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Abstract

This paper investigates the existence of solutions for higher order fractional

differential inclusions with fractional integral boundary conditions involving non-

intersecting finite many strips of arbitrary length. Our study includes the cases

when the right-hand side of the inclusion has convex as well non-convex values.
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1 Introduction

In this paper, we study a boundary value problem of a fractional differential inclusion
with multi-strip fractional integral boundary conditions given by















cDqx(t) ∈ F (t, x(t)), t ∈ [0, T ],

x(0) = 0, x′(0) = 0, . . . , x(n−2)(0) = 0, x(T ) =

m
∑

i=1

γi[I
βix(ηi) − Iβix(ζi)],

(1.1)

where cDq denotes the Caputo fractional derivative of order q, F : [0, T ]×R → P(R) is
a multivalued map, P(R) is the family of all subsets of R, Iβi is the Riemann-Liouville
fractional integral of order βi > 0, i = 1, 2, . . . , m, 0 < ζ1 < η1 < ζ2 < η2 < . . . < ζm <
ηm < T, and γi ∈ R are appropriately chosen constants.

1Corresponding author

EJQTDE, 2013 No. 20, p. 1



The subject of initial and boundary value problems of fractional order differential
equations has recently emerged as an important area of investigation due to its exten-
sive applications in various disciplines of science and engineering such as mechanics,
electricity, chemistry, biology, economics, control theory, signal and image processing,
polymer rheology, regular variation in thermodynamics, biophysics, aerodynamics, vis-
coelasticity and damping, electro-dynamics of complex medium, wave propagation,
blood flow phenomena, etc.([1, 9, 21, 23, 25, 26, 29]). Many researchers have con-
tributed to the development of the existence theory for nonlinear fractional boundary
value problems, for instance, see ([2]-[6], [12, 13, 18, 19, 28, 30]) and the references
cited therein.

The present work is motivated by a recent paper [7] where a nonlocal strip condition
of the form

x(1) =

n−2
∑

i=1

αi

∫ ηi

ζi

x(s)ds, 0 < ζi < ηi, < 1, i = 1, 2, . . . , (n− 2).

is considered. In the present study, we have introduced Riemann-Liouville type frac-
tional integral boundary conditions involving nonintersecting finite many strips of arbi-
trary length. Such boundary conditions can be interpreted in the sense that a controller
at the right-end of the interval under consideration is influenced by a discrete distri-
bution of finite many nonintersecting sensors (strips) of arbitrary length expressed in
terms of Riemann-Liouville type integral boundary conditions. The results concerning
the single valued case of (1.1) are reported in the paper [8].

We establish the new existence results for the problem (1.1), when the right hand
side of the inclusion is convex as well as non-convex valued. The first result relies
on the nonlinear alternative of Leray-Schauder type. In the second result, we shall
combine the nonlinear alternative of Leray-Schauder type for single-valued maps with
a selection theorem due to Bressan and Colombo for lower semicontinuous multivalued
maps with nonempty closed and decomposable values, while in the third result, we
shall use the fixed point theorem for contraction multivalued maps due to Covitz and
Nadler. The methods employed in the present work are well known, however their
exposition in the framework of problem (1.1) is new.

The paper is organized as follows: Section 2 contains some preliminary concepts
and results about multivalued maps while the main results are presented in Section 3.

2 Preliminaries

2.1 Fractional Calculus

First of all, we recall some basic definitions of fractional calculus [21, 25, 26] and then
obtain an auxiliary result.
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Definition 2.1 For an at least n-times differentiable function g : [0,∞) → R, the
Caputo derivative of fractional order q is defined as

cDqg(t) =
1

Γ(n− q)

∫ t

0

(t− s)n−q−1g(n)(s)ds, n− 1 < q < n, n = [q] + 1,

where [q] denotes the integer part of the real number q.

Definition 2.2 The Riemann-Liouville fractional integral of order q is defined as

Iqg(t) =
1

Γ(q)

∫ t

0

g(s)

(t− s)1−q
ds, q > 0,

provided the integral exists.

Lemma 2.3 [21] For q > 0, the general solution of the fractional differential equation
Dqx(t) = 0 is given by

x(t) = c0 + c1t+ . . .+ cn−1t
n−1,

where ci ∈ R, i = 1, 2, . . . , n− 1 (n = [q] + 1).

In view of Lemma 2.3, it follows that

IqDqx(t) = x(t) + c0 + c1t+ . . .+ cn−1t
n−1, (2.1)

for some ci ∈ R, i = 1, 2, . . . , n− 1 (n = [q] + 1).

In the following, ACn−1([0, T ],R) will denote the space of functions x : [0, T ] → R

that are (n− 1)−times absolutely continuously differentiable functions.

