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Abstract

In this paper we prove the existence of a mild solution for a class of
impulsive semilinear evolution differential inclusions with state-dependent
delay and multivalued jumps in a Banach space. We consider the cases when
the multivalued nonlinear term takes convex values as well as nonconvex
values.

1 Introduction

In this paper, we are concerned by the existence of mild solution of impulsive
semilinear functional differential inclusions with state-dependent delay and multi-
valued jumps in a Banach space E. More precisely, we consider the following class
of semilinear impulsive differential inclusions:

x′(t) ∈ A(t)x(t) + F (t, xρ(t,xt)), t ∈ J = [0, b], t 6= tk, (1.1)

∆x
∣∣
t=tk
∈ Ik(x(t−k )), k = 1, . . . ,m (1.2)

x(t) = φ(t), t ∈ (−∞, 0], (1.3)

where {A(t) : t ∈ J} is a family of linear operators in Banach space E generating
an evolution operator, F be a Carathéodory type multifunction from J × B to
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the collection of all nonempty compact convex subsets of E, B is the phase space
defined axiomatically (see section 2) which contains the mapping from (−∞, 0] into
E, φ ∈ B, 0 = t0 < t1 < . . . < tm < tm+1 = b, Ik : E → P(E), k = 1, . . . ,m are
multivalued maps with closed, bounded and convex values, x(t+k ) = limh→0+ x(tk+
h) and x(t−k ) = limh→0+ x(tk−h) represent the right and left limits of x(t) at t = tk.
Finally P(E) denotes the family of nonempty subsets of E, ρ : J × B → (−∞, b].

The theory of impulsive differential equations has become an important area of
investigation in recent years, stimulated by the numerous applications to problems
arising in mechanics, electrical engineering, medicine, biology, ecology, population
dynamics, etc. During the last few decades there have been significant develop-
ments in impulse theory, especially in the area of impulsive differential equations
and inclusions with fixed moments; see the monographs of Bainov and Simeonov
[8], Benchohra et al. [11], Lakshmikantham et al. [29], Samoilenko and Perestyuk
[33], and the references therein. For the case where the impulses are absent (i.e.
Ik = 0, k = 1, . . . ,m) and F is a single-valued or multivalued map and A is a
densely defined linear operator generating a C0-semigroup of bounded linear op-
erators and the state space is C([−r, 0], E) or E, the problem (1.1)–(1.3) has been
investigated in, for instance, the monographs by Ahmed [4, 5], Hale and Verduyn
Lunel [21], Hu and Papageorgiou [26], Kamenskii et al. [27] and Wu [34] and
the papers by Benchohra and Ntouyas [12], Cardinali and Rubbioni [14], Gory et
al. [18]. Benedetti [13] considered the existence result in the autonomous case
(A(t) ≡ A) and finite delay. Cardinali and Rubbioni [15] considered the non
autonomous case. In [32] Obukhovskii and Yao considered local and global ex-
istence results for semilinear functional differential inclusions with infinite delay
and impulse characteristics in a Banach space. Recently some existence results
were obtained for certain classes of functional differential equations and inclusions
in Banach spaces under assumption that the linear part generates an compact
semigroup (see, e.g., [1, 2, 3]).

On the other hand, functional differential equations with state-dependent delay
appear frequently in applications as model of equations and for this reason the
study of this type of equations has received a significant amount of attention in
the past several years (we refer to [7, 16, 22, 23, 24] and the references therein).
The literature related to functional differential inclusions with state-dependent
delay remains limited [1, 3].

Our goal here is to give existence results for the problem (1.1)–(1.3) without any
compactness assumption. In Section 2, we will recall briefly some basic definitions
and preliminary facts which will be used throughout the following sections. In
Section 3, we prove existence and compactness of solutions set for problem (1.1)–
(1.3). In Section 4, we provide a condition which guarantee the existence of a
solution of (1.1)–(1.3) by using a fixed point theorem due to Mönch [31].
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We mention that the model with multivalued jump sizes may arise in a con-
trol problem where we want to control the jump sizes in order to achieve given
objectives. To our knowledge, there are very few results for impulsive evolution
inclusions with multivalued jump operators; see [3, 6, 10, 13, 30]. The results of
the present paper extend and complement those obtained in the absence of the
impulse functions Ik, and those with single-valued impulse functions Ik.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which
are used throughout this paper.

Let J := [0, b], b > 0 and (E, ‖.‖) be a real separable Banach space. C(J,E)
the space of E-valued continuous functions on J with the uniform norm

‖x‖∞ = sup{‖x(t)‖, t ∈ J}.

L1(J,E) the space of E−valued Bochner integrable functions on J with the norm

‖f‖L1 =

∫ b

0

‖f(t)‖dt.

