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Abstract: Some oscillation criteria are established for the nonlinear damped elliptic

differential equation of second order

N
∑

i, j=1

Di[ aij(x)Djy ] +

N
∑

i=1

bi(x)Diy + p(x)f(y) = 0, (E)

which are different from most known ones in the sense that they are based on a new

weighted function H(r, s, l) defined in the sequel. Both the cases when Dibi(x) exists for

all i and when it does not exist for some i are considered.
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1. Introduction and Preliminaries

In this paper, we are concerned with the oscillatory behavior of the general nonlinear

damped elliptic differential equation of second order

N
∑

i, j=1

Di[ aij(x)Djy ] +

N
∑

i=1

bi(x)Diy + p(x)f(y) = 0, (1.1)

where x = (x1, · · · , xN ) ∈ Ω(a) ⊆ R
N , N ≥ 2, Diy = ∂y/∂xi for all i, |x| = [

N
∑

i=1

x2
i ]

1

2 ,

Ω(a) = {x ∈ R
N : |x| ≥ a} for some a > 0.

In what follows, the solution of Eq.(1.1) is every function of the class C2+µ
loc (Ω(a), R), 0 <

µ < 1, which satisfies Eq.(1.1) almost everywhere on Ω(a). We consider only nontrivial

solution of Eq.(1.1) which is defined for all large |x| ( cf [1] ). The oscillation is considered

in the usual sense, i.e., a solution y(x) of Eq.(1.1) is said to be oscillatory if it has zero

on Ω(b) for every b ≥ a. Equation (1.1) is said to be oscillatory if every solution ( if any

exists ) is oscillatory. Conversely, Equation(1.1) is nonoscillatory if there exists a solution

which is not oscillatory.
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Equation (1.1) is an very important type of partial differential equations, which has

wide applications in various problems dealing with physics, biology and glaciology, etc.,

see [1]. In the qualitative theory of nonlinear partial differential equations, one of the

important problems is to determine whether or not solutions of the equation under con-

sideration are oscillatory. For the similinear elliptic equation

N
∑

i, j=1

Di[ aij(x)Djy ] + p(x)f(y) = 0, (1.2)

the oscillation theory is fully developed by [ 6, 9, 11-13, 15 ] where further references can

be found. In particular, Noussair and Swanson [6] first gave Fite-Leighton type oscillation

criteria [2, 5] for Eq.(1.2). For a related study, we refer to [12] in which a classical Kamenev

theorem [3] ( as extended and improved by Phiols [7] and Yan [14] ) is to be extended to

Eq.(1.2). However, as far as we know that the equation (1.1) in general form has never

been the subject of systematic investigations.

In the case when N = 1, aij(x) = 1 for all i, j, f(y) = y, Eq.(1.2) reduces second order

ordinary differential equation

y′ ′(t) + p(t)y(t) = 0, p ∈ C([t0,∞), R). (1.3)

Recently, by using an weighted function, Sun [8] gave an interesting result. More

precisely, Sun proved the following theorem.

Theorem 1.1. Equation (1.3) is oscillatory provided that for each l ≥ t0, there exists a

constant α > 1/2, such that

lim sup
t→∞

1

t2α+1

t
∫

l

(t − s)2α(s − l)2p(s)ds >
α

(2α − 1)(2α + 1)
.

Early similar results were proved by Kamenev [3], Kong [4], Philos [7], Wintner [10] and

Yan [14]. But, Theorem 1.1 is simpler and more sharper than that of previous results. It

is noting that Theorem 1.1 is given in [8] for a differential equation which is more general

than Eq.(1.3). But, the above particular form of Sun’s theorem is the basic one.

In present paper, one main objective is to extend Theorem 1.1 to Eq.(1.1). In section

2, by using an weighted function H(r, s, l), we shall establish some oscillation criteria for

Eq.(1.1) for the case when Dibi(x) exists for all i . Then in section 3, we deal with the

oscillation of Eq.(1.1) for the case when Dibi(x) does not exist for some i . Finally in

section 4, we will show the application of our oscillation criteria by several examples.

To formulate our results we shall use the following notations.

Following Sun [8], we shall define a class of functions H. For this purpose, we first

define the sets.