Definition 2.4 A function x ∈ ACn−1([0, T ],R) is called a solution of problem (1.1)
if there exists a function v ∈ L1([0, T ],R) with v(t) ∈ F (t, x(t)), a.e. [0, T ] such that
cDqx(t) = v(t), a.e. [0, T ] and x(0) = 0, x′(0) = 0, . . . , x(n−2)(0) = 0, x(T ) =
m
∑

i=1

γi[I
βix(ηi) − Iβix(ζi)].

Lemma 2.5 For g ∈ C[0, T ], the fractional boundary value problem














cDqx(t) = g(t), t ∈ [0, T ], q ∈ (n− 1, n]

x(0) = 0, x′(0) = 0, . . . , x(n−2)(0) = 0, x(T ) =
m
∑

i=1

γi[I
βix(ηi) − Iβix(ζi)],

(2.2)

has a unique solution given by

x(t) =
1

Γ(q)

∫ t

0

(t− s)q−1g(s)ds− tn−1

λΓ(q)

∫ T

0

(T − s)q−1g(s)ds

+
tn−1

λΓ(q)

m
∑

i=1

γi

Γ(βi)

[

∫ ηi

0

∫ s

0

(ηi − s)βi−1(s− u)q−1g(u)duds

−
∫ ζi

0

∫ s

0

(ζi − s)βi−1(s− u)q−1g(u)duds
]

,

(2.3)
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where

λ =

(

T n−1 −
m
∑

i=1

γi
(ηβi+n−1

i − ζβi+n−1
i )Γ(n)

Γ(βi + n)

)

6= 0. (2.4)

Proof. The general solution of fractional differential equations in (2.2) can be
written as

x(t) =
1

Γ(q)

∫ t

0

(t− s)q−1g(s)ds− c0 − c1t− . . .− cn−1t
n−1. (2.5)

Using the given boundary conditions, it is found that c0 = 0, c1 = 0, . . . , cn−2 = 0.
Applying the Riemann-Liouville integral operator Iβi on (2.5), we get

Iβix(t) =
1

Γ(βi)

∫ t

0

(t− s)βi−1
( 1

Γ(q)

∫ s

0

(s− u)q−1g(u)du− cn−1s
n−1
)

ds

=
1

Γ(βi)Γ(q)

∫ t

0

∫ s

0

(t− s)βi−1(s− u)q−1g(u)duds

−cn−1
1

Γ(βi)

∫ t

0

(t− s)βi−1sn−1ds.

Using the condition x(T ) =
∑m

i=1 γi[I
βix(ηi) − Iβix(ζi)], together with the fact that

1

Γ(βi)

∫ t

0

(t− s)βi−1sn−1ds =
tβi+n−1Γ(n)

Γ(βi + n)
,

we obtain

1

Γ(q)

∫ T

0

(T − s)q−1g(s)ds− cn−1T
n−1

=

m
∑

i=1

γi

Γ(q)Γ(βi)

[

∫ ηi

0

∫ s

0

(ηi − s)βi−1(s− u)q−1g(u)duds

−
∫ ζi

0

∫ s

0

(ζi − s)βi−1(s− u)q−1g(u)duds
]

− cn−1

m
∑

i=1

γi
(ηβi+n−1

i − ζβi+n−1
i )Γ(n)

Γ(βi + n)
,

which yields

cn−1 =
1

λΓ(q)

∫ T

0

(T − s)q−1g(s)ds

− 1

λΓ(q)

m
∑

i=1

γi

Γ(βi)

[
∫ ηi

0

∫ s

0

(ηi − s)βi−1(s− u)q−1g(u)duds

−
∫ ζi

0

∫ s

0

(ζi − s)βi−1(s− u)q−1g(u)duds

]

,

where λ is given by (2.4). Substituting the values of c0, c1, . . . , cn−2, cn−1 in (2.5), we
obtain (2.3). This completes the proof. 2
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2.2 Basic Material for Multivalued Maps

Here we outline some basic concepts of multivalued analysis. [15, 20, 27].
Let C([0, T ]) denote a Banach space of continuous functions from [0, T ] into R

with the norm ‖x‖ = supt∈[0,T ] |x(t)|. Let L1([0, T ],R) be the Banach space of measur-
able functions x : [0, T ] → R which are Lebesgue integrable and normed by ‖x‖L1 =
∫ T

0
|x(t)|dt.
For a normed space (X, ‖ · ‖), let

Pcl(X) = {Y ∈ P(X) : Y is closed},
Pb(X) = {Y ∈ P(X) : Y is bounded},
Pcp(X) = {Y ∈ P(X) : Y is compact}, and

Pcp,c(X) = {Y ∈ P(X) : Y is compact and convex}.