To define the solution of problem (1.1)–(1.3), it is convenient to introduce some
additional concepts and notations. Consider the following spaces

PC(J,E) = {y : J → E, yk ∈ C(Jk;E) there exist y(t−k ), y(t+k ) with y(tk) = y(t−k )},

where yk is the restriction of y to Jk = (tk, tk+1], k = 0, . . . ,m. Let the space

Ω =
{
y ∈ (−∞, b]→ E : y |(−∞,0]∈ B and y |J∈ PC(J,E)

}
with the semi-norm defined by

‖y‖Ω = ‖y0‖B + sup{‖y(s)‖ : 0 ≤ s ≤ b}, y ∈ PC.

In this work, we will employ an axiomatic definition for the phase space B which
is similar to those introduced in [25]. Specifically, B will be a linear space of
functions mapping (−∞, 0] into E endowed with a semi norm ‖.‖B, and satisfies
the following axioms introduced at first by Hale and Kato in [20]:

(A1) There exist a positive constant H and functions K(.),M(.) : R+ → R+

with K continuous and M locally bounded, such that for any b > 0 if y :
(−∞, b]→ E, such that y |J∈ PC(J,E) and y0 ∈ B; the following conditions
hold:
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(i) yt is in B;

(ii) ‖y(t)‖ ≤ H‖yt‖B;

(iii) ‖yt‖B ≤ K(t) sup{‖y(s)‖ : 0 ≤ s ≤ t} + M(t)‖y0‖B and H, K and M
are independent of y(.).

(A2) The space B is complete.

In what follows we use the following notations Kb = sup{K(t), t ∈ J} and
Mb = sup{M(t), t ∈ J}.
Definition 2.1. Let X and Y be two topological vector spaces. We denote by
P(Y ) the family of all non-empty subsets of Y and by

Pk(Y ) = {C ∈ P(Y ) : compact}, Pb(Y ) = {C ∈ P(Y ) : bounded},

Pc(Y ) = {C ∈ P(Y ) : closed}, Pcv(Y ) = {C ∈ P(Y ) : convex}.
A multifunction G : X → P(Y ) is said to be upper semicontinuous (u.s.c.) if

G−1(V ) = {x ∈ X : G(x) ⊆ V } is an open subset of X for every open V ⊆ Y .
The multifunction G is called closed if its graph ΓG = {(x, y) ∈ X × Y : y ∈
G(x)} is closed subset of the topological space X × Y . The multifunction G is
called quasicompact restriction to any compact subset M ⊂ X is compact. A
multifunction F : [c, d] ⊂ R → Pk(Y ) is said to be strongly measurable if there
exists a sequence Fn : [c, d] → Pk(Y ), n = 1, 2, . . . of steps multifunctions such
that

lim
n→+∞

h(Fn(t),F(t)) = 0, for µ-a.e t ∈ [c, d],

where µ denotes the Lebesgue measure on [c, d] and h is the Hausdorff metric on
Pk(Y ).

A subset B of L1([0, b];E) is decomposable if for all u(.); v(.) ∈ B and I ⊂ [0, b]
measurable, the function u(.)XI+v(.)X[0,b] ∈ B, where X denotes the characteristic
function.

Definition 2.2. Let F : [0, b] → P(E) be a multi-valued map with nonempty
compact values. Assign to F the multi-valued operator

F : J × B → P(L1([0; b];E)),

defined by

F(x(.)) = {y(.) ∈ L1([0, b];E) : y(t) ∈ F (t;xρ(t,xt)), for a.e. t ∈ [0, b]}.

The operator F is called the Niemytzki operator associated with F . We say F
is the lower semi-continuous type if its associated Niemytzki operator F is lower
semi-continuous and has nonempty closed and decomposable values. For details
and equivalent definitions see [19, 27, 28].
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Let us recall the following result that will be used in the sequel.

Lemma 2.3. [9] Let E be a separable metric space and let G : E → P(L1([0, b];E))
be a multi-valued operator which is lower semi-continuous and has nonempty closed
and decomposable values. Then G has a continuous selection, i.e. there exists a
continuous function f : E → L1([0, b];E) such that f(y) ∈ G(y) for every y ∈ E.

Definition 2.4. Let (A,≥) be a partially ordered set. A function β : Pb(E)→ A
is called a measure of noncompactness (MNC) in E if

β(coΩ) = β(Ω),

for every Ω ∈ Pb(E).

Definition 2.5. A measure of noncompactness β is called:

(i) monotone if Ω0,Ω1 ∈ Pb(E), Ω0 ⊂ Ω1 implies β(Ω0) ≤ β(Ω1)

(ii) nonsingular if β({a} ∪ Ω) = β(Ω) for every a ∈ E, Ω ∈ Pb(E);

(iii) regular if β(Ω) = 0 is equivalent to the relative compactness of Ω.

As an example of the measure of noncompactness possessing all these properties
is the Hausdorff of MNC which is defined by

χ(Ω) = inf{ε > 0 : Ω has a finite ε− net}.

For more information about the measure of noncompactness we refer the reader
to [27].