D0 = {(r, s, l) : r > s > l ≥ a} and D = {(r, s, l) : r ≥ s ≥ l ≥ a}.

An weighted function H ∈ C(D, R) is said to belong to the class H defined by H ∈ H
if
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(H1) H(r, r, l) = 0, H(r, l, l) = 0 for r > l ≥ a, and H(r, s, l) 6= 0 for (r, s, l) ∈ D0.

(H2) H(r, s, l) has a continuous partial derivative on D with respect to the second

variable, and there is a function h ∈ C(D0, R) such that

∂H

∂s
(r, s, l) = h(r, s, l)H(r, s, l) for (r, s, l) ∈ D0. (1.4)

Let H ∈ H and φ ∈ C([a,∞), R). We now define an integral operator T r
l in terms of

H(r, s, l) and φ(s) as

T r
l (φ) =

r
∫

l

H(r, s, l)φ(s)ds for r ≥ l ≥ a. (1.5)

It is easily seen that T r
l satisfies the following:

(A1) T r
l (k1φ1 + k2φ2) = k1T

r
l (φ1) + k2T

r
l (φ2);

(A2) T r
l (φ

′) = −T r
l (hφ).

Here φ1, φ2 ∈ C([a,∞), R), φ ∈ C1([a,∞), R), and k1, k2 are real numbers.

By choosing specific functions H(r, s, l), it is possible to derive several oscillation crite-

ria for Eq.(1.1). For instance, for an arbitrary positive function ξ ∈ C([a,∞), R+), define

the kernel function

H(r, s, l) =





r
∫

s

1

ξ(τ)
dτ





α 



s
∫

l

1

ξ(τ)
dτ





β

, α > 0, β > 0, (r, s, l) ∈ D, (1.6)

where ξ(τ) = 1, H(r, s, l) = (r−s)α(s−l)β, and when ξ(τ) = τ, H(r, s, l) = ( ln r/s)α( ln s/l)β.

It is easily verified that the kernel function (1.6) satisfies (H1) and (H2).

2. Oscillation results for the case when Dibi(x) exists for all i

In this section, we establish oscillation theorems which extend Theorem 1.1 to Eq.(1.1)

for the case when Dibi(x) exists for all i . For this purpose, we shall impose the following

conditions:

(C1) f ∈ C(R, R) ∪ C1(R − {0}, R), yf(y) > 0 and f ′(y) ≥ k > 0 whenever y 6= 0;

(C2) p ∈ Cµ
loc(Ω(a), R), µ ∈ (0, 1);

(C3) bi ∈ C1+µ
loc (Ω(a), R) for all i, µ ∈ (0, 1);

(C4) A = (aij)N×N is a real symmetric positive definite matrix function with aij ∈
C1+µ

loc (Ω(a), R) for all i, j, µ ∈ (0, 1).

Denote by λmax(x) the largest eigenvalue of the matrix A. We suppose that there exists

a function λ ∈ C([a,∞), R+) such that

λ(r) ≥ max
|x|=r

λmax(x) for r > a.

Theorem 2.1. Let (C1)-(C4) hold. Suppose that for each l ≥ a, there exist functions

η ∈ C([a,∞), R), H ∈ H, such that

lim sup
r→∞

T r
l

(

θ1 −
1

4
g1h

2

)

> 0, (2.1)
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where

θ1(r) = ρ1(r)







∫

Sr

[

p(x) − 1

4k
BT A−1B − 1

2k

N
∑

i=1

Dibi

]

dσ +
k η2(r)r1−N

ωNλ(r)
− η ′(r)







,

g1(r) =
ωN

k
λ(r)ρ1(r)r

N−1, ρ1(r) = exp



−
r
∫

a

2 k η(s)s1−N

ωNλ(s)
ds



 ,

and Sr = {x ∈ R
N : |x| = r} for r > 0, BT = {b1(x), · · · , bN(x)}, σ denotes the measure

on Sr, ωN denotes the surface area of the unit sphere in R
N , i.e., ωN = 2πN/2/Γ(N/2).

Then Eq.(1.1) is oscillatory.

