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FIXED POINTS AND STABILITY IN NONLINEAR NEUTRAL VOLTERRA

INTEGRO-DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS

ABDELOUAHEB ARDJOUNI*, AHCENE DJOUDI

Abstract. In this paper we use the contraction mapping theorem to obtain asymptotic stability

results of the zero solution of a nonlinear neutral Volterra integro-differential equation with variable

delays. Some conditions which allow the coefficient functions to change sign and do not ask the

boundedness of delays are given. An asymptotic stability theorem with a necessary and sufficient

condition is proved, which improve and extend the results in the literature. Two examples are also

given to illustrate this work.

1. INTRODUCTION

Without doubt, the Lyapunov’s direct method has been, for more than 100 years, the main tool for

investigating the stability properties of a wide variety of ordinary, functional, partial differential and

Volterra integro-differential equations. Nevertheless, the application of this method to problems of

stability in differential and Volterra integro-differential equations with delay has encountered serious

obstacles if the delay is unbounded or if the equation has unbounded terms ([11]–[14]) and it does

seem that other ways need to be investigated. In recent years, several investigators such as Burton,

Furumochi, Zhang and others began a study in which they noticed that some of these difficulties

vanish or might be overcome by means of fixed point theory (see [9]–[19], [21]–[23], [26] and [29]). The

fixed point method does not only solve the problem on stability but has a significant advantage over

Lyapunov’s direct method. The conditions of the former are often averages but those of the latter are

usually pointwise see ([12]).
Certain integro-differential equations with variable delays have been of great interest to mathe-

maticians and theoreticians. In 1928 Volterra ([28]) noted that many physical problems were being

modeled by integral and integro-differential equations. Today we see that such models have appli-

cations in biology, neural networks, viscoelasticity, nuclear reactors, and many other areas (see [1],

[10], [11], [21], [26], [20], [24], [25] and the references therein). In this paper we focus on the following

nonlinear neutral Volterra integro-differential equation with variable delays

x′ (t) = −a (t)x (t− τ1 (t)) + c (t)x′ (t− τ2 (t))Q′ (x (t− τ2 (t))) +

∫ t

t−τ2(t)

k (t, s)G (x (s)) ds, (1.1)

with the initial condition

x (t) = ψ (t) for t ∈ [m (t0) , t0] ,

where ψ ∈ C ([m (t0) , t0] ,R) and for each t0 ≥ 0,

mj (t0) = inf {t− τj (t) , t ≥ t0} , m (t0) = min {mj (t0) , j = 1, 2} .

Here C (S1, S2) denotes the set of all continuous functions ϕ : S1 → S2 with the supremum norm ‖.‖ .

Throughout this paper we assume that a ∈ C (R+,R) , c ∈ C1 (R+,R) , k ∈ C ([0,∞) × [m2 (t0) ,∞) ,R)

and τ1, τ2 ∈ C (R+,R+) with t− τ1 (t) → ∞ and t− τ2 (t) → ∞ as t→ ∞. The functions Q and G are
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locally Lipschitz continuous. That is, there are positive constants L1 and L2 so that if |x| , |y| ≤ L for

some positive constant L then

|Q (x) −Q (y)| ≤ L1 ‖x− y‖ and Q (0) = 0, (1.2)

and

|G (x) −G (y)| ≤ L2 ‖x− y‖ and G (0) = 0. (1.3)

Less general forms of equation (1.1) have been previously investigated by many authors. For

example, Burton in [14], and Zhang in [29] have studied the equation

x′ (t) = −a (t)x (t− τ1 (t)) , (1.4)

and proved the following.
Theorem A (Burton [14]). Suppose that τ1 (t) = τ and there exists a constant α < 1 such that

∫ t

t−τ

|a (s+ τ)| ds+

∫ t

0

|a (s+ τ)| e−
R

t

s
a(u+τ)du

(
∫ s

s−τ

|a (u+ τ)|du

)

ds ≤ α, (1.5)

for all t ≥ 0 and
∫∞

0
a (s) ds = ∞. Then, for every continuous initial function ψ : [−τ, 0] → R, the

solution x (t) = x (t, 0, ψ) of (1.4) is bounded and tends to zero as t→ ∞.
Theorem B (Zhang [29]). Suppose that τ1 is differentiable, the inverse function g of t− τ1 (t) exists,

and there exists a constant α ∈ (0, 1) such that for t ≥ 0, lim
t→∞

inf
∫ t

0
a (g (s)) ds > −∞ and

∫ t

t−τ1(t)

|a (g (s))| ds+

∫ t

0

e−
R

t

s
a(g(u))du |a (s)| |τ ′1 (s)| ds

+

∫ t

0

e−
R

t

s
a(g(u))du |a (g (s))|

(

∫ s

s−τ1(s)

|a (g (u))| du

)

ds ≤ α. (1.6)

Then the zero solution of (1.4) is asymptotically stable if and only if
∫ t

0
a (g (s)) ds→ ∞, as t→ ∞.

