.$$

Let $k \in \mathbb{N}^*$. Assume that there exists a map $\beta_{k-1}^n : [0,T] \to X$ which is constant on each $[t_{k-1}^n, t_k^n[$ with $\|\beta_{k-1}^n(t)\| \leq M$ for any $t \in [0,T]$. Set $x_{k-1}^n = p(\beta_{k-1}^n)$. Then,

$$\forall t \in [0, T]$$
 $||x_{k-1}^n(t) - u_0|| \leq \frac{\rho}{2}.$

Let us set $u_k^n = J_n^{t_k^n} x_{k-1}^n(t_k^n)$ and take $\beta_k^n \in B(t_k^n, u_k^n)$. Since

$$||u_k^n - u_0|| \leq ||x_{k-1}^n(t_k^n) - u_0|| + ||J_n^{t_k^n}u_0 - u_0|| \leq \rho$$

we have $\|\beta_k^n\| \leq M$. We then set

$$\beta_k^n(t) = \begin{cases} \beta_{k-1}^n(t) & \text{if } t \in [t_0^n, t_k^n] \\ \beta_k^n & \text{if } t \in [t_k^n, T] \end{cases}$$

Let us set $x_k^n = p(\beta_k^n)$. By unicity it follows $x_k^n(t) = x_{k-1}^n(t)$ if $t \in [0, t_k^n]$. Furthermore, $\|\beta_k^n(t)\| \leq M$ for any $t \in [0, T]$. By Lemma 3.3,

$$\forall t \in [0,T] \qquad \|x_k^n(t) - u_0\| \leqslant \frac{\rho}{2}.$$

We then set

$$x_n := x_{2^n - 1}^n = \sum_{k=0}^{2^n} x_k^n \, \chi_{[t_k^n, t_{k+1}^n[} \qquad \text{and} \qquad \beta_n := \beta_{2^n - 1}^n = \sum_{k=0}^{2^n} \beta_k^n \, \chi_{[t_k^n, t_{k+1}^n[}, t_{k+1}^n[]]$$

where $\chi_{[t_k^n, t_{k+1}^n[}(t) = 1$ if $t \in [t_k^n, t_{k+1}^n[$, and = 0 otherwise. For all $t \in [0, T[$, there exists $0 \leq k \leq 2^n$ with $t \in [t_k^n, t_{k+1}^n[$ and we set

$$\theta_n(t) = t_k^n$$
 and $\theta_n(T) = T$.

So, $x_n : [0,T] \to X$ is an absolutely continuous function and $\beta_n : [0,T] \to X$ is a measurable map which satisfy for a.e. $t \in [0,T]$

$$\begin{cases} x'_n(t) + \partial f^t(x_n(t)) + \beta_n(t) \ni 0\\ x_n(0) = u_0 \end{cases} \quad \text{and} \quad \beta_n(t) \in B(\theta_n(t), u_n(t)) \end{cases}$$

where we set $u_n(t) = J_n^{\theta_n(t)} x_n(\theta_n(t))$. By construct, there exists $N \in \mathbb{N}$ such that for any $n \ge N$:

$$\forall t \in [0,T] \qquad \|x_n(t) - u_0\| \leqslant \rho \quad \text{and} \quad \|\beta_n(t)\| \leqslant M.$$

A subsequence of $(\beta_n)_n$, again denoted by $(\beta_n)_n$, converges weakly to β in $L^2(0,T;X)$. By continuity of the map p, the sequence $x_n = p(\beta_n)$ converges uniformly to a curve $x = p(\beta)$ on [0,T] and a subsequence of $(x'_n)_n$ converges weakly to x' in $L^2(0,T;X)$.

In other words, the curve x is the solution of $x'(t) + \partial f^t(x(t)) + \beta(t) \ge 0$, $x(0) = u_0$ on [0, T].

Let $n \in \mathbb{N}^*$ and $t \in [0, T]$. We have

$$\|u_n(t) - x(t)\| \le \|x_n(\theta_n(t)) - x(\theta_n(t))\| + \|x(\theta_n(t)) - x(t)\| + \|J_n^{\theta_n(t)}x(t) - x(t)\|.$$
(4)

Under the assumption (H₀), there exists $u_{n,t} \in \text{dom} f^{\theta_n(t)}$ satisfying

$$\begin{cases} \|u_{n,t} - x(t)\| \leq |h_r(\theta_n(t)) - h_r(t)|(1+r^{1/2}) \\ f^{\theta_n(t)}(u_{n,t}) \leq r + |k_r(\theta_n(t)) - k_r(t)|(1+r). \end{cases}$$

Using the definition of the Moreau-Yosida approximate, we obtain

$$\begin{aligned} \frac{2^{3n}}{2} \|J_n^{\theta_n(t)} x(t) - x(t)\|^2 &= f_n^{\theta_n(t)}(x(t)) - f^t (J_n^{\theta_n(t)} x(t)) \\ &\leqslant f^{\theta_n(t)}(u_{n,t}) + \frac{2^{3n}}{2} \|u_{n,t} - x(t)\|^2 + \alpha \|J_n^{\theta_n(t)} x(t) - x(t)\| + \alpha (1+r) \\ &\leqslant r + (1+r) \int_{\theta_n(t)}^t |k_r'| + \frac{2^{3n}}{2} (1+r^{1/2})^2 (t-\theta_n(t)) \int_{\theta_n(t)}^t |h_r'|^2 \\ &+ \alpha \|J_n^{\theta_n(t)} x(t) - x(t)\| + \alpha (1+r). \end{aligned}$$

Thus,

$$\|J_n^{\theta_n(t)}x(t) - x(t)\| \leq \alpha 2^{-3n} + \sqrt{\alpha^2 2^{-6n} + 2r 2^{-3n} + 2(1+r)2^{-3n} (\int_0^T |k_r'| + \alpha) + (1+r^{1/2})^2 2^{-n} \int_0^T |h_r'|^2}$$

and $(J_n^{\theta_n(.)}x)_n$ converges uniformly to x on [0,T]. Since $(x_n)_n$ converges uniformly to x on [0,T] and x is continuous on [0,T], (4) assures the uniform convergence of $(u_n)_n$ to x on [0,T].