A multi-valued map G : X → P(X) :

(i) is convex (closed) valued if G(x) is convex (closed) for all x ∈ X;

(ii) is bounded on bounded sets if G(B) = ∪x∈BG(x) is bounded inX for all B ∈ Pb(X)
(i.e. supx∈B

{sup{|y| : y ∈ G(x)}} <∞);

(iii) is called upper semi-continuous (u.s.c.) on X if for each x0 ∈ X, the set G(x0)
is a nonempty closed subset of X, and if for each open set N of X containing
G(x0), there exists an open neighborhood N0 of x0 such that G(N0) ⊆ N ;

(iv) G is lower semi-continuous (l.s.c.) if the set {y ∈ X : G(y) ∩B 6= ∅} is open for
any open set B in E;

(v) is said to be completely continuous if G(B) is relatively compact for every B ∈
Pb(X);

(vi) is said to be measurable if for every y ∈ R, the function

t 7−→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)}

is measurable;

(vii) has a fixed point if there is x ∈ X such that x ∈ G(x). The fixed point set of the
multivalued operator G will be denoted by FixG.

Definition 2.6 A multivalued map F : [0, T ] × R → P(R) is said to be Carathéodory
if

(i) t 7−→ F (t, x) is measurable for each x ∈ R;

(ii) x 7−→ F (t, x) is upper semicontinuous for almost all t ∈ [0, T ].
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Further a Carathéodory function F is called L1−Carathéodory if

(iii) for each α > 0, there exists ϕα ∈ L1([0, T ],R+) such that

‖F (t, x)‖ = sup{|v| : v ∈ F (t, x)} ≤ ϕα(t)

for all ‖x‖∞ ≤ α and for a. e. t ∈ [0, T ].

For each x ∈ C([0, T ],R), define the set of selections of F by

SF,x := {v ∈ L1([0, T ],R) : v(t) ∈ F (t, x(t)) for a.e. t ∈ [0, T ]}.

We define the graph of G to be the set Gr(G) = {(x, y) ∈ X × Y, y ∈ G(x)} and
recall two useful results regarding closed graphs and upper-semicontinuity.

Lemma 2.7 ([15, Proposition 1.2]) If G : X → Pcl(Y ) is u.s.c., then Gr (G) is a
closed subset of X × Y ; i.e., for every sequence {xn}n∈N ⊂ X and {yn}n∈N ⊂ Y , if
when n → ∞, xn → x∗, yn → y∗ and yn ∈ G(xn), then y∗ ∈ G(x∗). Conversely, if G
is completely continuous and has a closed graph, then it is upper semi-continuous.

Lemma 2.8 ([24]) Let X be a Banach space. Let F : [0, T ] × R → Pcp,c(X) be an
L1− Carathéodory multivalued map and let Θ be a linear continuous mapping from
L1([0, T ], X) to C([0, T ], X). Then the operator

Θ ◦ SF : C([0, T ], X) → Pcp,c(C([0, T ], X)), x 7→ (Θ ◦ SF )(x) = Θ(SF,x,y)

is a closed graph operator in C([0, T ], X)× C([0, T ], X).

We recall the well-known nonlinear alternative of Leray-Schauder for multivalued
maps.

Lemma 2.9 (Nonlinear alternative for Kakutani maps)[17]. Let E be a Banach space,
C a closed convex subset of E, U an open subset of C and 0 ∈ U. Suppose that F :
U → Pc,cv(C) is a upper semicontinuous compact map. Then either

(i) F has a fixed point in U, or

(ii) there is a u ∈ ∂U and λ ∈ (0, 1) with u ∈ λF (u).

Definition 2.10 Let A be a subset of [0, T ]×R. A is L⊗B measurable if A belongs to
the σ−algebra generated by all sets of the form J ×D, where J is Lebesgue measurable
in [0, T ] and D is Borel measurable in R.

Definition 2.11 A subset A of L1([0, T ],R) is decomposable if for all u, v ∈ A and
measurable J ⊂ [0, T ] = J , the function uχJ + vχJ−J ∈ A, where χJ stands for the
characteristic function of J .
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Lemma 2.12 ([10]) Let Y be a separable metric space and let N : Y → P(L1([0, T ],R))
be a lower semi-continuous (l.s.c.) multivalued operator with nonempty closed and de-
composable values. Then N has a continuous selection, that is, there exists a continuous
function (single-valued) h : Y → L1([0, T ],R) such that h(x) ∈ N(x) for every x ∈ Y .

Let (X, d) be a metric space induced from the normed space (X; ‖ · ‖). Consider
Hd : P(X) × P(X) → R ∪ {∞} given by

Hd(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)},

where d(A, b) = infa∈A d(a; b) and d(a,B) = infb∈B d(a; b). Then (Pb,cl(X), Hd) is a
metric space (see [22]).

Definition 2.13 A multivalued operator N : X → Pcl(X) is called

(a) γ−Lipschitz if and only if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y) for each x, y ∈ X;

(b) a contraction if and only if it is γ−Lipschitz with γ < 1.