Obviously, Theorem B improves Theorem A. On the other hand, Burton and Furumochi in [17]

considered the following nonlinear delay Volterra integro-differential equation

x′ (t) = −a (t)x (t) +

∫ t

t−τ2(t)

k (t, s)G (x (s)) ds, (1.7)

where 0 ≤ τ2 (t) ≤ τ0 for some constant τ0, and obtained the following.
Theorem C (Burton and Furumochi [17]). Suppose (1.3) holds with L2 = 1, and there exists a

constant α ∈ (0, 1) such that for t ≥ 0,
∫ t

0
a (s) ds→ ∞ as t→ ∞, and

∫ t

0

e−
R

t

s
a(u)du

(

∫ s

s−τ2(s)

|k (s, u)| du

)

ds ≤ α. (1.8)

Then the zero solution of (1.7) is asymptotically stable at t0 = 0.
In [26], Raffoul studied the nonlinear neutral Volterra integro-differential equation

x′ (t) = −a (t)x (t) + c (t) x′ (t− τ2 (t)) +

∫ t

t−τ2(t)

k (t, s)G (x (s)) ds, (1.9)

where 0 ≤ τ2 (t) ≤ τ0 for some constant τ0, and obtained the following.
Theorem D (Raffoul [26]). Let τ2 be twice differentiable and τ ′2 (t) 6= 1 for all t ∈ R

+. Suppose (1.3)

holds with L2 = 1, and there exists a constant α ∈ (0, 1) such that for t ≥ 0,
∫ t

0 a (s) ds → ∞ as

t→ ∞, and
∣

∣

∣

∣

c (t)

1 − τ ′2 (t)

∣

∣

∣

∣

+

∫ t

0

e−
R

t

s
a(u)du

(

|r2 (s)| +

∫ s

s−τ2(s)

|k (s, u)| du

)

ds ≤ α, (1.10)

EJQTDE, 2013 No. 28, p. 2



where r2 (t) =
[c (t) a (t) + c′ (t)] (1 − τ ′2 (t)) + c (t) τ ′′2 (t)

(1 − τ ′2 (t))2
. Then the zero solution of (1.9) is asymp-

totically stable at t0 = 0.
In [21], the second author with Khemis studied the nonlinear neutral Volterra integro-differential

equation

x′ (t) = −a (t)x (t) + c (t)x′ (t− τ2 (t))x (t− τ2 (t)) +

∫ t

t−τ2(t)

k (t, s)x2 (s) ds, (1.11)

where 0 ≤ τ2 (t) ≤ τ0 for some constant τ0, and obtained the following.
Theorem E (Djoudi and Khemis [21]). Let τ2 be twice differentiable and τ ′2 (t) 6= 1 for all t ∈ R

+.

Suppose that there exists a constant α ∈ (0, 1) such that for t ≥ 0,
∫ t

0 a (s) ds→ ∞ as t→ ∞, and

L

{

∣

∣

∣

∣

c (t)

1 − τ ′2 (t)

∣

∣

∣

∣

+

∫ t

0

e−
R

t

s
a(u)du

(

|r2 (s)| + 2

∫ s

s−τ2(s)

|k (s, u)| du

)

ds

}

≤ α, (1.12)

where r2 is as in Theorem D. Then the zero solution of (1.11) is asymptotically stable at t0 = 0.

Remark 1. The Theorems C, D and E are still true if the delay τ2 is unbounded.

Our purpose here is to give, by using a fixed point approach, asymptotic stability results of the

zero solution of the nonlinear neutral Volterra integro-differential equation with variable delays (1.1) .

We provide, what we think, minimal conditions to reach these objectives for a such general equation.

These conditions allow the coefficient functions to change sign and do not require the boundedness

of delays. An asymptotic stability theorem with a necessary and sufficient condition is proved. Two

examples are also given to illustrate our results. The results found in this paper contain the main

results in [14], [17], [21], [26] and [29].

2. MAIN RESULTS

For each (t0, ψ) ∈ R
+ × C ([m (t0) , t0] ,R) , a solution of (1.1) through (t0, ψ) is a continuous

function x : [m (t0) , t0 + σ) → R for some positive constant σ > 0 such that x satisfies (1.1) on

[t0, t0 + σ) and x = ψ on [m (t0) , t0] . We denote such a solution by x (t) = x (t, t0, ψ) . For each

(t0, ψ) ∈ R
+ × C ([m (t0) , t0] ,R) , there exists a unique solution x (t) = x (t, t0, ψ) of (1.1) defined on

[t0,∞) . For fixed t0, we define ‖ψ‖ = max {|ψ (t)| : m (t0) ≤ t ≤ t0} .
We need the following stability definitions taken from [12].

Definition 1. The zero solution of (1.1) is sad to be stable at t = t0 if, for each ε > 0, there exists a

δ > 0 such that ψ : [m (t0) , t0] → (−δ, δ) implies that |x (t)| < ε for t ≥ m (t0) .

Definition 2. The zero solution of (1.1) is sad to be asymptotically stable if it is stable at t = t0 and

a δ > 0 exists such that for any continuous function ψ : [m (t0) , t0] → (−δ, δ) the solution x (t) with

x (t) = ψ (t) on [m (t0) , t0] tends to zero as → ∞.

Our aim here is to improve and generalize Theorems A− E to (1.1) by giving a necessary and

sufficient condition for asymptotic stability of the zero solution of equation (1.1). One crucial step

in the investigation of the stability of an equation using fixed point technic involves the construction

of a suitable fixed point mapping. This can, in so many cases, be an arduous task. So, to construct

our mapping, we begin by inverting (1.1) to have a more tractable equation, with the same structure

and properties as the initial one, from which we derive a fixed point mapping P . After then, we,

prudently, choose a suitable complete space depending on the initial condition ψ and with elements

that tend to zero as t→ ∞ on which P is a contraction mapping. Using Banach’s contraction mapping

principle, we obtain a solution for P , and hence a solution for (1.1), which is asymptotically stable.