Definition 2.6. A multifunction G : E → Pk(E) is said to be χ-condensing if for
every bounded subset Ω ⊆ E the relation

χ(G(Ω)) ≥ χ(Ω)

implies the relative compactness of Ω.

Definition 2.7. A countable set {fn : n ≥ 1} ⊆ L1(J,E) is said to be semicompact
if

(i) it is integrably bounded: ‖fn(t)‖ ≤ ω(t) for a.e. t ∈ J and every n ≥ 1
where ω ∈ L1(J,R+)

(ii) the set {fn(t) : n ≥ 1} is relatively compact in E for a.e. t ∈ J .

Now, let for every t ∈ J , A(t) : E → E be a linear operator such that
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(i) For all t ∈ J , D(A(t)) = D(A) ⊆ E is dense and independent of t.

(ii) For each s ∈ I and each x ∈ E there is a unique solution v : [s, b] → E for
the evolution equation

v′(t) = A(t)v(t), t ∈ [s, b]

v(s) = x.
(2.1)

In this case an operator T can be defined as

T : ∆ = {(t, s) : 0 ≤ s ≤ t ≤ b} → L(E), T (t, s)(x) = v(t),

where v is the unique solution of (2.1) and L(E) is the family of linear bounded
operators on E.

Definition 2.8. The operator T is called the evolution operator generated by the
family {A(t) : t ∈ J}.

1. T (s, s) = IE,

2. T (t, r)T (r, s) = T (t, s), for all 0 ≤ s ≤ r ≤ t ≤ b.

3. (t, s)→ T (t, s) is strongly continuous on ∆ and

∂T (t, s)

∂t
= A(t)T (t, s),

∂T (t, s)

∂s
= −T (t, s)A(s).

Definition 2.9. The operator G : L1(J,E)→ C(J,E) defined by

Gf(t) =

∫ t

0

T (t, s)f(s)ds (2.2)

is called the generalized Cauchy operator, where T (., .) is the evolution operator
generated by the family of operators {A(t) : t ∈ J}.

In the sequel we will need the following results.

Lemma 2.10. [27] Every semicompact set in L1(J,E) is weakly compact in the
space L1(J,E).

Lemma 2.11 ([27, Theorem 2]). The generalized Cauchy operator G satisfies the
properties

(G1) there exists ζ ≥ 0 such that

‖Gf(t)−Gg(t)‖ ≤ ζ

∫ t

0

‖f(s)− g(s)‖ds, for every f, g ∈ L1(J,E), t ∈ J.
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(G2) for any compact K ⊆ E and sequence (fn)n≥1, fn ∈ L1(J,E) such that for
all n ≥ 1, fn(t) ∈ K, a. e. t ∈ J , the weak convergence fn ⇀ f0 in L1(J,E)
implies the convergence Gfn → Gf0 in C(J,E).

Lemma 2.12. [27] Let S : L1(J,E)→ C(J,E) be an operator satisfying condition
(G2) and the following Lipschitz condition (weaker than (G1)).

(G1’)
‖Sf − Sg‖C(J,E) ≤ ζ‖f − g‖L1(J,E).

Then for every semicompact set {fn}+∞
n=1 ⊂ L1(J,E) the set {Sfn}+∞

n=1 is rela-
tively compact in C(J,E). Moreover, if (fn)n≥1 converges weakly to f0 in L1(J,E)
then Sfn → Sf0 in C(J,E).

Lemma 2.13. [27] Let S : L1(J,E)→ C(J,E) be an operator satisfying conditions
(G1), (G2) and let the set {fn}∞n=1 be integrably bounded with the property χ({fn(t) :
n ≥ 1}) ≤ η(t), for a.e. t ∈ J , where η(.) ∈ L1(J,R+) and χ is the Hausdorff
MNC. Then

χ({Sfn(t) : n ≥ 1}) ≤ 2ζ

∫ t

0

η(s)ds, for all t ∈ J,

where ζ ≥ 0 is the constant in condition (G1).

Lemma 2.14. [27] If U is a closed convex subset of a Banach space E and R :
U → Pcv,k(E) is a closed β-condensing multifunction, where β is a nonsingular
MNC defined on the subsets of U . Then R has a fixed point.

Lemma 2.15. [27] Let W be a closed subset of a Banach space E and R : W →
Pcv,k(E) be a closed multifunction which is β-condensing on every bounded subset
of W , where β is a monotone measure of noncompactness. If the fixed points set
FixR is bounded, then it is compact.

Theorem 2.16. [31] Let E be a Banach space, U an open subset of E and 0 ∈ U .
Suppose that N : U → E is a continuous map which satisfies Mönch’s condition
(that is, if D ⊆ U is countable and D ⊆ co({0} ∪N(D)), then D is compact) and
assume that

x 6= λN(x), for x ∈ ∂U and λ ∈ (0, 1)

holds. Then Nhas a fixed point in U .
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3 Existence Theorem

In this section we prove the existence of mild solutions for the impulsive semilinear
functional differential inclusions (1.1)–(1.3). We will always assume that ρ : J ×
B → (−∞, b] is continuous. In addition, we introduce the following hypotheses.