Lemma 2.14 ([14]) Let (X, d) be a complete metric space. If N : X → Pcl(X) is a
contraction, then FixN 6= ∅.

3 Main Results

3.1 The Carathéodory Case

In this section, we are concerned with the existence of solutions for the problem (1.1)
when the right hand side has convex as well as nonconvex values. Initially, we assume
that F is a compact and convex valued multivalued map. For the forthcoming analysis,
we set

Ω =
T q

Γ(q + 1)
+

T q+n−1

|λ|Γ(q + 1)
+
T n−1

|λ|
m
∑

i=1

γi
ηq+βi

i − ζq+βi

i

Γ(q + βi + 1)
. (3.1)

Theorem 3.1 Suppose that

(H1) the map F : [0, T ] × R → P(R) is Carathéodory and has nonempty compact and
convex values;

(H2) there exist a continuous non-decreasing function ψ : [0,∞) −→ (0,∞) and func-
tion p ∈ L1([0, T ],R+) such that

‖F (t, x)‖P := sup{|v| : v ∈ F (t, x)} ≤ p(t)ψ(‖x‖)
for each (t, u) ∈ [0, T ] × R;
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(H3) there exists a number M > 0 such that

M

ψ(M)‖p‖L1Ω
> 1,

where Ω is given by (3.1).

Then the BVP (1.1) has at least one solution.

Proof. Let us introduce the operator N : C([0, T ],R) → P(C([0, T ],R)) as

N(x) =























































h ∈ C([0, T ],R) :

h(t) =











































1

Γ(q)

∫ t

0

(t− s)q−1v(s)ds− tn−1

λΓ(q)

∫ T

0

(T − s)q−1v(s)ds

+
tn−1

λΓ(q)

m
∑

i=1

γi

Γ(βi)

[

∫ ηi

0

∫ s

0

(ηi − s)βi−1(s− u)q−1v(u)duds

−
∫ ζi

0

∫ s

0

(ζi − s)βi−1(s− u)q−1v(u)duds

]

,























































for v ∈ SF,x.We will show that the operatorN satisfies the assumptions of the nonlinear
alternative of Leray- Schauder type. The proof consists of several steps. As a first step,
we show that N(x) is convex for each x ∈ C([0, T ],R). For that, let h1, h2 ∈ N(x).
Then there exist v1, v2 ∈ SF,x such that for each t ∈ [0, T ], we have

hi(t) =
1

Γ(q)

∫ t

0

(t− s)q−1vi(s)ds−
tn−1

λΓ(q)

∫ T

0

(T − s)q−1vi(s)ds

+
tn−1

λΓ(q)

m
∑

i=1

γi

Γ(βi)

[

∫ ηi

0

∫ s

0

(ηi − s)βi−1(s− u)q−1vi(u)duds

−
∫ ζi

0

∫ s

0

(ζi − s)βi−1(s− u)q−1vi(u)duds

]

, i = 1, 2.

Let 0 ≤ ω ≤ 1. Then, for each t ∈ [0, T ], we have

[ωh1 + (1 − ω)h2](t)

=
1

Γ(q)

∫ t

0

(t− s)q−1v(s)ds− tn−1

λΓ(q)

∫ T

0

(T − s)q−1[ωv1(r) + (1 − ω)v2(r)]ds

+
tn−1

λΓ(q)

m
∑

i=1

γi

Γ(βi)

[

∫ ηi

0

∫ s

0

(ηi − s)βi−1(s− u)q−1[ωv1(r) + (1 − ω)v2(r)]duds
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−
∫ ζi

0

∫ s

0

(ζi − s)βi−1(s− u)q−1[ωv1(r) + (1 − ω)v2(r)]duds

]

.

Since SF,x is convex (F has convex values), therefore it follows that ωh1+(1−ω)h2 ∈
N(x).
Next, we show that N(x) maps bounded sets into bounded sets in C([0, T ],R). For
a positive number ρ, let Bρ = {x ∈ C([0, T ],R) : ‖x‖ ≤ ρ} be a bounded set in
C([0, T ],R). Then, for each h ∈ N(x), x ∈ Bρ, there exists v ∈ SF,x such that

h(t) =
1

Γ(q)

∫ t

0

(t− s)q−1v(s)ds− tn−1

λΓ(q)

∫ T

0

(T − s)q−1v(s)ds

+
tn−1

λΓ(q)

m
∑

i=1

γi

Γ(βi)

[

∫ ηi

0

∫ s

0

(ηi − s)βi−1(s− u)q−1v(u)duds

−
∫ ζi

0

∫ s

0

(ζi − s)βi−1(s− u)q−1v(u)duds

]

,

and

|h(t)| ≤ 1

Γ(q)

∫ t

0

(t− s)q−1|v(s)|ds+
tn−1

|λ|Γ(q)

∫ T

0

(T − s)q−1|v(s)|ds

+
tn−1

|λ|Γ(q)

m
∑

i=1

γi

Γ(βi)

[

∫ ηi

0

∫ s

0

(ηi − s)βi−1(s− u)q−1|v(u)|duds

+

∫ ζi

0

∫ s

0

(ζi − s)βi−1(s− u)q−1|v(u)|duds
]

≤ ψ(‖x‖)‖p‖L1

{

T q

Γ(q + 1)
+

T q+n−1

|λ|Γ(q + 1)
+
T n−1

|λ|
m
∑

i=1

γi
ηq+βi

i − ζq+βi

i

Γ(q + βi + 1

}

.