3.2 Properties of approximate solutions

Lemma 3.4 We have $||x(t)|| \vee |f^t(x(t))| \leq r$ for all $t \in [0, T]$. Under the assumption (B)(ii), the element $\beta(t)$ belongs to $-\partial\varphi(x(t))$ for a.e. $t \in [0, T]$.

Proof. By inequality (2), we have for any $s \leq t$ in [0, T]

$$f^{t}(x(t)) - f^{s}(x(s)) + \frac{1}{2} \int_{s}^{t} \|x'(\tau)\|^{2} d\tau \leq \frac{1}{2} M^{2} T + \int_{s}^{t} c_{r}(\tau) \left[1 + |f^{\tau}(x(\tau))|\right] d\tau.$$

Since $||x(t) - u_0|| \leq \rho$, we have assumed for simplicity that $f^t(x(t)) \ge 0$ for any $t \in [0, T]$. Gronwall's lemma yields for any $t \in [0, T]$

$$f^{t}(x(t)) \leq \left(f^{0}(u_{0}) + \frac{M^{2}}{2}T + \int_{0}^{T} c_{r}(\tau) d\tau\right) \left(1 + T \exp \int_{0}^{T} c_{r}(\tau) d\tau\right) \leq |f^{0}(u_{0})| + \rho.$$
(5)

by assumption on T.

Next, $\beta_n(t)$ belongs to $-\partial \varphi(u_n(t))$ with the uniform convergence of $(u_n)_n$ to x on [0,T].

Let us define $\tilde{\varphi} : L^2(0,T;X) \to \mathbb{R} \cup \{+\infty\}$ by $\tilde{\varphi}(u) = \int_0^T \varphi(u(t)) dt$. It is known that $\tilde{\varphi}$ is proper lsc convex and

$$\alpha \in \partial \tilde{\varphi}(u) \iff \alpha(t) \in \partial \varphi(u(t)) \text{ for a.e. } t \in [0,T].$$

Thus, $-\beta_n \in \partial \tilde{\varphi}(u_n)$. Passing to the limit we obtain $-\beta \in \partial \tilde{\varphi}(x)$. Hence, $\beta(t)$ belongs to $-\partial \varphi(x(t))$ for a.e. $t \in [0, T]$.

Lemma 3.5 For almost any $t \in [0,T]$ we have $f^t(x(t)) = \liminf_{n \to +\infty} f^t(x_n(t))$. Furthermore,

$$\lim_{n \to +\infty} \int_0^T f^t(x_n(t)) \, dt = \int_0^T f^t(x(t)) \, dt \quad and \quad \lim_{n \to +\infty} \int_0^T (f^t)^*(y_n(t)) \, dt = \int_0^T (f^t)^*(y(t)) \, dt,$$

where we set $y_n(t) = -x'_n(t) - \beta_n(t)$ and $y(t) = -x'(t) - \beta(t)$ for a.e. t in $[0, T]$.

Proof. By lower semicontinuity of f^t , the inequality

$$f^t(x(t)) \leq \liminf_{n \to +\infty} f^t(x_n(t))$$

holds for any $t \in [0,T]$. The maps $v \mapsto \int_0^T f^t(v(t)) dt$ and $w \mapsto \int_0^T (f^t)^*(w(t)) dt$ are proper lsc convex on $L^2(0,T;X)$. So,

$$\begin{split} \liminf_{n \to +\infty} \int_0^T f^t(x_n(t)) \, dt \geqslant \int_0^T f^t(x(t)) \, dt \quad \text{and} \quad \liminf_{n \to +\infty} \int_0^T (f^t)^*(y_n(t)) \, dt \geqslant \int_0^T (f^t)^*(y(t)) \, dt \\ \text{But, } f^t(x_n(t)) + (f^t)^*(y_n(t)) = \langle y_n(t), x_n(t) \rangle \text{ for any } t \in [0, T], \text{ with} \\ \\ \lim_{n \to +\infty} \int_0^T \langle y_n(t), x_n(t) \rangle \, dt = \int_0^T \langle y(t), x(t) \rangle \, dt. \end{split}$$

Lemma 3.6 We have the inequality

$$\int_0^T \langle \beta(s), x'(s) \rangle \, ds \leqslant \liminf_{n \to +\infty} \int_0^T \langle \beta_n(s), x'_n(s) \rangle \, ds.$$
(6)

Proof. Let $n \in \mathbb{N}^*$. The maps x_n , β_n and u_n are constant on $[t_k^n, t_{k+1}^n]$, $k = 0, \ldots, 2^n - 1$. Hence,

$$\int_0^T \langle \beta_n(s), x'_n(s) \rangle \, ds = \sum_{k=0}^{2^n - 1} \int_{t_k^n}^{t_{k+1}^n} \langle \beta_k^n, (x_k^n)'(s) \rangle \, ds = \sum_{k=0}^{2^n - 1} \langle \beta_k^n, x_k^n(t_{k+1}^n) - x_k^n(t_k^n) \rangle.$$