Proof. Let y = y(x) be a nonoscillatory solution of Eq.(1.1), and suppose that there

exists a b ≥ a such that y = y(x) 6= 0 for all x ∈ Ω(b). Define

W (x) =
1

f(y)
A(x)Dy +

1

2k
B for x ∈ Ω(b), (2.2)

where Dy = ( D1y, · · · , DNy )T . Differentiation of the i−th component of (2.2) with

respect to xi gives

DiWi(x) = − f ′(y)

f 2(y)
Diy

[

N
∑

i=1

aijDjy

]

+
1

f(y)
Di

[

N
∑

j=1

aijDjy

]

+
1

2k
Dibi,

for all i. Summation over i, using of Eq.(1.1) and (2.2), leads to

div W (x) = − f ′(y)

f 2(y)
(Dy)TADy − 1

f(y)

[

p(x)f(y) + BT Dy
]

+
1

2k

N
∑

i=1

Dibi

≤ −k

[

W − 1

2k
B

]T

A−1

[

W − 1

2k
B

]

− p(x)

−BT A−1

[

W − 1

2k
B

]

+
1

2k

N
∑

i=1

Dibi

= −kW T A−1W − p(x) +
1

4k
BT A−1B +

1

2k

N
∑

i=1

Dibi.

(2.3)

Put

Z(r) = ρ1(r)

[
∫

Sr

W (x) · ν(x) dσ + η(r)

]

for r ≥ b, (2.4)

where ν(x) = x/r, r = |x| 6= 0, denotes the outward unit normal to Sr. By means of the

Green formula and (2.3), we have

Z ′(r) =
ρ′

1(r)

ρ1(r)
Z(r) + ρ1(r)

{
∫

Sr

divW (x) dσ + η′(r)

}

≤ ρ′
1(r)

ρ1(r)
Z(r) − ρ1(r)

{

k

∫

Sr

(W T A−1W )(x) dσ

+

∫

Sr

[

p(x) − 1

4k
BT A−1B − 1

2k

N
∑

i=1

Dibi

]

dσ − η′(r)

}

.

(2.5)
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In view of (C4), we have that

(W TA−1W )(x) ≥ λ−1
max(x)|W (x)|2. (2.6)

The Schwartz inequality yields

∫

Sr

|W (x)|2 dσ ≥ r1−N

ωN

[
∫

Sr

W (r) · ν(x) dσ

]2

. (2.7)

Thus, by (2.5)-(2.7), we obtain

Z ′(r) ≤ ρ′
1(r)

ρ1(r)
Z(r) − ρ1(r)

{

kr1−N

ωNλ(r)

[
∫

Sr

W (x) · ν(x) dσ

]2

+

∫

Sr

[

p(x) − 1

4k
BT A−1B − 1

2k

N
∑

i=1

Dibi

]

dσ − η′(r)

}

=
ρ′

1(r)

ρ1(r)
Z(r) − ρ1(r)

{

kr1−N

ωNλ(r)

[

Z(r)

ρ1(r)
− η(r)

]2

+

∫

Sr

[

p(x) − 1

4k
BT A−1B − 1

2k

N
∑

i=1

Dibi

]

dσ − η′(r)

}

= −θ1(r) −
1

g1(r)
Z 2(r),

that is, for r ≥ b

Z ′(r) ≤ −θ1(r) −
1

g1(r)
Z 2(r). (2.8)

Applying the operator T r
l to (2.8), we have the following inequality

T r
b(θ1) ≤ T r

b(Z
′) − T r

b

(

1

g1
Z2

)

In view of (H2), (A1) and (A2), we get that

T r
b(θ1) ≤ T r

b(hZ) − T r
b

(

1

g1

Z2

)

≤ −T r
b

(

[

1√
g1

Z − 1

2

√
g1h

]2
)

+
1

4
T r

b

(

g1h
2
)

.

(2.9)

Clearly, inequality (2.9) contradicts (2.1). �

For the case H(r, s, l) = H1(r, s)H2(s, l), by Theorem 2.1, we have the following theo-

rem.