(A) {A(t) : t ∈ J} be a family of linear (not necessarily bounded) operators,
A(t) : D(A) ⊂ E → E, D(A) not depending on t and dense subset of E and
T : ∆ = {(t, s) : 0 ≤ s ≤ t ≤ b} → L(E) be the evolution operator generated
by the family {A(t) : t ∈ J}.

(Hφ) The function t → φt is continuous from R(ρ−) = {ρ(s, ϕ) : (s, ϕ) ∈ J ×
B, ρ(s, ϕ) ≤ 0} into B and there exists a continuous and bounded function
Lφ : R(ρ−)→ (0,∞) such that ‖φt‖B ≤ Lφ(t)‖φ‖B for every t ∈ R(ρ−).

(H1) The multifunction F (., x) has a strongly measurable selection for every x ∈ B.

(H2) The multifunction F : (t, .) → Pcv,k(E) is upper semicontinuous for a.e.
t ∈ J .

(H3) there exists a function α ∈ L1(J,R+) such that

‖F (t, ψ)‖ ≤ α(t)(1 + ‖ψ‖B) for a.e. t ∈ J ;

(H4) There exists a function β ∈ L1(J,R+) such that for all Ω ⊂ B, we have

χ(F (t,Ω)) ≤ β(t) sup
−∞≤s≤0

χ(Ω(s)) for a.e. t ∈ J,

where, Ω(s) = {x(s);x ∈ Ω} and χ is the Hausdorff measure of noncompact-
ness.

(H5) There exist constants ak, ck > 0, k = 1, . . . ,m such that

1) ‖Ik‖ ≤ ak, where Ik ∈ Ik(x(t+k )).

2) χ(Ik(D)) ≤ ckχ(D) for each bounded subset D of E.

The next result is a consequence of the phase space axioms.

Lemma 3.1. ([22], Lemma 2.1) If y : (−∞, b] → R is a function such that
y0 = φ and y|J ∈ PC(J,R), then

‖ys‖B ≤ (Mb + Lφ)‖φ‖B +Kb sup{‖y(θ)‖; θ ∈ [0, max{0, s}]}, s ∈ R(ρ−) ∪ J,

where
Lφ = sup

t∈R(ρ−)

Lφ(t).
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Remark 3.2. We remark that condition (Hφ) is satisfied by functions which are
continuous and bounded. In fact, if the space B satisfies axiom C2 in [25] then
there exists a constant L > 0 such that ‖φ‖B ≤ L sup{‖φ(θ)‖ : θ ∈ (−∞, 0]} for
every φ ∈ B that is continuous and bounded (see [25] Proposition 7.1.1) for details.
Consequently,

‖φt‖B ≤ L
supθ≤0 ‖φ(θ)‖
‖φ‖B

‖φ‖B, for every φ ∈ B \ {0}.

Definition 3.3. A function x ∈ Ω is said to be a mild solution of system (1.1)–
(1.3) if there exist a function f ∈ L1(J ;E) such that f ∈ F (t, xρ(t,xt)) for a.e.
t ∈ J

(i) x(t) = T (t, 0)φ(0) +
∫ t

0
T (t, s)f(s)ds+

∑
0<tk<t

T (t, tk)Ik(x(tk)),
a.e. t ∈ J, k = 1, . . . ,m

(ii) x(t) = φ(t), t ∈ (−∞, 0],

with Ik ∈ Ik(x(t+k )).

Remark 3.4. Under conditions (Hφ) and (H1)-(H3) for every piecewise contin-
uous function v : J → B the multifunction F (t, v(t)) admits a Bochner integrable
selection (see [27]).

Let
Ωb = {x ∈ Ω : x0 = 0} .

For any x ∈ Ωb we have

‖x‖b = ‖x‖B + sup
0≤s≤b

‖x‖ = sup
0≤s≤b

‖x‖.

Thus (Ωb, ‖.‖b) is a Banach space.
We note that from assumptions (H1) and (H3) it follows that the superposition

multioperator S1
F : Ωb → P(L1(J,E)) defined by

S1
F = {f ∈ L1(J,E) : f(t) ∈ F (t, xρ(t,xt)), a.e. t ∈ J}

is nonempty set (see [27]) and is weakly closed in the following sense.

Lemma 3.5. If we consider the sequence (xn) ∈ Ωb and {fn}+∞
n=1 ⊂ L1(J,E),

where fn ∈ S1
F (.,xn

ρ(.,xn. )
) such that xn → x0 and fn → f 0 then f 0 ∈ S1

F .

Now we state and prove our main result.
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Theorem 3.6. Under assumptions (A)–(Hφ) and (H1)–(H5), the problem (1.1)–
(1.3) has at least one mild solution.