Since $\beta_k^n \in -\partial \varphi(u_k^n)$ for any $k = 0, \ldots, 2^n - 1$, we obtain:

$$\int_{0}^{T} \langle \beta_{n}(s), x_{n}'(s) \rangle \, ds \geq \sum_{k=0}^{2^{n}-1} \varphi(u_{k}^{n}) - \varphi(x_{k}^{n}(t_{k+1}^{n})) - M \| u_{k}^{n} - x_{k}^{n}(t_{k}^{n}) \|$$

$$= \varphi(u_{0}^{n}) - \varphi(x_{2^{n}-1}^{n}(t_{2^{n}}^{n})) + \sum_{k=1}^{2^{n}-1} \varphi(u_{k}^{n}) - \varphi(x_{k}^{n}(t_{k}^{n})) - M \| u_{k}^{n} - x_{k}^{n}(t_{k}^{n}) \|$$

$$\geq \varphi(J_{n}^{0}u_{0}) - \varphi(x_{n}(T)) - 2M \sum_{k=1}^{2^{n}-1} \| u_{k}^{n} - x_{k}^{n}(t_{k}^{n}) \|.$$

EJQTDE, 2005 No. 11, p. 12

Since $||u_k^n - u_0|| \leq ||u_n(t_k^n) - x_n(t_k^n)|| + \rho/2 \leq \rho$ for *n* large enough, we have $f^{t_k^n}(u_k^n) \geq 0$. Furthermore, inequality (5) assures that $f^{t_k^n}(x_k^n(t_k^n)) \leq f^0(u_0) + \rho \leq r$. Using the definition of the Moreau-Yosida approximate, we obtain

$$\frac{2^{3n}}{2} \|u_k^n - x_k^n(t_k^n)\|^2 = f_n^{t_k^n}(x_k^n(t_k^n)) - f^{t_k^n}(u_k^n) \leqslant r.$$

Thus, $||u_k^n - x_k^n(t_k^n)|| \leq \sqrt{r2^{-3n+1}}$ and

$$\sum_{k=1}^{2^n-1} \|u_k^n - x_k^n(t_k^n)\| \leqslant \sqrt{r2^{-n+1}}$$

Consequently,

$$\lim_{n \to +\infty} \sum_{k=1}^{2^{n-1}} \|u_k^n - x_k^n(t_k^n)\| = 0.$$

By continuity of φ and convergence of $(x_n)_n$ to x, we obtain

$$\liminf_{n \to +\infty} \int_0^T \langle \beta_n(s), x'_n(s) \rangle \, ds \ge \varphi(u_0) - \varphi(x(T)).$$

Since $\beta(s) \in -\partial \varphi(x(s))$ almost everywhere, $\langle \beta(s), x'(s) \rangle = -(\varphi \circ x)'(s)$ holds for a.e. s and we obtain the inequality (6).

4 Existence of strong solutions

We now prove the existence of strong solutions.

4.1 General case

Let us set

$$\Phi(x,y) = \int_0^T \langle y(t), x'(t) \rangle \, dt - f^T(x(T)) + f^0(u_0)$$

for any absolutely continuous function $x : [0,T] \to X$ with $x' \in L^2(0,T;X)$ and any fonction $y \in L^2(0,T;X)$.

Theorem 4.1 Let $(f^t)_{t \in [0,T]}$ be a family of proper convex lsc functions on X with each f^t of compact type which satisfies the assumption (H). Assume that for any sequence $(x_n)_n$ in $H^1(0,T;X)$ which converges uniformly to the absolutely continuous function x with the weak convergence of $(x'_n)_n$ to x' in L^2 , and for any $(y_n)_n$ which converges weakly to y in L^2 with $y_n(t) \in \partial f^t(x_n(t))$ for almost all t, there exists $n_k \to +\infty$ such that

$$\liminf_{k \to +\infty} \Phi(x_{n_k}, y_{n_k}) \ge \Phi(x, y).$$

Then, for each $u_0 \in \text{dom } f^0$, there exists $T_0 \in]0, T]$ such that $u' + \partial f^t(u) + B(t, u) \ni 0$ has at least a strong solution $u : [0, T_0] \to X$ with $u(0) = u_0$.

Proof. Consider x an approximate solution. We prove $x'(t) + \partial f^t(x(t)) + B(t, x(t)) \ge 0$ for a.e. t in [0, T]. So, we begin by prove that $(x'_n)_n$ converges strongly to x' in $L^2(0, T; X)$. Step 1. - Let us set $y_n(t) = -x'_n(t) - \beta_n(t)$ and $y(t) = -x'(t) - \beta(t)$ for a.e. t in [0, T]. It is easy to see that for any $n \in \mathbb{N}$ and almost any $t \in [0, T]$:

 $\|x'_{n}(t)\|^{2} + \langle y_{n}(t), x'_{n}(t) \rangle + \langle \beta_{n}(t), x'_{n}(t) \rangle = 0 \quad \text{and} \quad \|x'(t)\|^{2} + \langle y(t), x'(t) \rangle + \langle \beta(t), x'(t) \rangle = 0.$

The sequence $(x'_n)_n$ converges weakly to x' in $L^2(0,T;X)$. The strong convergence of $(x'_n)_n$ to x' in $L^2(0,T;X)$ is equivalent to

$$\limsup_{n \to +\infty} \int_0^T \|x'_n(t)\|^2 \, dt \leqslant \int_0^T \|x'(t)\|^2 \, dt.$$

¿From Lemma 3.6 it follows:

$$\limsup_{n \to +\infty} \int_0^T \|x'_n(t)\|^2 dt \leqslant -\liminf_{n \to +\infty} \int_0^T \langle y_n(t), x'_n(t) \rangle dt - \liminf_{n \to +\infty} \int_0^T \langle \beta_n(t), x'_n(t) \rangle dt$$
$$\leqslant -\liminf_{n \to +\infty} \int_0^T \langle y_n(t), x'_n(t) \rangle dt - \int_0^T \langle \beta(t), x'(t) \rangle dt.$$

Since $\int_0^T \langle \beta(t), x'(t) \rangle dt = -\int_0^T \|x'(t)\|^2 dt + \int_0^T \langle y(t), x'(t) \rangle dt$, it suffices to show that $\int_0^T \langle y(t), x'(t) \rangle dt \leq \liminf_{n \to +\infty} \int_0^T \langle y_n(t), x'_n(t) \rangle dt.$ (7)