Then

‖h‖ ≤ ψ(ρ)‖p‖L1

{

T q

Γ(q + 1)
+

T q+n−1

|λ|Γ(q + 1)
+
T n−1

|λ|
m
∑

i=1

γi
ηq+βi

i − ζq+βi

i

Γ(q + βi + 1

}

.

Now we show that N maps bounded sets into equicontinuous sets of C([0, T ],R).
Let t′, t′′ ∈ [0, T ] with t′ < t′′ and x ∈ Bρ, where Bρ, as above, is a bounded set of
C([0, T ],R). For each h ∈ N(x), we obtain

|h(t′′) − h(t′)|

=

∣

∣

∣

∣

∣

1

Γ(q)

∫ t′′

0

(t′′ − s)q−1v(s)ds− 1

Γ(q)

∫ t′

0

(t′ − s)q−1v(s)ds
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− [(t′′)n−1 − (t′)n−1]

λΓ(q)

∫ T

0

(T − s)q−1v(s)ds

+
[(t′′)n−1 − (t′′)n−1]

λΓ(q)

m
∑

i=1

γi

Γ(βi)

[

∫ ηi

0

∫ s

0

(ηi − s)βi−1(s− u)q−1v(u)duds

−
∫ ζi

0

∫ s

0

(ζi − s)βi−1(s− u)q−1v(u)duds
]

∣

∣

∣

∣

∣

≤ 1

Γ(q)

∫ t′

0

|(t′′ − s)q−1 − (t′ − s)q−1|ψ(r)σ(s)ds+
1

Γ(q)

∫ t′′

t′
|t′′ − s|q−1ψ(r)p(s)ds

+
|(t′′)n−1 − (t′)n−1|

|λ|Γ(q)

∫ T

0

|T − s|q−1ψ(r)p(s)ds

+
|(t′′)n−1 − (t′)n−1|

|λ|Γ(q)

m
∑

i=1

γi

Γ(βi)

[

∫ ηi

0

∫ s

0

(ηi − s)βi−1(s− u)q−1duψ(r)p(s)ds

−
∫ ζi

0

∫ s

0

(ζi − s)βi−1(s− u)q−1ψ(r)p(s)duds
]

.

Obviously the right hand side of the above inequality tends to zero independently
of x ∈ Bρ as t′′ − t′ → 0. As N satisfies the above three assumptions, therefore it
follows by Ascoli-Arzelá theorem that N : C([0, T ],R) → P(C([0, T ],R)) is completely
continuous.

In our next step, we show that N has a closed graph. Let xn → x∗, hn ∈ N(xn) and
hn → h∗. Then we need to show that h∗ ∈ N(x∗). Associated with hn ∈ N(xn), there
exists vn ∈ SF,xn

such that for each t ∈ [0, T ],

hn(t) =
1

Γ(q)

∫ t

0

(t− s)q−1vn(s)ds− tn−1

λΓ(q)

∫ T

0

(T − s)q−1vn(s)ds

+
tn−1

λΓ(q)

m
∑

i=1

γi

Γ(βi)

[

∫ ηi

0

∫ s

0

(ηi − s)βi−1(s− u)q−1vn(u)duds

−
∫ ζi

0

∫ s

0

(ζi − s)βi−1(s− u)q−1vn(u)duds

]

.

Thus we have to show that there exists v∗ ∈ SF,x∗
such that for each t ∈ [0, T ],

h∗(t) =
1

Γ(q)

∫ t

0

(t− s)q−1v∗(s)ds−
tn−1

λΓ(q)

∫ T

0

(T − s)q−1v∗(s)ds

+
tn−1

λΓ(q)

m
∑

i=1

γi

Γ(βi)

[

∫ ηi

0

∫ s

0

(ηi − s)βi−1(s− u)q−1v∗(u)duds
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−
∫ ζi

0

∫ s

0

(ζi − s)βi−1(s− u)q−1v∗(u)duds

]

.