Proof. To prove the existence of a mild solution for (1.1)–(1.3) we introduce the
integral multioperator N : Ωb −→ P(Ωb), defined as

Nx =


y : y(t) = T (t, 0)φ(0) +

∫ t
0
T (t, s)f(s)ds∑

0<tk<t
T (t, tk)Ik(x(tk)), t ∈ J

y(t) = φ(t), t ∈ (−∞, 0],

(3.1)

where S1
F and Ik ∈ Ik(x).

It is clear that the integral multioperator N is well defined and the set of all
mild solution for the problem (1.1)–(1.3) on J is the set FixN = {x : x ∈ N(x)}.

We shall prove that the integral multioperator N satisfies all the hypotheses of
Lemma 2.14. The proof will be given in several steps.

Step 1. Using the fact that the maps F and I has a convex values it easy to
check that N has convex values.

Step 2. N has closed graph.

Let {xn}+∞
n=1 ⊂ Ωb, {zn}+∞

n=1, xn → x∗, zn ∈ N((xn), n ≥ 1) and zn → z∗.
Moreover, let {fn}+∞

n=1 ⊂ L1(J ;E) an arbitrary sequence such that fn ∈ S1
F for

n ≥ 1.
Hypothesis (H3) implies that the set {fn}+∞

n=1 integrably bounded and for a.e.
t ∈ J the set {fn(t)}+∞

n=1 relatively compact, we can say that {fn}+∞
n=1 is semicom-

pact sequence. Consequently {fn}+∞
n=1 is weakly compact in L1(J ;E), so we can

assume that fn ⇀ f ∗.
From lemma 2.11 we know that the generalized Cauchy operator on the interval

J , G : L1(J ;E)→ Ωb, defined by

Gf(t) =

∫ t

0

T (t, s)f(s)ds, t ∈ J (3.2)

satisfies properties (G1) and (G2) on J .
Note that set {fn}+∞

n=1 is also semicompact and sequence (fn)+∞
n=1 weakly con-

verges to f ∗ in L1(J ;E). Therefore, by applying Lemma 2.12 for the generalized
Cauchy operator G of (3.2) we have the convergence Gfn → Gf . By means of
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(3.2) and (3.1), for all t ∈ J we can write

zn(t) = T (t, 0)φ(0) +

∫ t

0

T (t, s)fn(s)ds+
∑

0<tk<t

T (t, tk)Ik(x
n(tk))

= T (t, 0)φ(0) +

∫ t

0

T (t, s)fnds+
∑

0<tk<t

T (t, tk)Ik(x
n(tk))

= T (t, 0)φ(0) +Gfn(t) +
∑

0<tk<t

T (t, tk)Ik(x
n(tk)))

where S1
F , and Ik ∈ Ik(x).

By applying Lemma 2.11, we deduce

zn → T (., 0)φ(0) +Gf + T (., t)Ik(x
∗(tk))

in Ωb and by using in fact that the operator S1
F is closed, we get f ∗ ∈ S1

F . Conse-
quently

z∗(t)→ T (t, 0)φ(0) +Gf + T (t, t)Ik(x
∗(tk)),

therefore z∗ ∈ N(x∗). Hence N is closed.
With the same technique, we obtain that N has compact values.

Step 3. We consider the measure of noncompactness defined in the following way.
For every bounded subset Ω ⊂ Ωb

ν1(Ω) = max
Ω∈∆(Ω)

(γ1(Ω), mod C(Ω)), (3.3)

where ∆(Ω) is the collection of all the denumerable subsets of Ω;

γ1(Ω) = sup
t∈J

e−Ltχ({x(t) : x ∈ Ω}); (3.4)

where mod C(Ω) is the modulus of equicontinuity of the set of functions Ω given
by the formula

mod C(Ω) = lim
δ→0

sup
x∈Ω

max
|t1−t2|≤δ

‖x(t1)− x(t2)‖; (3.5)

and L > 0 is a positive real number chosen such that

q := M

(
2 sup
t∈J

∫ t

0

e−L(t−s)β(s)ds+ eLt
m∑
k=1

ck

)
< 1 (3.6)

where M = sup(t,s)∈∆ ‖T (t, s)‖.
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From the Arzela-Ascoli theorem, the measure ν1 give a nonsingular and regular
measure of noncompactness, (see [27]).

Let {yn}+∞
n=1 be the denumerable set which achieves that maximum ν1(N(Ω)),

i,e;
ν1(N(Ω)) = (γ1({yn}+∞

n=1), mod C({yn}+∞
n=1)).

Then there exists a set {xn}+∞
n=1 ⊂ Ω such that yn ∈ N(xn), n ≥ 1. Then

yn(t) = T (t, 0)φ(0) +

∫ t

0

T (t, s)f(s)ds+
∑

0<tk<t

T (t, tk)Ik(x(tk)), (3.7)

where f ∈ S1
F and Ik ∈ Ik(xn), so that

γ1({yn}+∞
n=1) = γ1({Gfn}+∞

n=1).