Step 2. - Under the assumption on Φ , it follows by lower semicontinuity of f^T :

$$\liminf_{k \to +\infty} \int_0^T \langle y_{n_k}(t), x'_{n_k}(t) \rangle \, dt \ge f^T(x(T)) - f^0(u_0) + \liminf_{k \to +\infty} \Phi(x_{n_k}, y_{n_k}) \ge \int_0^T \langle y(t), x'(t) \rangle \, dt.$$

Step 3. - Let \mathcal{N} be the negligeable subset of [0,T] such that, for any $t \in [0,T] \setminus \mathcal{N}$, we have $x'_n(t) + \partial f^t(x_n(t)) + \beta_n(t) \ni 0$, $\beta_n(t) \in B(\theta_n(t), u_n(t))$ and $(x'_n(t))_n$ converges to x'(t). Since each f^t are of compact type, the sets $X(t) := \operatorname{cl}\{x_n(t) \mid n \in \mathbb{N}^*\}$ and $U(t) := \operatorname{cl}\{u_n(t) \mid n \in \mathbb{N}^*\}$ are compact in $\operatorname{Dom}(\partial f^t)$. Let $r \ge M \vee (\rho + ||u_0||)$. Under the assumption (B)(iv), for each $n \ge N$ and $t \in [0,T]$ with $t \ne \theta_n(t)$, there exists $z_n^t \in \operatorname{Dom} B(t, .)$ and $\alpha_n^t \in B(t, z_n^t)$ satisfying

$$||z_n^t - u_n(t)|| \vee ||\alpha_n^t - \beta_n(t)|| \leq g_r(\theta_n(t), t).$$

When $t = \theta_n(t)$, we simply take $z_n^t = u_n(t)$ and $\alpha_n^t = \beta_n(t)$. Then, $(z_n^t)_n$ converges to x(t) and $Z(t) := \operatorname{cl}\{z_n^t \mid n \in \mathbb{N}^*\}$ is compact in $\operatorname{Dom}(\partial f^t)$.

The restriction of B(t,.) to $\text{Dom}(\partial f^t)$ being use, the set $\{B(t,z)|z \in Z(t)\}$ is compact in X. Hence, $\Gamma(t) := \text{cl}\{\alpha_n^t \mid n \in \mathbb{N}^*\}$, and thus $\text{cl}\{\beta_n(t) \mid n \in \mathbb{N}^*\}$, are compact. So, $Y(t) := \text{cl}\{y_n(t) \mid n \in \mathbb{N}^*\}$ is compact in X.

Let us set $F^t(x) = \partial f^t(x) \cap Y(t)$ and $G^t(x) = B(t,x) \cap \Gamma(t)$ for any $x \in \text{Dom}(\partial f^t)$ and $t \in [0,T]$. The multimaps F^t and G^t are upper semicontinuous on $\text{Dom}(\partial f^t)$ with compact values in X. Let us denote by e the excess between two sets. We have:

$$\begin{aligned} d(-x'_{n}(t), F^{t}(x(t)) + G^{t}(x(t))) &\leqslant d(y_{n}(t), F^{t}(x(t))) + d(\beta_{n}(t), G^{t}(x(t))) \\ &\leqslant e(F^{t}(x_{n}(t)), F^{t}(x(t))) + \|\beta_{n}(t) - \alpha_{n}^{t}\| + d(\alpha_{n}^{t}, G^{t}(x(t))) \\ &\leqslant e(F^{t}(x_{n}(t)), F^{t}(x(t))) + g_{r}(\theta_{n}(t), t) + e(G^{t}(z_{n}^{t}), G^{t}(x(t))). \end{aligned}$$

The upper-semicontinuity of F^t and G^t assures that

$$\lim_{n \to +\infty} d(-x'_n(t), F^t(x(t)) + G^t(x(t))) = 0.$$

Since $(x'_n)_n$ converges to x' a.e. on [0, T], the equality $d(-x'(t), F^t(x(t)) + G^t(x(t))) = 0$ holds for a.e. $t \in [0, T]$ and we obtain by closedness of $F^t(x(t)) + G^t(x(t))$:

$$-x'(t) \in F^t(x(t)) + G^t(x(t))$$
 for a.e. $t \in [0, T]$.

Consequently, x is a local solution to $x' + \partial f^t(x) + B(t, x) \ge 0$ with $x(0) = u_0$.

4.2 Two particular cases

We consider two particular cases for which we can apply Theorem 4.1. These cases contains those of f^t not depending on t. First,

Corollary 4.1 Let $(f^t)_{t \in [0,T]}$ be a family of proper convex lsc functions on X with each f^t of compact type. Let $u_0 \in \text{dom } f^0$. Assume that $f^t = g \circ F^t$ where g is a proper convex lsc function on a Hilbert space Y and $(F^t)_{t \in [0,T]}$ is a family of differentiable maps from X to Y such that $(DF^t)_t$ is equilipschitz continuous on a neighborhood of u_0 and such that:

- 1. for each $r \ge 0$, there is absolutely continuous real-valued function b_r on [0,T] such that:
 - (a) $b'_r \in L^2(0,T)$,
 - (b) for each $s, t \in [0, T]$, $\sup_{\|x\| \le r} \|F^t(x) F^s(x)\| \le |b_r(t) b_r(s)|$,
- 2. the qualification condition $\mathbb{R}_+[\operatorname{dom} g F^0(u_0)] DF^0(u_0)X = Y$ holds,
- 3. for each $r \ge 0$, there exists a negligible subset N of [0,T] such that the mapping $t \mapsto F^t(x)$ admits a derivative $\Delta^t(x)$ on $[0,T] \setminus N$ for any $x \in r\mathbb{B}_X$ and Δ^t is continuous on $r\mathbb{B}_X$ for any $t \in [0,T] \setminus N$,
- 4. the mapping $(t, x) \mapsto DF^t(x)$ is bounded on $[0, T] \times r\mathbb{B}_X$ for each r > 0 and it is continuous at t for each x.