This procedure has been been used by investigators to overcome the difficulties of stability in delay

equations. This can be seen in the works of Azbelev et al. (see [1]–[8]).
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Theorem 1. Suppose (1.2) and (1.3) hold. Let τ1 be differentiable and τ2 be twice differentiable with

τ ′2 (t) 6= 1 for all t ∈ R
+. Suppose that there exist continuous functions hj : [mj (t0) ,∞) → R for

j = 1, 2 and a constant α ∈ (0, 1) such that for t ≥ 0

lim
t→∞

inf

∫ t

0

H (s) ds > −∞, (2.1)

and

L1

∣

∣

∣

∣

c (t)

1 − τ ′2 (t)

∣

∣

∣

∣

+

2
∑

j=1

∫ t

t−τj(t)

|hj (s)| ds+

∫ t

0

e−
R

t

s
H(u)du {|−a (s) + h1 (s− τ1 (s)) (1 − τ ′1 (s))|

+ |h2 (s− τ2 (s)) (1 − τ ′2 (s))| + L1 |r (s)| + L2

∫ s

s−τ2(s)

|k (s, u)| du

}

ds

+

2
∑

j=1

∫ t

0

e−
R

t

s
H(u)du |H (s)|

(

∫ s

s−τj(s)

|hj (u)| du

)

ds ≤ α, (2.2)

where H (t) =

2
∑

j=1

hj (t) and r (t) =
[c (t)H (t) + c′ (t)] (1 − τ ′2 (t)) + c (t) τ ′′2 (t)

(1 − τ ′2 (t))
2 . Then the zero solution

of (1.1) is asymptotically stable if and only if

∫ t

0

H (s) ds→ ∞ as t→ ∞. (2.3)

Proof. First, suppose that (2.3) holds. For each t0 ≥ 0, we set

K = sup
t≥0

{

e−
R

t

0
H(s)ds

}

. (2.4)

Let ψ ∈ C ([m (t0) , t0] ,R) be fixed and define

Sψ = {ϕ ∈ C ([m (t0) ,∞) ,R) : ϕ (t) → 0 as t→ ∞, ϕ (t) = ψ (t) for t ∈ [m (t0) , t0]} .

Then Sψ is a complete metric space with metric ρ (x, y) = sup
t≥t0

{|x (t) − y (t)|} .

Multiply both sides of (1.1) by e
R

t

t0
H(u)du

and then integrate from t0 to t to obtain

x (t) = ψ (t0) e
−

R

t

t0
H(u)du

+

2
∑

j=1

∫ t

t0

e−
R

t

s
H(u)duhj (s)x (s) ds

+

∫ t

t0

e−
R

t

s
H(u)du {−a (s)x (s− τ1 (s)) + c (s)x′ (s− τ2 (s))Q′ (x (s− τ2 (s)))

+

∫ s

s−τ2(s)

k (s, u)G (x (u)) du

}

ds.
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Performing an integration by parts, we have

x (t) =

(

ψ (t0) −
c (t0)

1 − τ ′2 (t0)
Q (ψ (t0 − τ2 (t0)))

)

e
−

R

t

t0
H(u)du

+
c (t)

1 − τ ′2 (t)
Q (x (t− τ2 (t))) +

2
∑

j=1

∫ t

t0

e−
R

t

s
H(u)dud

(

∫ s

s−τj(s)

hj (u)x (u) du

)

+

2
∑

j=1

∫ t

t0

e−
R

t

s
H(u)duhj (s− τj (s))

(

1 − τ ′j (s)
)

x (s− τj (s)) ds

+

∫ t

t0

e−
R

t

s
H(u)du

{

−a (s)x (s− τ1 (s)) − r (s)Q (x (s− τ2 (s))) +

∫ s

s−τ2(s)

k (s, u)G (x (u)) du

}

ds

=



ψ (t0) −
c (t0)

1 − τ ′2 (t0)
Q (ψ (t0 − τ2 (t0))) −

2
∑

j=1

∫ t0

t0−τj(t0)

hj (s)ψ (s) ds



 e
−

R

t

t0
H(u)du

+
c (t)

1 − τ ′2 (t)
Q (x (t− τ2 (t))) +

2
∑

j=1

∫ t

t−τj(t)

hj (s)x (s) ds

+

∫ t

t0

e−
R

t

s
H(u)du {(−a (s) + h1 (s− τ1 (s)) (1 − τ ′1 (s)))x (s− τ1 (s))

+h2 (s− τ2 (s)) (1 − τ ′2 (s))x (s− τ2 (s))} ds

+

∫ t

t0

e−
R

t

s
H(u)du

{

−r (s)Q (x (s− τ2 (s))) +

∫ s

s−τ2(s)

k (s, u)G (x (u)) du

}

ds

−
2
∑

j=1

∫ t

t0

e−
R

t

s
H(u)duH (s)

(

∫ s

s−τj(s)

hj (u)x (u)du

)

ds. (2.5)

Use (2.5) to define the operator P : Sψ → Sψ by (Pϕ) (t) = ψ (t) for t ∈ [m (t0) , t0] and

(Pϕ) (t) =



ψ (t0) −
c (t0)

1 − τ ′2 (t0)
Q (ψ (t0 − τ2 (t0))) −

2
∑

j=1

∫ t0

t0−τj(t0)

hj (s)ψ (s) ds



 e
−

R

t

t0
H(u)du

+
c (t)

1 − τ ′2 (t)
Q (ϕ (t− τ2 (t))) +

2
∑

j=1

∫ t

t−τj(t)

hj (s)ϕ (s) ds

+

∫ t

t0

e−
R

t

s
H(u)du {(−a (s) + h1 (s− τ1 (s)) (1 − τ ′1 (s)))ϕ (s− τ1 (s))

+h2 (s− τ2 (s)) (1 − τ ′2 (s))ϕ (s− τ2 (s))} ds

+

∫ t

t0

e−
R

t

s
H(u)du

{

−r (s)Q (ϕ (s− τ2 (s))) +

∫ s

s−τ2(s)

k (s, u)G (ϕ (u)) du

}

ds

−

2
∑

j=1

∫ t

t0

e−
R

t

s
H(u)duH (s)

(

∫ s

s−τj(s)

hj (u)ϕ (u)du

)

ds. (2.6)

for t ≥ t0. It is clear that (Pϕ) ∈ C ([m (t0) ,∞) ,R) . We now show that (Pϕ) (t) → 0 as t → ∞.