We give an upper estimate for γ1({yn}+∞
n=1).

Fixed t ∈ J by using condition (H4), for all s ∈ [0, t] we have

χ({fn(s)}+∞
n=1) ≤ χ(F (s, {xn(s)}+∞

n=1))

≤ χ({F (s, xn(s))}+∞
n=1)

≤ β(s)χ({xn(s)}+∞
n=1)

≤ β(s)eLs sup
t∈J

e−Ltχ({xn(t)}+∞
n=1)

= β(s)eLsγ1({xn}+∞
n=1).

By using condition (H3), the set {fn}+∞
n=1 is integrably bounded. In fact, for every

t ∈ J , we have

‖fn(t)‖ ≤ ‖F (t, xn(t))‖
≤ α(t)(1 + ‖xn(t‖).

The integrably boundedness of {fn}+∞
n=1 follows from the continuity of x in Jk and

the boundedness of set {xn}+∞
n=1 ⊂ Ω. By applying Lemma 2.13, it follows that

χ({Gfn(s)}+∞
n=1) ≤ 2M

∫ s

0

β(t)eLt(γ1({xn}+∞
n=1))dt

= 2Mγ1({xn}+∞
n=1)

∫ s

0

β(t)eLt.

Thus, we get

γ1({xn}+∞
n=1) ≤ γ1({yn}+∞

n=1) = γ1({Gfn(s)}+∞
n=1)

= sup
t∈J

e−Lt2Mγ1({xn}+∞
n=1)

∫ s

0

β(t)eLtMγ1({xn}+∞
n=1)eLt

m∑
k=1

ck

≤ qγ1({xn}+∞
n=1),

(3.8)
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and hence γ1({xn}+∞
n=1) = 0, then γ1({xn(t)}+∞

n=1) = 0, for every t ∈ J . Conse-
quently

γ1({yn}+∞
n=1) = 0.

By using the last equality and hypotheses (H3) and (H4) we can prove that set
{fn}+∞

n=1 is semicompact. Now, by applying Lemma 2.11 and Lemma 2.12, we
can conclude that set {Gfn}+∞

n=1 is relatively compact. The representation of yn
given by (3.7) yields that set {yn}+∞

n=1 is also relatively compact in Ωb, therefore
ν1(Ω) = (0, 0). Then Ω is a relatively compact set.

Step 4. A priori bounds.

We will demonstrate that the solution set is a priori bounded. Indeed, let x ∈ N .
Then there exists f ∈ S1

F and Ik ∈ Ik(x) such that for every t ∈ J we have

‖x(t)‖ =
∥∥T (t, 0)φ(0) +

∫ t

0

T (t, s)f(s)ds+
∑

0<tk<t

T (t, tk)Ik(x(tk))
∥∥

≤M(‖φ(0)‖+
m∑
k=1

ak) +M

∫ t

0

f(s)ds

≤M(‖φ(0)‖+
m∑
k=1

ak) +M

∫ b

0

α(s)(1 + ‖x[φ]ρ(t,xt)‖)ds.

Using Lemma 3.1, we have

‖x(t)‖ ≤M(‖φ(0)‖+
m∑
k=1

ak) +M

∫ t

0

α(s)(1 + (Mb + Lφ)‖φ‖B +Kb sup
0≤θ≤s

‖x(θ)‖)ds

≤M(‖φ(0)‖+
m∑
k=1

ak) +M(1 + (Mb + Lφ)‖φ‖B)‖α‖L1(J)

+MKb

∫ t

0

α(s) sup
0≤θ≤s

‖x(θ)‖ds.

Since the last expression is a nondecreasing function of t, we have that

sup
0≤θ≤t

‖x(θ)‖ ≤M(‖φ(0)‖+
m∑
k=1

ak) +M(1 + (Mb + Lφ)‖φ‖B)‖α‖L1(J)

+MKb

∫ t

0

α(s) sup
0≤θ≤s

‖x(θ)‖ds.

Invoking Gronwall’s inequality, we get

sup
0≤θ≤b

‖x(θ)‖ ≤ ζeMKb‖α‖L1[0,b] ,
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where

ζ = M(‖φ(0)‖+
m∑
k=1

ak) +M(1 + (Mb + Lφ)‖φ‖B)‖α‖L1(J),

which completes the proof.

4 The nonconvex case

This section is devoted to proving the existence of solutions for (1.1)–(1.3) with
a nonconvex valued right-hand side. Our result is based on Mönch’s fixed point
theorem combined with a selection theorem due to Bressan and Colombo (see [9]).
We will assume the following hypothesis:

Let F be a multifunction defined from J ×B to the family of nonempty closed
convex subsets of E such that

(H6) (t, x) 7→ F (., x) is L ⊗ Bb-measurable (Bb is Borel measurable).

(H7) The multifunction F : (t, .)→ Pk(E) is lower semicontinuous for a.e. t ∈ J .