Assume that (H) and (B) are satisfied. Then, there exists $T_0 \in [0, T]$ such that $u' + \partial f^t(u) + B(t, u) \ni 0$ has at least a strong solution $u : [0, T_0] \to X$ with $u(0) = u_0$.

Remark under assumption 1., the mapping $t \mapsto F^t(x)$ is absolutely continuous and admits a derivative at a.e. $t \in [0, T]$ for each x. With the uniformly inequality 1.(b), we can hope that the almost derivability of $t \mapsto F^t(x)$ at t is uniform in $x \in r\mathbb{B}_X$ thanks to the regularity of F^t at x. Illustrate the importance of differentiability of F^t by the following example : F(t, x) = h(t - x) where $X = Y = \mathbb{R}$ and the real function h is convex, Lipschitz continuous and non differentiable on [0, T].

Proof of Corollary 4.1. Consider $x : [0,T] \to X$ an approximate solution. Let us set $y_n(t) = -x'_n(t) - \beta_n(t)$ and $y(t) = -x'(t) - \beta(t)$ for a.e. t in [0,T], $z_n(t) = F^t(x_n(t))$ and $z(t) = F^t(x(t))$ for a.e. $t \in [0,T]$. Then, z_n and z are absolutely continuous on [0,T], thus are derivable at a.e. $t \in [0,T]$ and

$$z'_{n}(t) = \Delta^{t}(x_{n}(t)) + DF^{t}(x_{n}(t))x'_{n}(t) \quad , \quad z'(t) = \Delta^{t}(x(t)) + DF^{t}(x(t))x'(t).$$

Under the qualification condition, we have for any $x \in X$

$$\partial f^t(x) = DF^t(x)^* \partial g(F^t(x)).$$

Let us write $y_n(t) = DF^t(x_n(t))^* w_n(t)$ and $y(t) = DF^t(x(t))^* w(t)$ where $w_n(t) \in \partial g(z_n(t))$ and $w(t) \in \partial g(z(t))$ for almost all $t \in [0, T]$. Hence, $g \circ z_n$ and $g \circ z$ are absolutely continuous with $\langle w_n(t), z'_n(t) \rangle = (g \circ z_n)'(t)$ for almost all $t \in [0, T]$. So,

$$\langle y_n(t), x'_n(t) \rangle = \frac{d}{dt} (f^t \circ x_n)(t) - \langle w_n(t), \Delta^t(x_n(t)).$$

and $\Phi(x_n, y_n) = -\int_0^T \langle w_n(t), \Delta^t(x_n(t)) \rangle dt$.

Let $r \ge ||x_n(t)|| \lor ||x(t)||$ for any $n \in \mathbb{N}$ and $t \in [0, T]$. By continuity of Δ^t on $r\mathbb{B}_X$, $(\Delta^t(x_n(t)))_n$ converges to $\Delta^t(x(t))$ for a.e. $t \in [0, T]$. Next, for a.e. t and any $x \in r\mathbb{B}_X$, we have $||\Delta^t(x)|| \le |b'_r(t)|$. By Lebesgue's theorem $\Delta^{\cdot}(x_n(.))$ converges to $\Delta^{\cdot}x(.)$) in $L^2(0, T, Y)$. Since a subsequence of $(w_n)_n$ converges weakly to w, we can apply Theorem 4.1.

For example, if F^t is the affine mapping $x \mapsto A(t)x + b(t)$ where $A(t) : X \to Y$ is linear continuous and $b(t) \in Y$, the assumption of Corollary 4.1 becomes :

- 1. b is absolutely continuous on [0, T] and there is absolutely continuous real-valued function a on [0, T] such that:
 - (a) $a' \in L^2(0,T),$
 - (b) for each $s, t \in [0, T]$, $||A(t) A(s)|| \le |a(t) a(s)|$.
- 2. the qualification condition $\mathbb{R}_+ \operatorname{dom} g A(0)X = Y$ holds.

3. for each $r \ge 0$, there exists a negligible subset N of [0, T] such that A'(t) is continuous on $r\mathbb{B}_X$ for any $t \in [0, T] \setminus N$.

Second, we use the conjugate of f^t .

Lemma 4.1 Let $(f^t)_{t \in [0,T]}$ be a family of proper convex lsc functions on X satisfying (H). Assume that :

for each $r \ge 0$, there exists a negligible subset N of [0,T] such that for any $t \in [0,T] \setminus N$, the mapping $s \mapsto (f^s)^*(y)$ admits a derivative $\dot{\gamma}(t,y)$ at t for any $y \in \text{Dom } \partial (f^t)^*$.

Let $x : [0,T] \to X$ be an absolutely continuous function and $y : [0,T] \to Y$ be such that $y(t) \in \partial f^t(x(t))$ for a.e. $t \in [0,T]$. For almost all $t \in [0,T]$, we have

$$\dot{\gamma}(t, y(t)) + \frac{d}{dt} f^t(x(t)) = \langle y(t), x'(t) \rangle.$$
(8)

Proof. Let s and t be in $[0,T]\setminus N$ where N is a suitable negligible subset of [0,T]. We have :

$$(f^{s})^{\star}(y(s)) - (f^{t})^{\star}(y(s)) \leqslant (f^{s})^{\star}(y(s)) - (f^{t})^{\star}(y(t)) - \langle y(s) - y(t), x(t) \rangle$$

since $x(t) \in \partial(f^t)^*(y(t))$. From $f^t(x(t)) + (f^t)^*(y(t)) = \langle y(t), x(t) \rangle$, we deduce

$$(f^{s})^{\star}(y(s)) - (f^{t})^{\star}(y(s)) \leqslant f^{t}(x(t)) - f^{s}(x(s)) + \langle y(s), x(s) - x(t) \rangle.$$