Since ϕ (t) → 0 and t− τj (t) → ∞ as t → ∞, for each ε > 0, there exists a T1 > t0 such that s ≥ T1
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implies that |ϕ (s− τj (s))| < ε for j = 1, 2. Thus, for t ≥ T1, the last term I6 in (2.6) satisfies

|I6| =

∣

∣

∣

∣

∣

∣

2
∑

j=1

∫ t

t0

e−
R

t

s
H(u)duH (s)

(

∫ s

s−τj(s)

hj (u)ϕ (u) du

)

ds

∣

∣

∣

∣

∣

∣

≤

2
∑

j=1

∫ T1

t0

e−
R

t

s
H(u)du |H (s)|

(

∫ s

s−τj(s)

|hj (u)| |ϕ (u)| du

)

ds

+

2
∑

j=1

∫ t

T1

e−
R

t

s
H(u)du |H (s)|

(

∫ s

s−τj(s)

|hj (u)| |ϕ (u)| du

)

ds

≤ sup
σ≥m(t0)

|ϕ (σ)|

2
∑

j=1

∫ T1

t0

e−
R

t

s
H(u)du |H (s)|

(

∫ s

s−τj(s)

|hj (u)| du

)

ds

+ ε
2
∑

j=1

∫ t

T1

e−
R

t

s
H(u)du |H (s)|

(

∫ s

s−τj(s)

|hj (u)| du

)

ds.

By (2.3) , there exists T2 > T1 such that t ≥ T2 implies

sup
σ≥m(t0)

|ϕ (σ)|
2
∑

j=1

∫ T1

t0

e−
R

t

s
H(u)du |H (s)|

(

∫ s

s−τj(s)

|hj (u)| du

)

ds

= sup
σ≥m(t0)

|ϕ (σ)| e
−

R

t

T1
H(u)du

2
∑

j=1

∫ T1

t0

e−
R

T1

s
H(u)du |H (s)|

(

∫ s

s−τj(s)

|hj (u)| du

)

ds < ε.

Apply (2.2) to obtain |I6| < ε + αǫ < 2ε. Thus, I6 → 0 as t → ∞. Similarly, we can show that the

rest of the terms in (2.6) approach zero as t → ∞. This yields (Pϕ) (t) → 0 as t → ∞, and hence

Pϕ ∈ Sψ. Also, by (2.2) , P is a contraction mapping with contraction constant α. By the contraction

mapping principle ([27], p. 2), P has a unique fixed point x in Sψ which is a solution of (1.1) with

x (t) = ψ (t) on [m (t0) , t0] and x (t) = x (t, t0, ψ) → 0 as t→ ∞.
To obtain the asymptotic stability, we need to show that the zero solution of (1.1) is stable. Let

ε > 0 be given and choose δ > 0 (δ < ε) satisfying 2δKe
R t0
0
H(u)du + αε < ε. If x (t) = x (t, t0, ψ) is

a solution of (1.1) with ‖ψ‖ < δ, then x (t) = (Px) (t) defined in (2.6). We claim that |x (t)| < ε for

all t ≥ t0. Notice that |x (s)| < ε on [m (t0) , t0] . If there exists t∗ > t0 such that |x (t∗)| = ε and
EJQTDE, 2013 No. 28, p. 6



|x (s)| < ε for m (t0) ≤ s < t∗, then it follows from (2.6) that

|x (t∗)| ≤ ‖ψ‖



1 + L1

∣

∣

∣

∣

c (t0)

1 − τ ′2 (t0)

∣

∣

∣

∣

+

2
∑

j=1

∫ t0

t0−τj(t0)

|hj (s)| ds



 e
−

R

t∗

t0
H(u)du

+ ǫL1

∣

∣

∣

∣

c (t∗)

1 − τ ′2 (t∗)

∣

∣

∣

∣

+ ǫ

2
∑

j=1

∫ t∗

t∗−τj(t∗)

|hj (s)| ds

+ ǫ

∫ t∗

t0

e−
R

t∗

s
H(u)du {|−a (s) + h1 (s− τ1 (s)) (1 − τ ′1 (s))|

+ |h2 (s− τ2 (s)) (1 − τ ′2 (s))| + L1 |r (s)| + L2

∫ s

s−τj(s)

|k (s, u)| du

}

ds

+ ǫ

2
∑

j=1

∫ t∗

t0

e−
R

t∗

s
H(u)du |H (s)|

(

∫ s

s−τj(s)

|hj (u)| du

)

ds

≤ 2δKe
R t0
0
H(u)du + αε < ǫ,

which contradicts the definition of t∗. Thus, |x (t)| < ε for all t ≥ t0, and the zero solution of (1.1) is

stable. This shows that the zero solution of (1.1) is asymptotically stable if (2.3) holds.
Conversely, suppose (2.3) fails. Then by (2.1) there exists a sequence {tn} , tn → ∞ as n → ∞

such that lim
n→∞

∫ tn
0
H (u)du = l for some l ∈ R. We may also choose a positive constant J satisfying

−J ≤

∫ tn

0

H (u) du ≤ J,

for all n ≥ 1. To simplify our expressions, we define

ω (s) = |−a (s) + h1 (s− τ1 (s)) (1 − τ ′1 (s))| + |h2 (s− τ2 (s)) (1 − τ ′2 (s))|

+ L1 |r (s)| + L2

∫ s

s−τ2(s)

|k (s, u)| du+ |H (s)|

2
∑

j=1

∫ s

s−τj(s)

|hj (u)| du,

for all s ≥ 0. By (2.2) , we have
∫ tn

0

e−
R

tn
s

H(u)duω (s) ds ≤ α.