(H8) there exists a function α ∈ L1(J,R+) such that

‖F (t, ψ)‖ ≤ α(t), for a.e. t ∈ J, ∀ψ ∈ B;

(H9) There exists a function β ∈ L1(J,R+) such that for all Ω ⊂ B, we have

χ(F (t,Ω)) ≤ β(t) sup
−∞≤s≤0

χ(Ω(s)) for a.e. t ∈ J,

where, Ω(s) = {x(s);x ∈ Ω} and χ is the Hausdorff measure of noncompact-
ness.

(H10) There exist constants ak, bk, ck ≥ 0, k = 1, . . . ,m, such that

1) ‖Ik‖ ≤ ak‖x‖+ bk, where Ik ∈ Ik(x(t+k )).

2) χ(Ik(D)) ≤ ckχ(D) for each bounded subset D of E.

Now we state and prove our main result.

Theorem 4.1. Assume that (A)–(Hφ) and (H6)–(H10) hold. If

M

m∑
k=1

ak < 1,

then the problem (1.1)–(1.3) has at least one mild solution.
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Proof. We note that from assumptions (H6) and (H8) it follows that the superpo-
sition multioperator

S1
F : Ωb → P(L1(J,E)),

defined by

S1
F = {f ∈ L1(J,E) : f(t) ∈ F (t, xρ(t,xt)), a.e. t ∈ J}

is nonempty set (see [27]).
Step 1. The Mönch’s condition holds.

Suppose that Ω ⊆ Br is countable and Ω ⊆ co({0} ∪ N(Ω)) We will prove that
Ω is relatively compact. We consider the measure of noncompactness defined in
(3.3) and L > 0 is a positive real number chosen such that

q := M

(
2 sup
t∈J

∫ t

0

e−L(t−s)β(s)ds+ eLt
m∑
k=1

ck

)
< 1 (4.1)

where M = sup(t,s)∈∆ ‖T (t, s)‖.
From the Arzela-Ascoli theorem, the measure ν1 give a nonsingular and regular

measure of noncompactness, (see [27]).
Let {yn}+∞

n=1 be the denumerable set which achieves that maximum ν1(N(Ω)),
i,e;

ν1(N(Ω)) = (γ1({yn}+∞
n=1), mod C({yn}+∞

n=1)).

Then there exists a set {xn}+∞
n=1 ⊂ Ω such that yn ∈ N(xn), n ≥ 1. Then

yn(t) = T (t, 0)φ(0) +

∫ t

0

T (t, s)f(s)ds+
∑

0<tk<t

T (t, tk)Ik, (4.2)

where f ∈ S1
F and Ik ∈ Ik(xn), so that

γ1({yn}+∞
n=1) = γ1({Gfn}+∞

n=1).

We give an upper estimate for γ1({yn}+∞
n=1).

Fixed t ∈ J by using condition (H9), for all s ∈ [0, t] we have

χ({fn(s)}+∞
n=1) ≤ χ(F (s, {xn(s)}+∞

n=1))

≤ β(s)χ({xn(s)}+∞
n=1)

≤ β(s)eLs sup
t∈J

e−Ltχ({xn(t)}+∞
n=1)

= β(s)eLsγ1({xn}+∞
n=1).
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By using condition (H8), the set {fn}+∞
n=1 is integrably bounded. In fact, for every

t ∈ J , we have

‖fn(t)‖ ≤ ‖F (t, xn(t))‖
≤ α(t).

By applying Lemma 2.13, it follows that

χ({Gfn(s)}+∞
n=1) ≤ 2M

∫ s

0

β(t)eLt(γ1({xn}+∞
n=1))dt

= 2Mγ1({xn}+∞
n=1)

∫ s

0

β(t)eLtdt.

Thus, we get

γ1({xn}+∞
n=1) ≤ γ1({yn}+∞

n=1)

= sup
t∈J

e−Lt2Mγ1({xn}+∞
n=1)

∫ t

0

β(s)eLsds+Mγ1({xn}+∞
n=1)eLt

m∑
k=1

ck

≤ qγ1({xn}+∞
n=1),

(4.3)
Therefore, we have that

γ1({xn}+∞
n=1) ≤ γ1(Ω) ≤ γ1({0} ∪N(Ω))γ1({yn}+∞

n=1) ≤ qγ1({xn}+∞
n=1).

From (3.6), we obtain that

γ1({xn}+∞
n=1) = γ1(Ω) = γ1({yn}+∞

n=1)

Coming back to the definition of γ1, we can see

χ({xn}+∞
n=1) = χ({yn}+∞

n=1) = 0

By using the last equality and hypotheses (H8) and (H9) we can prove that set
{fn}+∞

n=1 is semicompact. Now, by applying Lemma 2.11 and Lemma 2.12, we can
conclude that set {Gfn}+∞

n=1 is relatively compact.
The representation of yn given by (4.2) yields that set {yn}+∞

n=1 is also relatively
compact in Ωb, since ν1 is a monotone, nonsingular, regular MNC, we have that

ν1(Ω) ≤ ν1(co({0} ∪N(Ω))) ≤ ν1(N(Ω)) = ν1({yn}+∞
n=1) = (0, 0).