Theorem 2.2. Let (C1)− (C4) hold. Suppose that for each l ≥ a, there exist functions

η ∈ C([a,∞), R), H1, H2 ∈ C(D1, R), such that

lim sup
r→∞

r
∫

l

H1(r, s)H2(s, l)

{

θ1(s) −
1

4
g1(s) [ h1(r, s) − h2(s, l) ]2

}

ds > 0, (2.10)
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where D1 = {(r, s) : r ≥ l ≥ a}, h1, h2 are defined as

∂

∂s
H1(r, s) = −h1(r, s)H1(r, s),

∂

∂s
H2(s, l) = h2(s, l)H2(s, l),

and θ1, g1 are defined as in Theorem 2.1. Then Eq.(1.1) is oscillatory.

Now, define

G1(r) =

r
∫

a

1

g1(s)
ds, r ≥ l ≥ a,

and

H(r, s, l) = [ G1(r) − G1(s) ]α[ G1(s) − G1(l) ]2, (r, s, l) ∈ D,

for some α > 1, then

h(r, s, l) =

[

− α

G1(r) − G1(s)
+

2

G1(s) − G1(l)

]

1

g1(s)
, (r, s, l) ∈ D0.

Based on the above results, we obtain the following Kamenev type oscillation criteria.

Theorem 2.3. Let (C1) − (C4) hold, and lim
r→∞

G1(r) = ∞. Suppose that for each l ≥ a,

there exist a function η ∈ C([a,∞), R) and some α > 1, such that

lim sup
r→∞

1

Gα+1
1 (r)

r
∫

l

[ G1(r) − G1(s) ]α[ G1(s) − G1(l) ]2θ1(s)ds >
α

2(α2 − 1)
, (2.11)

where g1, θ1 are defined as in Theorem 2.1. Then Eq.(1.1) is oscillatory.

Proof. Noting that
r
∫

l

H(r, s, l)g1(s)h
2(r, s, l)ds

=

r
∫

l

[ G1(r) − G1(s) ]α[ G1(s) − G1(l) ]2
[

α

G1(r) − G1(s)
− 2

G1(s) − G1(l)

]2
1

g1(s)
ds

=

r
∫

l

[ G1(r) − G1(s) ]α−2 {α[ G1(s) − G1(l) ] − 2[ G1(r) − G1(s)]}2 dG(s)

=
2α

α2 − 1
[ G1(r) − G1(l) ]α+1.

(2.12)

In view of lim
r→∞

G1(r) = ∞, from (2.11) and (2.12), we have that

lim sup
r→∞

1

Gα+1
1 (r)

r
∫

l

H(r, s, l)

[

θ1(s) −
1

4
g1(s)h

2(r, s, l)

]

ds

= lim sup
r→∞

1

Gα+1
1 (r)

r
∫

l

[ G1(r) − G1(s) ]α[ G1(s) − G1(l) ]2θ1(s)ds − α

2(α2 − 1)
> 0.
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It follows that

lim sup
r→∞

r
∫

l

H(r, s, l)

[

θ1(s) −
1

4
g1(s)h

2(r, s, l)

]

ds > 0,

i.e., (2.1) holds. By Theorem 2.1, Eq.(1.1) is oscillatory. �

Similar to that of the proof of Theorem 2.3, we have

Theorem 2.4. Let (C1) − (C4) hold, and lim
r→∞

G1(r) = ∞. Suppose that for each l ≥ a,

there exist a function η ∈ C([a,∞), R) and some α > 1 such that

lim sup
r→∞

1

Gα+1
1 (r)

r
∫

l

[ G1(r) − G1(s) ]2[ G1(s) − G1(l) ]αθ1(s)ds >
α

2(α2 − 1)
, (2.13)

where g1, θ1 are defined as in Theorem 2.1, and G1(s) is defined in as Theorem 2.3. Then

Eq.(1.1) is oscillatory.

3. Oscillation results for the case when Dibi(x) does not exist for
some i

In this section, we establish oscillation criteria for Eq.(1.1) in case when Dibi(x) does not

exist for some i. We begin with the following lemma, the proof of this lemma is easy and

thus omitted.