This yields
∫ tn

0

e
R

s

0
H(u)duω (s) ds ≤ αe

R

tn
0

H(u)du ≤ eJ .

The sequence
{

∫ tn
0
e

R

s

0
H(u)duω (s) ds

}

is bounded, so there exists a convergent subsequence. For

brevity of notation, we may assume that

lim
n→∞

∫ tn

0

e
R

s

0
H(u)duω (s) ds = γ,

for some γ ∈ R
+ and choose a positive integer m so large that

∫ tn

tm

e
R

s

0
H(u)duω (s) ds < δ0/4K,

for all n ≥ m, where δ0 > 0 satisfies 2δ0Ke
J + α ≤ 1.
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By (2.1) , K in (2.4) is well defined. We now consider the solution x (t) = x (t, tm, ψ) of (1.1) with

ψ (tm) = δ0 and |ψ (s)| ≤ δ0 for s ≤ tm. We may choose ψ so that |x (t)| ≤ 1 for t ≥ tm and

ψ (tm) −
c (tm)

1 − τ ′2 (tm)
Q (ψ (tm − τ2 (tm))) −

2
∑

j=1

∫ tm

tm−τj(tm)

hj (s)ψ (s) ds ≥
1

2
δ0.

It follows from (2.6) with x (t) = (Px) (t) that for n ≥ m
∣

∣

∣

∣

∣

∣

x (tn) −
c (tn)

1 − τ ′2 (tn)
Q (x (tn − τ2 (tn))) −

2
∑

j=1

∫ tn

tn−τj(tn)

hj (s)x (s) ds

∣

∣

∣

∣

∣

∣

≥
1

2
δ0e

−
R

tn
tm

H(u)du −

∫ tn

tm

e−
R

tn
s

H(u)duω (s) ds

=
1

2
δ0e

−
R

tn
tm

H(u)du − e−
R

tn
0

H(u)du

∫ tn

tm

e
R

s

0
H(u)duω (s) ds

= e−
R

tn
tm

H(u)du

(

1

2
δ0 − e−

R

tm
0

H(u)du

∫ tn

tm

e
R

s

0
H(u)duω (s) ds

)

≥ e−
R

tn
tm

H(u)du

(

1

2
δ0 −K

∫ tn

tm

e
R

s

0
H(u)duω (s) ds

)

≥
1

4
δ0e

−
R

tn
tm

H(u)du ≥
1

4
δ0e

−2J > 0. (2.7)

On the other hand, if the zero solution of (1.1) is asymptotically stable, then x (t) = x (t, tm, ψ) → 0

as t→ ∞. Since tn − τj (tn) → ∞ as n→ ∞ and (2.2) holds, we have

x (tn) −
c (tn)

1 − τ ′2 (tn)
Q (x (tn − τ2 (tn))) −

2
∑

j=1

∫ tn

tn−τj(tn)

hj (s)x (s) ds→ 0 as n→ ∞,

which contradicts (2.7). Hence condition (2.3) is necessary for the asymptotic stability of the zero

solution of (1.1) . The proof is complete. �

Remark 2. It follows from the first part of the proof of Theorem 1 that the zero solution of (1.1) is

stable under (2.1) and (2.2) . Moreover, Theorem 1 still holds if (2.2) is satisfied for t ≥ tσ for some

tσ ∈ R
+.

For the special case c = 0 and k = 0, we can get

Corollary 1. Let τ1 be differentiable, and suppose that there exist continuous function h1 : [m1 (t0) ,∞) →

R for and a constant α ∈ (0, 1) such that for t ≥ 0

lim
t→∞

inf

∫ t

0

h1 (s) ds > −∞,

and
∫ t

t−τ1(t)

|h1 (s)|ds+

∫ t

0

e−
R

t

s
h1(u)du |−a (s) + h1 (s− τ1 (s)) (1 − τ ′1 (s))| ds

+

∫ t

0

e−
R

t

s
h1(u)du |h1 (s)|

(

∫ s

s−τ1(s)

|h1 (u)| du

)

ds ≤ α. (2.8)

Then the zero solution of (1.4) is asymptotically stable if and only if
∫ t

0

h1 (s) ds → ∞ as t→ ∞.
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Remark 3. When τ1 (s) = τ, a constant, h1 (s) = a (s+ τ), Corollary 1 contains Theorem A. When

h1 (s) = a (g (s)) , where g (s) is the inverse function of s− τ1 (s) , Corollary 1 reduces to Theorem B.

For the special case τ1 = 0 and c = 0, we can get the following corollary.