In the same way, for almost every t, s in [0, T] we have

$$(f^{s})^{\star}(y(s)) - (f^{t})^{\star}(y(s)) \leqslant f^{t}(x(t)) - f^{s}(x(s)) + \langle y(s), x(s) - x(t) \rangle$$

Changing the role of s and t, we also have:

$$(f^{t})^{\star}(y(t)) - (f^{s})^{\star}(y(t)) \leqslant f^{s}(x(s)) - f^{t}(x(t)) + \langle y(t), x(t) - x(s) \rangle \leqslant (f^{t})^{\star}(y(s)) - (f^{s})^{\star}(y(s)) + \langle y(t) - y(s), x(t) - x(s) \rangle.$$

The function $t \mapsto f^t(x(t))$ being absolutely continuous on [0, T], see [11, Chapter 1], we obtain (8).

The existence of $\dot{\gamma}$ implies some regularity on the domain of $(f^t)^*$. For example, consider $(f^t)^*(y) = h(t-y)$ where $X = Y = \mathbb{R}$ and the real function h is convex, Lipschitz continuous and non differentiable on [0,T]. Then, we can not apply above lemma. The domain of $(f^t)^*$ changes with t. But, we can apply Corollary 4.1 since $f^t(x) = tx + h^*(-x)$. However, we have the absolutely continuity of $s \mapsto (f^s)^*(y)$ in the following sense :

Proposition 4.1 Let $t \in [0, T]$, $y \in Y$, $\eta > 0$ and r > 0 such that if $|t - s| \leq \eta$, the set $\partial(f^s)^*(y) \cap r\mathbb{B}_X$ is nonempty. Then, $s \mapsto (f^s)^*(y)$ is absolutely continuous on $]t - \eta, t + \eta[$.

Proof. 1) Lemma 3.1 with $\beta = \rho_o$ assures that $(f^t)^*(y) \ge \langle y, z_t \rangle - f^t(z_t) \ge -||y||\beta - \beta$ for any $t \in [0, T]$ and $y \in X$. For $y \in \partial f^t(x)$, it follows

$$-\alpha(\|x\|+1) \leqslant f^t(x) = \langle y, x \rangle - (f^t)^{\star}(y) \leqslant \|y\|[\|x\|+\beta] + \beta.$$

So, there is a nonnegative constant β such that $(f^t)^*(y) \ge -\beta(||y||+1)$ for all $y \in X$ and $t \in [0, T]$.

Furthermore, for each r > 0, there is a nonnegative constant c such that $|f^t(x)| \leq c(||y|| + 1)$ for all $x \in r\mathbb{B}_X$, $t \in [0, T]$ and $y \in \partial f^t(x)$.

2) Let t be fixed in [0,T] and $y \in \partial f^t(x)$. Let $r \ge ||x||$ and $s \in [t,T]$. Under the assumption (H₀), there exists $x_s \in \text{dom } f^s$ satisfying

$$\begin{cases} ||x - x_s|| \leq |h_r(t) - h_r(s)|(1 + |f^t(x)|^{1/2}) \\ f^s(x_s) \leq f^t(x) + |k_r(t) - k_r(s)|(1 + |f^t(x)|). \end{cases}$$

By definition of conjugate of a convex function, it follows

$$(f^{t})^{*}(y) - (f^{s})^{*}(y) \leq \langle y, x - x_{s} \rangle + f^{s}(x_{s}) - f^{t}(x) \\ \leq ||y|| |h_{r}(t) - h_{r}(s)|(1 + |f^{t}(x)|^{1/2}) + |k_{r}(t) - k_{r}(s)|(1 + |f^{t}(x)|).$$

We conclude thanks to 1):

$$(f^{t})^{*}(y) - (f^{s})^{*}(y) \leq ||y|| |h_{r}(t) - h_{r}(s)|(1 + |f^{t}(x)|^{1/2}) + |k_{r}(t) - k_{r}(s)|(1 + |f^{t}(x)|) \\ \leq ||y|| |h_{r}(t) - h_{r}(s)|(1 + \sqrt{c} + \sqrt{c||y||}) + |k_{r}(t) - k_{r}(s)|(1 + c + c||y||)$$

3) Let $y \in Y$, r > 0 and $s, t \in [0, T]$. If the intersections of $\partial(f^t)^*(y)$ and $\partial(f^s)^*(y)$ with $r\mathbb{B}_X$ are non empty, let $x_s \in \partial(f^s)^*(y)$ and $x_t \in \partial(f^t)^*(y)$ with $r \ge ||x_s|| \lor ||x_t||$. Step 2) implies

$$|(f^s)^*(y) - (f^t)^*(y)| \le ||y|| |h_r(t) - h_r(s)|(1 + |f^s(x_s)|^{1/2} \lor |f^t(x_t)|^{1/2}) + |k_r(t) - k_r(s)|(1 + |f^s(x_s)| \lor |f^t(x_t)|).$$

By 1) we conclude:

$$|(f^{s})^{\star}(y) - (f^{t})^{\star}(y)| \leq ||y|| |h_{r}(t) - h_{r}(s)|(1 + c^{1/2} + (c||y||)^{1/2}) + |k_{r}(t) - k_{r}(s)|(1 + c + c||y||).$$

Corollary 4.2 Let $(f^t)_{t \in [0,T]}$ be a family of proper convex lsc functions on X with each f^t of compact type. Assume that (H) and (B) are satisfied and that:

1. for each $r \ge 0$, there exists a negligible subset N of [0,T] such that for any t in $[0,T]\setminus N$, the mapping $s \mapsto (f^s)^*(y)$ admits a derivative $\dot{\gamma}(t,y)$ at t for any $y \in \text{Dom } \partial(f^t)^*$.