Lemma 3.1. For two n-dimensional vectors u, v ∈ R
N , and a positive constant c, then

c u uT + u vT ≥ c

2
u uT − 1

2c
v vT . (3.1)

Theorem 3.1. Let (C1), (C2), (C4), and

(C ′
3) bi ∈ Cµ

loc(Ω(a), R) for all i, µ ∈ (0, 1)

hold. Suppose that for each l ≥ a, there exist functions η ∈ C([a,∞), R), H ∈ H, such

that

lim sup
r→∞

T r
l

(

θ2 −
1

4
g2h

2

)

> 0, (3.2)

where

θ2(r) = ρ2(r)







∫

Sr

[

p(x) − 1

2k
λ(x)|BT A−1|2

]

dσ +
k η2(r)r1−N

2 ωNλ(r)
− η ′(r)







,

g2(r) =
2 ωN

k
λ(r)ρ2(r)r

N−1 ρ2(r) = exp



−
r
∫

a

k η(s)s1−N

ωNλ(s)
ds



 ,

and Sr, dσ, ωN are defined as in Theorem 2.1. Then Eq.(1.1) is oscillatory.
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Proof. Let y = y(x) be a nonoscillatory solution of Eq.(1.1), and suppose that there

exists a b ≥ a such that y = y(x) 6= 0 for all x ∈ Ω(b). Define

W (x) =
1

f(y)
A(x)Dy for x ∈ Ω(b). (3.3)

Differentiation of the i−th component of (3.3) with respect to xi gives

DiWi(x) = − f ′(y)

f 2(y)
Diy

[

N
∑

i=1

aijDjy

]

+
1

f(y)

[

N
∑

j=1

aijDjy

]

,

for all i. Summation over i, using of Eq.(1.1), leads to

div W (x) = −f ′(y)(W TA−1W )(x) − (BT A−1W )(x) − p(x)

≤ −k(W T A−1W )(x) − (BT A−1W )(x) − p(x)

≤ − k

λ(x)
(W T W )(x) − (BT A−1W )(x) − p(x) ( by Lemma 3.1 )

≤ − k

2λ(x)
|W (x)|2 +

1

2 k
λ(x)|BT A−1|2 − p(x).

(3.4)

Put

Z(r) = ρ2(r)

[
∫

Sr

W (x) · ν(x) dσ + η(r)

]

for r ≥ b. (3.5)

By means of the Green formula in (3.5), in view of (3.4), we obtain

Z ′(r) =
ρ′

2(r)

ρ2(r)
Z(r) + ρ2(r)







∫

Sr

divW (x) dσ + η′(r)







≤ ρ′
2(r)

ρ2(r)
Z(r) − ρ2(r)







k

2λ(r)

∫

Sr

|W (x)|2dσ

+

∫

Sr

[

p(x) − 1

2 k
λ(x)|BT A−1|2

]

dσ − η′(r)







.

(3.6)

Thus, by (2.6), (2.7) and (3.6), we get that

Z ′(r) ≤ ρ′
2(r)

ρ2(r)
Z(r) − ρ2(r)







k r1−N

2 ωNλ(r)





∫

Sr

W (x) · ν(x) dσ





2

+

∫

Sr

[

p(x) − 1

2 k
λ(x)|BT A−1|2

]

dσ − η′(r)







=
ρ′

2(r)

ρ2(r)
Z(r) − ρ2(r)

{

k r1−N

2 ωNλ(r)

[

Z(r)

ρ2(r)
− η(r)

]2

+

∫

Sr

[

p(x) − 1

2 k
λ(x)|BT A−1|2

]

dσ − η′(r)







= −θ2(r) −
1

g2(r)
Z2(r).
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The rest of proof is similar to that of Theorem 2.1 and hence omitted . �

The following results are analogous to Theorems 2.2-2.4 with the assumption (C3)

replaced by (C ′
3), so these proofs are omitted.

Theorem 3.2. Let (C1), (C2), (C
′
3), and (C4) hold. Suppose that for each l ≥ a, there

exist functions η ∈ C([a,∞), R), H1, H2 ∈ C(D1, R), such that

lim sup
r→∞

r
∫

l

H1(r, s)H2(s, l)

{

θ2(s) −
1

4
g2(s) [ h1(r, s) − h2(s, l) ]2

}

ds > 0, (3.7)

where D1, h1, h2 are defined as in Theorem 2.2, and g2, θ2 are defined as in Theorem 3.1.

Then Eq.(1.1) is oscillatory.