Corollary 2. Suppose (1.3) hold with L2 = 1. Let τ2 be differentiable, and suppose that there exist

continuous functions hj : [mj (t0) ,∞) → R for j = 1, 2 and a constant α ∈ (0, 1) such that for t ≥ 0

lim
t→∞

inf

∫ t

0

H (s) ds > −∞,

and
∫ t

t−τ2(t)

|h2 (s)|ds+

∫ t

0

e−
R

t

s
H(u)du {|−a (s) + h1 (s)|

+ |h2 (s− τ2 (s)) (1 − τ ′2 (s))| +

∫ s

s−τ2(s)

|k (s, u)| du

}

ds

+

∫ t

0

e−
R

t

s
H(u)du |H (s)|

(

∫ s

s−τ2(s)

|h2 (u)| du

)

ds ≤ α, (2.9)

where H (t) =

2
∑

j=1

hj (t) . Then the zero solution of (1.7) is asymptotically stable if and only if

∫ t

0

H (s) ds→ ∞ as t→ ∞.

For the special case τ1 = 0 and Q (x) = x, we can get

Corollary 3. Suppose (1.3) hold with L2 = 1. Let τ2 be twice differentiable with τ ′2 (t) 6= 1 for all

t ∈ R
+. Suppose that there exist continuous functions hj : [mj (t0) ,∞) → R for j = 1, 2 and a

constant α ∈ (0, 1) such that for t ≥ 0

lim
t→∞

inf

∫ t

0

H (s) ds > −∞,

and
∣

∣

∣

∣

c (t)

1 − τ ′2 (t)

∣

∣

∣

∣

+

∫ t

t−τ2(t)

|h2 (s)| ds+

∫ t

0

e−
R

t

s
H(u)du {|−a (s) + h1 (s)|

+ |h2 (s− τ2 (s)) (1 − τ ′2 (s)) − r (s)| +

∫ s

s−τ2(s)

|k (s, u)| du

}

ds

∫ t

0

e−
R

t

s
H(u)du |H (s)|

(

∫ s

s−τ2(s)

|h2 (u)| du

)

ds ≤ α, (2.10)

where H (t) =

2
∑

j=1

hj (t) and r (t) =
[c (t)H (t) + c′ (t)] (1 − τ ′2 (t)) + c (t) τ ′′2 (t)

(1 − τ ′2 (t))
2 . Then the zero solution

of (1.9) is asymptotically stable if and only if
∫ t

0

H (s) ds→ ∞ as t→ ∞.

For the special case τ1 = 0, Q (x) =
1

2
x2 and G (x) = x2, we can get
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Corollary 4. Let τ2 be twice differentiable with τ ′2 (t) 6= 1 for all t ∈ R
+. Suppose that there exist

continuous functions hj : [mj (t0) ,∞) → R for j = 1, 2 and a constant α ∈ (0, 1) such that for t ≥ 0

lim
t→∞

inf

∫ t

0

H (s) ds > −∞,

and

L

{

∣

∣

∣

∣

c (t)

1 − τ ′2 (t)

∣

∣

∣

∣

+

∫ t

0

e−
R

t

s
H(u)du

(

|r (s)| + 2

∫ s

s−τ2(s)

|k (s, u)| du

)

ds

}

+

∫ t

0

e−
R

t

s
H(u)du (|−a (s) + h1 (s)| + |h2 (s− τ2 (s)) (1 − τ ′2 (s))|) ds

+

∫ t

0

e−
R

t

s
H(u)du |H (s)|

(

∫ s

s−τ2(s)

|h2 (u)| du

)

ds ≤ α, (2.11)

where H (t) =

2
∑

j=1

hj (t) and r (t) =
[c (t)H (t) + c′ (t)] (1 − τ ′2 (t)) + c (t) τ ′′2 (t)

(1 − τ ′2 (t))
2 . Then the zero solution

of (1.11) is asymptotically stable if and only if
∫ t

0

H (s) ds→ ∞ as t→ ∞.

Remark 4. When h1 (s) = a (s) and h2 (s) = 0, then Corollaries 2, 3 and 4 contain Theorems C, D

and E, respectively.

3. TWO EXAMPLES

In this section, we give two examples to illustrate the applications of Corollary 3 and Theorem 1.

Example 1. Consider the following nonlinear neutral Volterra integro-differential equation

x′ (t) = −a (t)x (t) + c (t) x′ (t− τ2 (t)) +

∫ t

t−τ2(t)

k (t, s)G (x (s)) ds, (3.1)

where τ2 (t) = 0.063t, a (t) = 1/ (t+ 1) , c (t) = 0.33, k (t, s) = 8.2/ [(t+ 1) (s+ 1)] and G (x) = sinx.

Then the zero solution of (3.1) is asymptotically stable.

Proof. Choosing h1 (t) = 1/ (t+ 1) and h2 (t) = 0.22/ (t+ 1) in Corollary 3, we have H (t) =

1.22/ (t+ 1),
∣

∣

∣

∣

c (t)

1 − τ ′2 (t)

∣

∣

∣

∣

=
0.33

0.937
< 0.3522,

∫ t

t−τ2(t)

|h2 (s)| ds =

∫ t

0.937t

0.22

s+ 1
ds = 0.22 ln

(

t+ 1

0.937t+ 1

)

< 0.0144,

∫ t

0

e−
R

t

s
H(u)du |H (s)|

(

∫ s

s−τ2(s)

|h2 (u)| du

)

ds <

∫ t

0

e−
R

t

s
(1.22/(u+1))du 1.22

s+ 1
× 0.0144 < 0.0144,

∫ t

0

e−
R

t

s
H(u)du {|−a (s) + h1 (s)| + |h2 (s− τ2 (s)) (1 − τ ′2 (s)) − r (s)|} ds

=

∫ t

0

e−
R

t

s
(1.22/(u+1))du

∣

∣

∣

∣

0.22 × 0.937

0.937s+ 1
−

1.22 × 0.33

0.937 (s+ 1)

∣

∣

∣

∣

ds <
0.33

0.937
−

0.22

1.22
< 0.1719,
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and

∫ t

0

e−
R

t

s
H(u)du

(

∫ s

s−τ2(s)

|k (s, u)| du

)

ds =

∫ t

0

e−
R

t

s
(1.22/(u+1))du

(

8.2

s+ 1

∫ s

0.937s

1

u+ 1
du

)

ds

<
0.0651× 8.2

1.22

∫ t

0

e−
R

t

s
(1.22/(u+1))du 1.22

s+ 1
ds < 0.4376.