2. for any $(y_n)_n$ which converges weakly to y in $L^2(0,T;X)$ with $y_n(t) \in \partial f^t(x_n(t))$ where $(x_n)_n$ converges uniformly, there exists $n_k \to +\infty$ such that

$$\liminf_{k \to +\infty} \int_0^T \dot{\gamma}(t, y_{n_k}(t)) \, dt \ge \int_0^T \dot{\gamma}(t, y(t)) \, dt.$$

Then, for each $u_0 \in \text{dom } f^0$, there exists $T_0 \in]0, T]$ such that $u' + \partial f^t(u) + B(t, u) \ni 0$ has at least a strong solution $u : [0, T_0] \to X$ with $u(0) = u_0$.

The assumption 2. is true when $\dot{\gamma}(t, .)$ is lsc and convex on $\text{Dom}\,\partial(f^t)^*$. **Proof.** Lemma 4.1 implies $\Phi(x, y) = \int_0^T \dot{\gamma}(t, y(t)) \, dt$. By assumption 2., we can apply Theorem 4.1.

5 Examples of families $(f^t)_t$

5.1 Rafle

See Castaing, Valadier and Moreau [4, 17, 13]. Let $(C(t))_{t \in [0,T]}$ a family of nonempty closed convex subsets of X whose intersection with bounded closed sets is compact. Consider the indicator function $f^t = \delta_{C(t)}$ of C(t). Assume that for each $r \ge 0$, there is an absolutely continuous real-valued function a_r on [0, T] such that:

(i) $a'_r \in L^2(0,T)$; (ii) for each s,t in [0,T], we have $e(C(s) \cap r\mathbb{B}_X, C(t)) \leq |a_r(s) - a_r(t)|$.

Under the assumption (B), we can apply Theorem 4.1: Assume that for any sequence $(x_n)_n$ in $H^1(0,T;X)$ which converges uniformly to the absolutely continuous function x with the weak convergence of $(x'_n)_n$ to x' in L^2 , and for any $(y_n)_n$ which converges weakly to y in L^2 with $y_n(t) \in N_{C(t)}(x_n(t))$ for almost all t, there exists $n_k \to +\infty$ such that

$$\liminf_{k \to +\infty} \int_0^T \langle x'_{n_k}(t), y_{n_k}(t) \rangle \, dt \ge \int_0^T \langle x'(t), y(t) \rangle \, dt$$

Then, for each $u_0 \in C(0)$, there exists $T_0 \in [0, T]$ such that $u' + N_{C(t)}(u) + B(t, u) \ni 0$ has at least a strong solution $u : [0, T_0] \to X$ with $u(0) = u_0$.

Corollary 4.1 becomes:

Corollary 5.1 Let $u_0 \in C(0)$ and $(F^t)_{t \in [0,T]}$ be a family of differentiable maps from X to an other Hilbert space Y such that $(DF^t)_t$ is equilipschitz continuous on a neighborhood of u_0 . Assume that $C(t) = (F^t)^{-1}(C)$, C being a nonempty closed convex set. Under the assumptions (B) and:

1. for each $r \ge 0$, there is absolutely continuous real-valued function b_r on [0,T] such that:

(a) $b'_r \in L^2(0,T)$,

(b) for each $s, t \in [0, T]$, $\sup_{\|x\| \leq r} \|F^t(x) - F^s(x)\| \leq |b_r(t) - b_r(s)|$,

2. the qualification condition $\mathbb{R}_+[C - F^0(u_0)] - DF^0(u_0)X = Y$ holds,

- 3. for each $r \ge 0$, there exists a negligible subset N of [0,T] such that the mapping $t \mapsto F^t(x)$ admits a derivative $\Delta^t(x)$ on $[0,T] \setminus N$ for any $x \in r\mathbb{B}_X$ and Δ^t is continuous on $r\mathbb{B}_X$ for any $t \in [0,T] \setminus N$,
- 4. the mapping $(t, x) \mapsto DF^t(x)$ is bounded on $[0, T] \times r\mathbb{B}_X$ for each r > 0 and it is continuous at t for each x,

there exists $T_0 \in [0,T]$ such that $u' + N_{C(t)}(u) + B(t,u) \ni 0$ has at least a strong solution $u: [0,T_0] \to X$ with $u(0) = u_0$.

On the other hand, $(f^t)^*$ is the support function of C(t), denoted by $\sigma_{C(t)}$. Moreau have proved in [13] that when C is absolutely continuous, the map $t \mapsto \sigma_{C(t)}(y)$ is absolutely continuous on [0, T] for any $y \in D$, where D is the domain of $\sigma_{C(t)}$ which is not dependent of t. Corollary 4.2 becomes:

Corollary 5.2 Assume that (B) is satisfied and that:

- 1. for each $r \ge 0$, there exists a negligible subset N of [0,T] such that for any t in $[0,T]\setminus N$, the mapping $s \mapsto \sigma_{C(s)}(y)$ admits a derivative $\dot{\gamma}(t,y)$ at t for any $y \in \text{Dom} \partial \sigma_{C(t)}$.
- 2. for any $(y_n)_n$ which converges weakly to y in $L^2(0,T;X)$ with $y_n(t) \in N_{C(t)}(x_n(t))$ where $(x_n)_n$ converges uniformly, there exists $n_k \to +\infty$ such that

$$\liminf_{k \to +\infty} \int_0^T \dot{\gamma}(t, y_{n_k}(t)) \, dt \ge \int_0^T \dot{\gamma}(t, y(t)) \, dt.$$

Then, for each $u_0 \in \text{dom } f^0$, there exists $T_0 \in]0, T]$ such that $u' + N_{C(t)}(u) + B(t, u) \ni 0$ has at least a strong solution $u : [0, T_0] \to X$ with $u(0) = u_0$.