Therefore, Ω is relatively compact.

Step 2. It is clear that the superposition multioperator S1
F has closed and decom-

posable values. Following the lines of [27], we may verify that S1
F is l.s.c..

EJQTDE, 2013 No. 42, p. 16



Applying Lemma 2.3 to the restriction of S1
F on Ωb we obtain that there exists

a continuous selection
w : Ωb → L1(J,E)

We consider a map N : Ωb → Ωb defined as

x(t) = T (t, 0)φ(0) +

∫ t

0

T (t, s)w(x)(s)ds

Since the Cauchy operator is continuous, the map N is also continuous, therefore,
it is a continuous selection of the integral multioperator.

Step 3. A priori bounds.

We will demonstrate that the solution set is a priori bounded. Indeed, let x ∈ λN1

and λ ∈ (0, 1). There exists f ∈ S1
F and Ik ∈ Ik(x) such that for every t ∈ J we

have

‖x(t)‖ =
∥∥λT (t, 0)φ(0) + λ

∫ t

0

T (t, s)f(s)ds+ λ
∑

0<tk<t

T (t, tk)Ik
∥∥,

≤M(‖φ(0)‖+ ‖x‖
m∑
k=1

ak +
m∑
k=1

bk) +M

∫ t

0

α(s)ds,

hence,

(1−M
m∑
k=1

ak)‖x‖ ≤M(‖φ(0)‖+ ‖α‖L1 +
m∑
k=1

bk).

Consequently

‖x‖ ≤ M(‖φ(0)‖+ ‖α‖L1 +
∑m

k=1 bk)

1−M
∑m

k=1 ak
= C.

So, there exists N∗ such that ‖x‖ 6= N∗, set

U = {x ∈ Ωb : ‖x‖ < N∗}.

From the choice of U there is no x ∈ ∂U such that x = λNx for some λ ∈ (0, 1).
Thus, we get a fixed point of N1 in Ū due to the Mönch Theorem.

5 An example

As an application of our results we consider the following impulsive partial func-
tional differential equation of the form
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∂

∂t
z(t, x) ∈ a(t, x)

∂2

∂x2
z(t, x) +m(t)b(t, z(t− σ(z(t, 0))), x), (5.1)

x ∈ [0, π], t ∈ [0, b], t 6= tk,

z(t+k , x)− z(t−k , x) ∈ [−bk|z(t−k , x), bk|z(t−k , x)], x ∈ [0, π], k = 1, . . . ,m, (5.2)

z(t, 0) = z(t, π), t ∈ J := [0, b], (5.3)

z(t, x) = φ(t, x), −∞ < t ≤ 0, x ∈ [0, π], (5.4)

where a(t, x) is continuous function and uniformly Hölder continuous in t, bk > 0,
k = 1, . . . ,m, φ ∈ D,
D = {ψ : (−∞, 0]× [0, π]→ R; ψ is continuous everywhere except for a countable
number of points at which ψ(s−), ψ(s+) exist with ψ(s−) = ψ(s)},
0 = t0 < t1 < t2 < · · · < tm < tm+1 = b, z(t+k ) = lim(h,x)→(0+,x) z(tk + h, x),
z(t−k ) = lim(h,x)→(0−,x) z(tk+h, x), b : R×R→ Pcv,k(R) a Carathéodory multivalued
map, σ : R→ R+.

Let
y(t)(x) = z(t, x), x ∈ [0, π], t ∈ J = [0, b],

Ik(y(t−k ))(x) = [−bk|z(t−k , x), bk|z(t−k , x)], x ∈ [0, π], k = 1, . . . ,m,

F (t, φ)(x) = b(t)a(t, z(t− σ(z(t, 0))), x)

φ(θ)(x) = φ(θ, x), −∞ < t ≤ 0, x ∈ [0, π],

ρ(t, φ) = t− σ(φ(0, 0)).

Consider E = L2[0, π] and define A(t) by A(t)w = a(t, x)w′′ with domain

D(A) = {w ∈ E : w,w′ are absolutely continuous, w′′ ∈ E, w(0) = w(π) = 0}.

Then A(t) generates an evolution system U(t, s) satisfying assumption (H1) and
(H3) (see [17]). For the phase space, we choose B = Bγ defined by

Bγ =

{
φ ∈ D : lim

θ→−∞
eγθφ(θ) exists

}
with the norm

‖φ‖γ = sup
θ∈(−∞,0]

eγθ‖φ(θ)‖.

Notice that the phase space Bγ satisfies axioms (A1) and (A3) (see [25] for more
details).

We can show that problem (5.1)–(5.4) is an abstract formulation of problem
(1.1)–(1.3). Under suitable conditions, the problem (1.1)–(1.3) has at least one
mild solution.
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