It is easy to see that all the conditions of Corollary 3 hold for α = 0.3522+0.0144+0.1719+0.4376+

0.0144 = 0.9905 < 1.Thus, Corollary 3 implies that the zero solution of (3.1) is asymptotically stable.
However, Theorem D cannot be used to verify that the zero solution of (3.1) is asymptotically

stable. Obviously,
∣

∣

∣

∣

c (t)

1 − τ ′2 (t)

∣

∣

∣

∣

+

∫ t

0

e−
R

t

s
a(u)du |r2 (s)| ds =

0.33 (2t+ 1)

0.937 (t+ 1)
→

0.66

0.937
,

and

∫ t

0

e−
R

t

s
a(u)du

(

∫ s

s−τ2(s)

|k (s, u)| du

)

ds =
8.2

t+ 1

∫ t

0

[ln (s+ 1) − ln (0.937s+ 1)] ds

= 8.2

[

ln (t+ 1) −
t+ 1/0.937

t+ 1
ln (0.937t+ 1)

]

→ −8.2 ln (0.937) .

Thus, we have

lim sup
t≥0

{

∣

∣

∣

∣

c (t)

1 − τ ′2 (t)

∣

∣

∣

∣

+

∫ t

0

e−
R

t

s
a(u)du

(

|r2 (s)| +

∫ s

s−τ2(s)

|k (s, u)| du

)

ds

}

=
0.66

0.937
− 8.2 ln (0.937) ≃ 1.238.

In addition, the left-hand side of the following inequality is increasing in t > 0, then there exists some

t0 > 0 such that for t ≥ t0,

∣

∣

∣

∣

c (t)

1 − τ ′2 (t)

∣

∣

∣

∣

+

∫ t

0

e−
R

t

s
a(u)du

(

|r2 (s)| +

∫ s

s−τ2(s)

|k (s, u)| du

)

ds > 1.23.

This implies that condition (1.10) does not hold. Thus, Theorem D cannot be applied to equation

(3.1) . �

Example 2. Consider the following nonlinear neutral Volterra integro-differential equation

x′ (t) = −a (t)x (t− τ1 (t)) + c (t)x′ (t− τ2 (t))Q′ (x (t− τ2 (t))) +

∫ t

t−τ2(t)

k (t, s)G (x (s)) ds, (3.2)

where τ1 (t) = 0.068t, τ2 (t) = 0.074t, a (t) = 0.932/ (0.932t+ 1) , c (t) = 0.44, Q (x) = 0.52 (1 − cos (x)) ,

G (x) = 1.22 sin (x) , and k (t, s) = 1/ [(t+ 1) (s+ 1)] . Then the zero solution of (3.2) is asymptotically

stable.

Proof. Choosing h1 (t) = 1/ (t+ 1) and h2 (t) = 0.31/ (t+ 1) in Theorem 1, we haveH (t) = 1.31/ (t+ 1),

L1 = 0.52, L2 = 1.22,

L1

∣

∣

∣

∣

c (t)

1 − τ ′2 (t)

∣

∣

∣

∣

= 0.52 ×
0.44

0.926
< 0.2471,
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2
∑

j=1

∫ t

t−τj(t)

|hj (s)| ds =

∫ t

0.932t

1

s+ 1
ds+

∫ t

0.926t

0.31

s+ 1
ds

= ln

(

t+ 1

0.932t+ 1

)

+ 0.31 ln

(

t+ 1

0.926t+ 1

)

< 0.0943,

2
∑

j=1

∫ t

0

e−
R

t

s
H(u)du |H (s)|

(

∫ s

s−τj(s)

|hj (u)| du

)

ds <

∫ t

0

e−
R

t

s
(1.31/(u+1))du 1.31

s+ 1
× 0.0943 < 0.0943,

∫ t

0

e−
R

t

s
H(u)du {|−a (s) + h1 (s− τ1 (s)) (1 − τ ′1 (s))| + |h2 (s− τ2 (s)) (1 − τ ′2 (s))| + L1 |r (s)|} ds

=

∫ t

0

e−
R

t

s
(1.31/(u+1))du

(

0.31 × 0.926

0.926s+ 1
+

0.52 × 1.31 × 0.44

0.926 (s+ 1)

)

ds <
0.31

1.31
+

0.52 × 0.44

0.926
< 0.4838,

and
∫ t

0

e−
R

t

s
H(u)du

(

L2

∫ s

s−τ2(s)

|k (s, u)| du

)

ds =

∫ t

0

e−
R

t

s
(1.31/(u+1))du

(

1.22

s+ 1

∫ s

0.926s

1

u+ 1
du

)

ds

<
0.0769× 1.22

1.31

∫ t

0

e−
R

t

s
(1.31/(u+1))du 1.31

s+ 1
ds < 0.0717.

It is easy to see that all the conditions of Theorem 1 hold for α = 0.2471 + 0.0943 + 0.4838+ 0.0717+

0.0943 = 0.9912 < 1.Thus, Theorem 1 implies that the zero solution of (3.2) is asymptotically

stable. �

Acknowledgement 1. The authors would like to thank the anonymous referee for his good remarks

and for providing us with an interesting list and important informations on Azbelev et al. works on

stability theory.