By example, consider the affine map $F^t(x) = a(t)x + b(t)$ where $a(t) \in \mathbb{R}^*_+$ is derivable nonincreasing at $t \in [0, T]$ and $b(t) \in Y$ is absolutely continuous at $t \in [0, T]$. We can apply both corollary 4.1 and 4.2 since

$$\dot{\gamma}(t,y) = \frac{-1}{a(t)^2} \left[a(t) \langle y, b'(t) \rangle + a'(t) (\sigma_C(y) - \langle y, b(t) \rangle) \right]$$

for a.e. $t \in [0,T]$ and any $y \in Y$. So, $\dot{\gamma}(t,.)$ is convex l.s.c. on X and

$$\lim_{n \to +\infty} \int_0^T \dot{\gamma}(t, y_n(t)) \, dt = \int_0^T \dot{\gamma}(t, y(t)) \, dt.$$

5.2 Viscosity

Let $f : X \to \mathbb{R} \cup \{+\infty\}$ be a convex lsc proper function of compact type. Consider $f^t(x) = f(x) + \frac{\varepsilon(t)}{2} ||x||^2$ where ε is an absolutely continuous real-valued function on [0, T] with nonnegative values and $\varepsilon' \in L^1(0, T)$.

We can write $f^t = g \circ F^t$ with g(x, r) = f(x) + r for any $(x, r) \in X \times \mathbb{R}$ and $F^t(x) = (x, \frac{\varepsilon(t)}{2} ||x||^2)$ for any $x \in X$. By absolutely continuity of ε , Δ^t exists and is continuous on X for a.e. $t \in [0, T]$ and

$$\Delta^{t}(x) = (0, \frac{\varepsilon'(t)}{2} ||x||^{2}).$$

Furthermore,

$$DF^t(x)y = (y, \varepsilon(t)\langle x, y \rangle)$$

and DF^t satisfies assumption 5. We can apply Corollary 4.1.

On the other hand, $(f^t)^* = (f^*)_{\varepsilon(t)}$ is a \mathcal{C}^1 -function on X and, for any $y \in X$, the map $t \mapsto (f^t)^*(y)$ is absolutely continuous on [0, T] with for a.e. $t \in [0, T]$

$$\dot{\gamma}(t,y) = -\frac{\varepsilon'(t)}{2} \|D(f^t)^*(y)\|^2$$

By definition of y_n , $x_n(t) = D(f^t)^*(y_n(t))$ holds for a.e. $t \in [0, T]$ and any $n \in \mathbb{N}$, hence

$$\dot{\gamma}(t, y_n(t)) = -\frac{\varepsilon'(t)}{2} ||x_n(t)||^2.$$

In the same way,

$$\dot{\gamma}(t, y(t)) = -\frac{\varepsilon'(t)}{2} \|x(t)\|^2.$$

By uniform convergence of $(x_n)_n$ to x on [0,T] it follows

$$\lim_{n \to +\infty} \int_0^T \dot{\gamma}(t, y_n(t)) \, dt = \int_0^T \dot{\gamma}(t, y(t)) \, dt.$$

We can apply Corollary 4.2.

References

- H. Attouch and A. Damlamian, On multivalued evolution equations in Hilbert spaces, Israel J. Math., Vol. 12 (1972), 373-390.
- H. Attouch and A. Damlamian, Problèmes d'évolution dans les Hilbert et applications, J. Math. pures et appl. 54 (1975), 53-74.
- [3] H. Brezis, Opérateurs maximaux et semi-groupes de contractions dans les espaces de Hilbert, Lecture Notes n°5, North Holland, 1973.

- [4] C. Castaing, Truong Xuan Duc Ha and M. Valadier, Evolution equations governed by the sweeping process, *Set-valued Analysis* 1 (1993), 109-139.
- [5] C. Castaing and A. Syam, On class of evolutions governed by a nonconvex sweeping process, *preprint*, 2003.
- [6] C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes, Springer Verlag, n^o 580, 1977.
- [7] A. Cellina and V. Staicu, On evolution equations having monotonicities of opposite sign, International School for Advanced Studied, ref. SISSA 142M, 1989.
- [8] S. Guillaume, Time dependent subdifferential evolution equations in nonconvex analysis, *Adv. Math. Sci. Appl.* Vol.10, No. 2 (2000), 873-898.
- [9] S. Hu and N. S. Papageorgiou, Time-dependent subdifferential evolution inclusions and optimal control, *Memoirs AMS*, 1998.
- [10] N. Kenmochi, Nonlinear evolution equations with variable domains in Hilbert spaces, Proceedings of the Japan Academy, Vol. 53, Ser. A, n^o 5 (1977), 163-166.
- [11] N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications, Bull. Fac. Ed. Chiba Univ. 30 (1981), 1-87.
- [12] J.J. Moreau, Rafle par un convexe variable, Séminaire d'Analyse Convexe, Montpellier 1971, exposé nº 15.
- [13] J.J. Moreau, Evolution problem associated with a moving set in Hilbert space, J. Diff. Eq. 26 (1977), 347-374.
- [14] **M. Otani**, On existence of strong solutions for $\frac{du}{dt}(t) + \partial \psi^1(u(t)) \partial \psi^2(u(t)) \ni f(t)$, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), 575-605.
- [15] M. Otani, Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators, Cauchy problems, J. Differential Equations 46 (1982), 268-299.
- [16] A. Syam, Contribution aux inclusions différentielles, Thèse de doctorat, Université Montpellier II, 1993.
- [17] M. Valadier, Lipschitz approximation of the sweeping (or Moreau) process, J. Differential Equations, Vol 88, n^o 2 (décembre 1990), 248-264.
- [18] Y. Yamada, On evolution equations generated by subdifferential operators, Journal of the faculty of science, the university of Tokyo, Sec. IA, Vol. 23, n^o 3 (décembre 1976), 491-515.
- [19] S. Yotsutani, Evolution equations associated with the subdifferentials, Journal of Math. Soc. Japan, 31 (1978), 623-646.

(Received January 22, 2004)