Let us consider the continuous linear operator Θ : L1([0, T ],R) → C([0, T ],R) so
that

v 7→ Θ(v) =
1

Γ(q)

∫ t

0

(t− s)q−1v(s)ds− tn−1

λΓ(q)

∫ T

0

(T − s)q−1v(s)ds

+
tn−1

λΓ(q)

m
∑

i=1

γi

Γ(βi)

[

∫ ηi

0

∫ s

0

(ηi − s)βi−1(s− u)q−1v(u)duds

−
∫ ζi

0

∫ s

0

(ζi − s)βi−1(s− u)q−1v(u)duds

]

.

Observe that

‖hn(t) − h∗(t)‖

=
1

Γ(q)

∫ t

0

(t− s)q−1(vn(s) − v∗(s))ds−
tn−1

λΓ(q)

∫ T

0

(T − s)q−1(vn(s) − v∗(s))ds

+
tn−1

λΓ(q)

m
∑

i=1

γi

Γ(βi)

[

∫ ηi

0

∫ s

0

(ηi − s)βi−1(s− u)q−1(vn(u) − v∗(u))duds

−
∫ ζi

0

∫ s

0

(ζi − s)βi−1(s− u)q−1(vn(u) − v∗(u))duds

]

,

which tends to zero as n→ ∞.
Thus, it follows by Lemma 2.8 that Θ ◦ SF is a closed graph operator. Further, we

have hn(t) ∈ Θ(SF,xn
). Since xn → x∗, it follows that

h∗(t) =
1

Γ(q)

∫ t

0

(t− s)q−1v∗(s)ds−
tn−1

λΓ(q)

∫ T

0

(T − s)q−1v∗(s)ds

+
tn−1

λΓ(q)

m
∑

i=1

γi

Γ(βi)

[

∫ ηi

0

∫ s

0

(ηi − s)βi−1(s− u)q−1v∗(u)duds

−
∫ ζi

0

∫ s

0

(ζi − s)βi−1(s− u)q−1v∗(u)duds

]

,

for some v∗ ∈ SF,x∗
.

Finally, we discuss a priori bounds on solutions. Let x be a solution of (1.1). Then,
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using the computations proving that N(x) maps bounded sets into bounded sets, we
have

‖x‖ ≤ ψ(‖x‖)‖p‖L1

{

T q

Γ(q + 1)
+

T q+n−1

|λ|Γ(q + 1)
+
T n−1

|λ|
m
∑

i=1

γi
ηq+βi

i − ζq+βi

i

Γ(q + βi + 1

}

.

Consequently, in view of (3.1), we get

‖x‖
ψ(‖x‖)‖p‖L1Ω

≤ 1.

In view of (H3), there exists M such that ‖x‖ 6= M . Let us set

U = {x ∈ C([0, T ],R) : ‖x‖ < M + 1}.

Note that the operator N : U → P(C([0, T ],R)) is upper semicontinuous and com-
pletely continuous. From the choice of U , there is no x ∈ ∂U such that x ∈ µN(x)
for some µ ∈ (0, 1). Consequently, by the nonlinear alternative of Leray-Schauder type
[17], we deduce that N has a fixed point x ∈ U which is a solution of the problem
(1.1). This completes the proof. �

Example 3.2 Let us consider the following 4−strip nonlocal boundary value problem:











cD9/2x(t) ∈ F (t, x(t)), t ∈ [0, 2],

x(0) = 0, x′(0) = 0, x′′(0) = 0, x′′′(0) = 0,

x(2) =
∑4

i=1 γi[I
βix(ηi) − Iβix(ζi)],

(3.2)

where q = 9/2, n = 5, T = 2, ζ1 = 1/4, η1 = 1/2, ζ2 = 2/3, η2 = 1, ζ3 = 5/4, η3 =
4/3, ζ4 = 3/2, η4 = 7/4, γ1 = 5, γ2 = 10, γ3 = 15, γ4 = 25, β1 = 5/4, β2 =
7/4, β3 = 9/4, β4 = 11/4, and F : [0, 2] × R → P(R) is a multivalued map given by

x→ F (t, x) =

[

3
√
t|x|5

(|x|5 + 3)
,

3
√
t|x|

2(|x| + 1)

]

.

For f ∈ F, we have

|f | ≤ max

(

3
√
t|x|5

(|x|5 + 3)
,

3
√
t|x|

2(|x| + 1)

)

≤ 3
√
t, x ∈ R

with p(t) = 3
√
t, ψ(‖x‖) = 1.

With the given values of the parameters involved, we find that

λ =

(

T n−1 −
m
∑

i=1

γi
(ηβi+n−1

i − ζβi+n−1
i )Γ(n)

Γ(βi + n)

)

≃ 9.334784,
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and

Ω =
T q

Γ(q + 1)
+

T q+n−1

|λ|Γ(q + 1)
+
T n−1

|λ|
m
∑

i=1

γi
ηq+βi

i − ζq+βi

i

Γ(q + βi + 1)
≃ 1.406972.