References

[1] N.V. Azbelev, Stability and asymptotic behavior of solutions of equations with aftereffect. (English) Corduneanu,

C. (ed.) et al., Volterra equations and applications. Proceedings of the Volterra centennial symposium, University

of Texas, Arlington, TX, USA, May 23-25, 1996. London: Gordon and Breach Science Publishers. Stab. Control

Theory Methods Appl. 10, 27-38 (2000).

[2] N.V. Azbelev, L.M. Berezanskij, P.M. Simonov, A.V. Chistyakov, Stability of linear systems with aftereffect. III.

(English) Differ. Equations 27, No.10, 1165-1172 (1991); translation from Differ. Uravn. 27, No.10, 1659-1668

(1991).

[3] N. V. Azbelev, L.M. Berezanskij, P.M. Simonov, A.V. Chistyakov, Stability of linear systems with aftereffect. IV.

(English) Differ. Equations 29, No.2, 153-160 (1993); translation from Differ. Uravn. 29, No.2, 196-204 (1993).

[4] N.V. Azbelev, V.P. Maksimov, L.F. Rakhmatullina, Introduction to the theory of functional differential equations.

Methods and applications. (English) Contemporary Mathematics and Its Applications 3. New York, NY: Hindawi

Publishing Corporation.(ISBN 977-5945-49-6/hbk). ix, 314 p. (2007).

[5] N.V. Azbelev, L.F. Rakhmatullina, Stability of solutions of the equations with aftereffect. (English) Funct. Differ.

Equ. 5, No. 1-2, 39-55 (1998).

[6] N.V. Azbelev, P.M. Simonov, Stability of equations with delay. (English) Russ. Math. 41, No.6, 3-16 (1997);

translation from Izv. Vyssh. Uchebn. Zaved., Mat. 1997, No.6 (421), 1-14 (1997).

[7] N.V. Azbelev, P.M. Simonov, Stability of Differential Equations with Aftereffect. London: Taylor and Francis

Publishing Group, 2002, 222 p.

[8] N.V. Azbelev, P.M. Simonov, Stability of differential equations with aftereffect. (English) Stability and Control:

Theory, Methods and Applications 20. London: Taylor and Francis (ISBN 0-415-26957-1). xviii, 222 p. J 60.99

(2003).

[9] A. Ardjouni, A. Djoudi, Fixed points and stability in linear neutral differential equations with variable delays,

Nonlinear Analysis 74 (2011) 2062-2070.

[10] A. Ardjouni, A. Djoudi, I. Soualhia, Stability for linear neutral integro-differential equations with variable delays.

EJDE, Vol. 2012 (2012), No. 172, 1-14.

EJQTDE, 2013 No. 28, p. 12



[11] T.A. Burton, Volterra integral and differential equations, Academic Press, New York, 1983.

[12] T.A. Burton, Stability by Fixed Point Theory for Functional Differential Equations, Dover Publications, New York,

2006.

[13] T.A. Burton, Liapunov functionals, fixed points, and stability by Krasnoselskii’s theorem, Nonlinear Studies 9

(2001) 181–190.

[14] T.A. Burton, Stability by fixed point theory or Liapunov’s theory: A comparison, Fixed Point Theory 4 (2003)

15-32.

[15] T.A. Burton, Fixed points and stability of a nonconvolution equation, Proceedings of the American Mathematical

Society 132 (2004) 3679-3687.

[16] T.A. Burton, T. Furumochi, A note on stability by Schauder’s theorem, Funkcialaj Ekvacioj 44 (2001) 73-82.

[17] T.A. Burton, T. Furumochi, Fixed points and problems in stability theory for ordinary and functional differential

equations, Dynamical Systems and Applications 10 (2001) 89-116.

[18] T.A. Burton, T. Furumochi, Asymptotic behavior of solutions of functional differential equations by fixed point

theorems, Dynamic Systems and Applications 11 (2002) 499-519.

[19] T.A. Burton, T. Furumochi, Krasnoselskii’s fixed point theorem and stability, Nonlinear Analysis 49 (2002) 445-

454.

[20] J. M. Cushing, Integrodifferential Equations and Delay Models in Population Dynamics, Lecture Notes in Biomath-

ematics 20, Springer, New York, 1977.

[21] A. Djoudi, R. Khemis, Fixed point techniques and stability for neutral nonlinear differential equations with un-

bounded delays, Georgian Mathematical Journal, Vol. 13 (2006), No. 1, 25-34.

[22] C.H. Jin, J.W. Luo, Stability in functional differential equations established using fixed point theory, Nonlinear

Analysis 68 (2008) 3307-3315.

[23] C.H. Jin, J.W. Luo, Fixed points and stability in neutral differential equations with variable delays, Proceedings of

the American Mathematical Society, Vol. 136, Nu. 3 (2008) 909-918.

[24] Y. Li, Y. Kuang, Periodic solutions of periodic delay Lotka-Volterra equations and systems, J. Mathem. Anal.

Applic., 255 (2001), 260-280.

[25] Y. Li, G. Xu, Positive periodic solutions for an integrodifferential model of mutualism, Applied Mathematics Letters,

14 (2001), 525-530.

[26] Y.N. Raffoul, Stability in neutral nonlinear differential equations with functional delays using fixed-point theory,

Math. Comput. Modelling 40 (2004) 691-700.

[27] D.R. Smart, Fixed point theorems, Cambridge Tracts in Mathematics, No. 66. Cambridge University Press,

London-New York, 1974.
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