Theorem 3.3. Let (C1), (C2), (C
′
3) and (C4) hold and lim

r→∞
G2(r) = ∞. Suppose that for

each l ≥ a, there exist a function η ∈ C([a,∞), R) and some α > 1, such that

lim sup
r→∞

1

Gα+1
2 (r)

r
∫

l

[ G2(r) − G2(s) ]α[ G2(s) − G2(l) ]2θ2(s)ds >
α

2(α2 − 1)
, (3.8)

where g2, θ2 are defined as in Theorem 3.1, and G2(r) =
r
∫

a

1/g2(s)ds. Then Eq.(1.1) is

oscillatory.

Theorem 3.4. Let (C1), (C2), (C
′
3) and (C4) hold, and lim

r→∞
G2(r) = ∞. Suppose that

for each l ≥ a, there exist a function η ∈ C([a,∞), R) and some α > 1, such that

lim sup
r→∞

1

Gα+1
2 (r)

r
∫

l

[ G2(r) − G2(s) ]2[ G2(s) − G2(l) ]αθ2(s)ds >
α

2(α2 − 1)
, (3.9)

where g2, θ2 are defined as in Theorem 3.1, and G2 is defined as in Theorem 3.3. Then

Eq.(1.1) is oscillatory.

4. Examples and Remarks

In this section, we will show the applications of our oscillation criteria by two examples.

We will see that the equations in these examples are oscillatory based on sections 2 and

3, though the oscillation cannot be demonstrated by the results in [6, 9, 11-13, 15].

Example 4.1. Consider Eq.(1.1) with

A(x) = diag

(

1

|x| ,
1

|x|

)

, B(x) =

(√
3

|x|2 , 0

)T

,

p(x) =
γ

4π2|x| ln2 |x|
, f(y) = y + y5,

(4.1)

where |x| ≥ 1, N = 2, γ > 0, k = 1, and λ(r) = 1/r.
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Let us apply Theorem 2.4 with η(r) = π/r, so that

ρ1(r) =
1

r
, g1(r) =

2π

r
, G1(r) = 2π ln r, θ1(r) =

γ

2πr ln2 r
.

A straightforward computation yields, for some α > 1 and r ≥ l ≥ 1,

lim sup
r→∞

1

Gα+1
1 (r)

r
∫

l

[ G1(r) − G1(s) ]2[ G1(s) − G1(l) ]αθ1(s)ds

= γ lim sup
r→∞

1

(ln r)α+1

r
∫

l

(

ln
r

s

)2 (

ln
s

l

)α+1 1

s ln2 s
ds

=
2γ

α(α2 − 1)
.

Then for any γ > 1
4
, there exists a constant α > 1 such that 2γ

α(α2−1)
> α

2(α−1)
. i.e., (2.13)

holds. Using Theorem 2.4, we find that Eq.(4.1) is oscillatory if γ > 1
4
.

Example 4.2. Consider Eq.(1.1) with

A(x) = diag(1, 1), B(x) =

( | sin |x||
|x| ,

| sin |x||
|x|

)T

,

p(x) =
γ

8π2|x|2 , f(y) = y + y3,

(4.2)

where |x| ≥ 1, N = 2, γ > 0, k = 1, and λ(r) = 1.

Let us apply Theorem 3.4 with η(r) = 2π, so that

ρ2(r) =
1

r
, g2(r) = 4π, G2(r) = 4π(r − 1), θ2(r) =

γ

4πr2
.

A straightforward computation yields, for some α > 1 and r ≥ l ≥ 1,

lim sup
r→∞

1

Gα+1
2 (r)

r
∫

l

[ G2(r) − G2(s) ]2[ G2(s) − G2(l) ]αθ2(s)ds

= γ lim sup
r→∞

1

rα+1

r
∫

l

(r − s)2(s − l)α+1 1

s2
ds

=
2γ

α(α2 − 1)
.

Then for any γ > 1
4
, there exists a constant α > 1 such that 2γ

α(α2−1)
> α

2(α−1)
. i.e., (3.9)

holds. Using Theorem 3.4, we find that Eq.(4.2) is oscillatory if γ > 1
4
.

Remark 4.1. The above results hold true if we replace condition f ′(y) ≥ k for y 6= 0

with following one:
f(y)

y
≥ k > 0, for y 6= 0,

but the function p(x) should be nonnegative for all x ∈ Ω(a).
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