Using the above values in the condition (H3) :

M

ψ(M)‖p‖L1Ω
> 1,

we find that M > M1 ≃ 1.055229. Clearly, all the conditions of Theorem 3.1 are
satisfied. Hence the conclusion of Theorem 3.1 applies to the problem (3.2).

3.2 The Lower Semi-Continuous Case

Next, we study the case where F is not necessarily convex valued. Our approach here is
based on the nonlinear alternative of Leray-Schauder type combined with the selection
theorem of Bressan and Colombo for lower semi-continuous maps with decomposable
values.

Theorem 3.3 Assume that (H2) − (H3) and the following conditions hold:

(H4) F : [0, T ] × R → P(R) is a nonempty compact-valued multivalued map such that

(a) (t, x) 7−→ F (t, x) is L ⊗ B measurable,

(b) x 7−→ F (t, x) is lower semicontinuous for each t ∈ [0, T ];

Then the boundary value problem (1.1) has at least one solution on [0, T ].

Proof. It follows from (H2) and (H4) that F is of l.s.c. type ([16]). Then from
Lemma 2.12, there exists a continuous function f : C([0, T ],R) → L1([0, T ],R) such
that f(x) ∈ F(x) for all x ∈ C([0, T ],R).

Consider the problem















cDqx(t) = f(x(t)), 0 < t < T,

x(0) = 0, x′(0) = 0, . . . , x(n−2)(0) = 0, x(T ) =

m
∑

i=1

γi[I
βix(ηi) − Iβix(ζi)].

(3.3)

Observe that if x ∈ ACn−1([0, T ]) is a solution of (3.3), then x is a solution to the
problem (1.1). In order to transform the problem (3.3) into a fixed point problem, we
define the operator N as

(Nx)(t) =
1

Γ(q)

∫ t

0

(t− s)q−1f(x(s))ds− tn−1

λΓ(q)

∫ T

0

(T − s)q−1f(x(s))ds
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+
tn−1

λΓ(q)

m
∑

i=1

γi

Γ(βi)

[

∫ ηi

0

∫ s

0

(ηi − s)βi−1(s− u)q−1f(x(u))duds

−
∫ ζi

0

∫ s

0

(ζi − s)βi−1(s− u)q−1f(x(u))duds

]

.

It can easily be shown that N is continuous and completely continuous. The re-
maining part of the proof is similar to that of Theorem 3.1. So we omit it. This
completes the proof. �

3.3 The Lipschitz Case

Now we prove the existence of solutions for the problem (1.1) with a nonconvex valued
right hand side by applying a fixed point theorem for multivalued map due to Covitz
and Nadler [14].

Theorem 3.4 Assume that the following conditions hold:

(H5) F : [0, T ] × R → Pcp(R) is such that F (·, x) : [0, T ] → Pcp(R) is measurable for
each x ∈ R;

(H6) Hd(F (t, x), F (t, x̄)) ≤ m(t)|x − x̄| for almost all t ∈ [0, T ] and x, x̄ ∈ R with
m ∈ C([0, T ],R+) and d(0, F (t, 0)) ≤ m(t) for almost all t ∈ [0, T ].

Then the boundary value problem (1.1) has at least one solution on [0, T ] if

{

T q

Γ(q + 1)
+

T q+n−1

|λ|Γ(q + 1)
+
T n−1

|λ|
m
∑

i=1

γi
ηq+βi

i − ζq+βi

i

Γ(q + βi + 1

}

‖m‖L1 < 1.

Proof. We transform the boundary value problem (1.1) into a fixed point problem.
Consider the operator N : C([0, T ],R) → P(C([0, T ],R)) defined at the begin of the
proof of Theorem 3.1. We show that the operator N, satisfies the assumptions of
Lemma 2.14. The proof will be given in two steps.

Step 1. N(x) is nonempty and closed for every v ∈ SF,x. Note that since the
set-valued map F (·, x(·)) is measurable with the measurable selection theorem (e.g.,
[11, Theorem III.6]) it admits a measurable selection v : I → R. Moreover, by the
assumption (H6), we have

|v(t)| ≤ m(t) +m(t)|x(t)|,

i.e. v ∈ L1([0, T ],R) and hence F is integrably bounded. Therefore, SF,y 6= ∅.
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To show that N(x) ∈ Pcl((C[0, T ],R)) for each x ∈ C([0, T ],R), let {un}n≥0 ∈ N(x)
be such that un → u (n → ∞) in C([0, T ],R). Then u ∈ C([0, T ],R) and there exists
vn ∈ SF,x such that, for each t ∈ [0, T ],

un(t) =
1

Γ(q)

∫ t

0

(t− s)q−1vn(s)ds− tn−1

λΓ(q)

∫ T

0

(T − s)q−1vn(s)ds

+
tn−1

λΓ(q)

m
∑

i=1

γi

Γ(βi)

[

∫ ηi

0

∫ s

0

(ηi − s)βi−1(s− u)q−1vn(u)duds

−
∫ ζi

0

∫ s

0

(ζi − s)βi−1(s− u)q−1vn(u)duds

]

.

As F has compact values, we pass onto a subsequence to obtain that vn converges
to v in L1([0, T ],R). Thus, v ∈ SF,x and for each t ∈ [0, T ],

un(t) → u(t) =
1

Γ(q)

∫ t

0

(t− s)q−1v(s)ds− tn−1

λΓ(q)

∫ T

0

(T − s)q−1v(s)ds

+
tn−1

λΓ(q)

m
∑

i=1

γi

Γ(βi)

[

∫ ηi

0

∫ s

0

(ηi − s)βi−1(s− u)q−1v(u)duds

−
∫ ζi

0

∫ s

0

(ζi − s)βi−1(s− u)q−1v(u)duds

]

.

Hence, u ∈ N(x).
Step 2. Next we show that there exists γ < 1 such that

Hd(N(x), N(x̄)) ≤ γ‖x− x̄‖ for each x, x̄ ∈ C([0, T ],R).

Let x, x̄ ∈ C([0, T ],R) and h1 ∈ N(x). Then there exists v1(t) ∈ F (t, x(t)) such that,
for each t ∈ [0, T ],

h1(t) =
1

Γ(q)

∫ t

0

(t− s)q−1v1(s)ds−
tn−1

λΓ(q)

∫ T

0

(T − s)q−1v1(s)ds

+
tn−1

λΓ(q)

m
∑

i=1

γi

Γ(βi)

[

∫ ηi

0

∫ s

0

(ηi − s)βi−1(s− u)q−1v1(u)duds

−
∫ ζi

0

∫ s

0

(ζi − s)βi−1(s− u)q−1v1(u)duds

]

.
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By (H6), we have

Hd(F (t, x), F (t, x̄)) ≤ m(t)|x(t) − x̄(t)|.

So, there exists w(t) ∈ F (t, x̄(t)) such that

|v1(t) − w(t)| ≤ m(t)|x(t) − x̄(t)|, t ∈ [0, T ].

Define W : [0, T ] → P(R) by

W(t) = {w ∈ R : |v1(t) − w| ≤ m(t)|x(t) − x̄(t)|}.

Since the multivalued operator W(t)∩F (t, x̄(t)) is measurable (Proposition III.4 [11]),
there exists a function v2(t) which is a measurable selection for W. So v2(t) ∈ F (t, x̄(t))
and for each t ∈ [0, T ], we have |v1(t) − v2(t)| ≤ m(t)|x(t) − x̄(t)|.

For each t ∈ [0, T ], let us define

h2(t) =
1

Γ(q)

∫ t

0

(t− s)q−1v2(s)ds−
tn−1

λΓ(q)

∫ T

0

(T − s)q−1v2(s)ds

+
tn−1

λΓ(q)

m
∑

i=1

γi

Γ(βi)

[

∫ ηi

0

∫ s

0

(ηi − s)βi−1(s− u)q−1v2(u)duds

−
∫ ζi

0

∫ s

0

(ζi − s)βi−1(s− u)q−1v2(u)duds

]

.

Thus,

|h1(t) − h2(t)|

≤ 1

Γ(q)

∫ t

0

(t− s)q−1|v1(s) − v2(s)|ds−
tn−1

λΓ(q)

∫ T

0

(T − s)q−1|v1(s) − v2(s)|ds

+
tn−1

λΓ(q)

m
∑

i=1

γi

Γ(βi)

[

∫ ηi

0

∫ s

0

(ηi − s)βi−1(s− u)q−1|v1(u) − v2(u)|duds

−
∫ ζi

0

∫ s

0

(ζi − s)βi−1(s− u)q−1|v1(u) − v2(u)|duds
]

.

Hence,

‖h1 − h2‖ ≤
{

T q

Γ(q + 1)
+

T q+n−1

|λ|Γ(q + 1)
+
T n−1

|λ|
m
∑

i=1

γi
ηq+βi

i − ζq+βi

i

Γ(q + βi + 1

}

‖m‖L1‖x− x‖.
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Analogously, interchanging the roles of x and x, we obtain

Hd(N(x), N(x̄)) ≤ γ‖x− x̄‖

≤
{

T q

Γ(q + 1)
+

T q+n−1

|λ|Γ(q + 1)
+
T n−1

|λ|
m
∑

i=1

γi
ηq+βi

i − ζq+βi

i

Γ(q + βi + 1

}

|m‖L1‖x− x‖.

Since N is a contraction, it follows by Lemma 2.14 that N has a fixed point x which
is a solution of (1.1). This completes the proof. 2
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