GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOUR FOR A DEGENERATE DIFFUSIVE SEIR MODEL

TARIK ALIZIANE AND MICHEL LANGLAIS

Abstract

In this paper we analyze the global existence and asymptotic behavior of a reaction diffusion system with degenerate diffusion arising in modeling the spatial spread of an epidemic disease.

1. Introduction

In this paper we shall be concerned with a degenerate parabolic system of the form

$$
\begin{cases}\partial_{t} U_{1}-\Delta U_{1}^{m_{1}}=-\gamma\left(U_{1}, U_{2}, U_{3}, U_{4}\right)-\nu U_{1} & =f_{1}\left(U_{1}, U_{2}, U_{3}, U_{4}\right), \tag{1.1}\\ \partial_{t} U_{2}-\Delta U_{2}^{m_{2}}=\gamma\left(U_{1}, U_{2}, U_{3}, U_{4}\right)-(\lambda+\mu) U_{2} & =f_{2}\left(U_{1}, U_{2}, U_{3}, U_{4}\right), \\ \partial_{t} U_{3}-\Delta U_{3}^{m_{3}}=\lambda \pi U_{2}-(\alpha+m+\mu) U_{3} & =f_{3}\left(U_{1}, U_{2}, U_{3}, U_{4}\right), \\ \partial_{t} U_{4}-\Delta U_{4}^{m_{4}}=(1-\pi) \lambda U_{2}+\alpha U_{3}+\nu U_{1} & =f_{4}\left(U_{1}, U_{2}, U_{3}, U_{4}\right) .\end{cases}
$$

in $\Omega \times(0,+\infty)$, subject to the initial conditions

$$
\begin{equation*}
U_{i}(x, 0)=U_{i, 0}(x) \geq 0, \quad x \in \Omega ; \quad i=1 . .4 \tag{1.2}
\end{equation*}
$$

and to the Neumann boundary conditions

$$
\begin{equation*}
\frac{\partial U_{i}^{m_{i}}}{\partial \eta}(x, t)=0, \quad x \in \partial \Omega, \quad t>0, \quad i=1 . .4 \tag{1.3}
\end{equation*}
$$

Herein, Ω is an open, bounded and connected domain in $\mathbb{R}^{N}, N \geq 1$, with a smooth boundary $\partial \Omega ; \Delta$ is the Laplace operator in \mathbb{R}^{N}. Powers m_{i} verify $m_{i}>1, i=1 . .4$.

In the spatially homogeneous case and for $\nu=\mu=\alpha=m=0$ and $\pi=1$ this problem reduces to one of the models of propagation of an epidemic disease devised in Kermack and McKendricks [21], namely

$$
\left\{\begin{aligned}
S^{\prime} & =-\gamma S I \\
I^{\prime} & =+\gamma S I-\lambda I \\
R^{\prime} & =+\lambda I
\end{aligned}\right.
$$

In that setting it is known, loc. cit., that $I(t) \rightarrow 0$ as $t \rightarrow+\infty$, while the large time behavior of $S(t)$ and $R(t)$ depends on the initial state $\left(S_{0}, I_{0}, R_{0}\right)$; note that for $t>0, S(t)+I(t)+$ $R(t)=S_{0}+I_{0}+R_{0}$.

This basic model served as a starting point for many further developments, both from epidemiological or mathematical point of vue : see the books of Busenberg and Cooke [7] or Capasso [8] and their references. These lead to so-called $(S-E-I-R)$ models : S is the distribution of susceptible individuals in a given population, $\gamma(S, E, I, R)$ is the incidence

[^0]term or number of susceptible individuals infected by contact with an infective individual I per time unit and becoming exposed E, while R is the density of removed or resistant (immune) individuals. Then λ (resp. α) is the inverse of the duration of the exposed stage (resp. infective stage) or rate at which exposed individuals enter the infective class (resp. infective individuals who do not die from the disease recover), m is the death-rate induced by the disease. The last two parameters are control parameters : first ν is a vaccination rate; next, for a population of animals, as it is considered here as in Anderson et al [5], Fromont et al [17], Courchamp et al [10] or Langlais and Suppo [23], μ is an elimination rate of exposed and infective individuals. Lastly, as it is suggested by the FeLV, a retrovirus of domestic cats (Felis catus) see [17], one also introduces a parameter π measuring the proportion of exposed individuals which actually develop the disease after the exposed stage, the remaining proportion $1-\pi$ becoming resistant.

The nonlinear incidence term γ takes various forms as it can be found from the literature; at least two of them are widely used in applications

$$
\gamma(S, E, I, R)= \begin{cases}\gamma S I, & {[5,8,21]} \\ \gamma \frac{S I}{S+E+I+R}, & {[10,17,23]}\end{cases}
$$

mass action in $[7,8]$, or pseudo-mass action in [20, 12] .
proportionate mixing in [7]
or true mass action in $[20,12]$.

We refer to De Jong et al, [20] and Diekmann et al [12] for a discussion supporting the second one in populations of varying size and Fromont et al [18] for a specific discussion in the case of a cat population. See Capasso and Serio [9] and Capasso [8] for more general incidence terms. Note that no demographical effect is considered in our model.

A mathematical analysis of the model of Kermack and McKendricks for spatially structured populations with linear diffusion, i.e. $m_{i}=1, i=1 . .4$, is performed in Webb [27]. Nonlinear but nondegenerate diffusion terms are introduced in Fitzgibbon et al [16]. Global existence and large time behavior results are derived therein. Homogeneous Neumann boundary conditions correspond to isolated populations.

A comprehensive analysis of generic $(S-E-I-R)$ models with linear diffusion is initiated in Fitzgibbon and Langlais [14] and Fitzgibbon et al [15]. These models include a logistic effect on the demography, yielding $L^{1}(\Omega)$ a priori estimates on solutions independent of the initial data for large time; this allows to use a bootstrapping argument to show global existence and exhibit a global attractor in $(C(\bar{\Omega}))^{4}$.

For degenerate reaction-diffusion equations, a similar approach is followed in Le Dung [13]. In our case, $L^{1}(\Omega)$ a priori estimates can be established for nonegative solutions upon integrating over $\Omega \times(0, t)$

$$
\sum_{i=1}^{4} \int_{\Omega} U_{i}(x, t) d x \leq \sum_{i=1}^{4} \int_{\Omega} U_{i, 0}(x) d x \quad \text { for all } t>0
$$

EJQTDE, 2005 No. 2, p. 2
but they cannot be found to be independent of the initial data. Moreover, generally speaking, the large time behavior of solutions depends on these initial datas, as it can be already seen for spatially homogeneous problems see $\S \S 5.3$. This can also be checked on the disease free model: assuming $U_{i, 0}(x) \equiv 0$ in $\Omega i=2 . .4$, the uniqueness result given in Theorem 1 implies $U_{i}(x, t) \equiv 0$ in $\Omega \times(0,+\infty) \quad i=2 . .4$. Then, it should be clear that $\gamma\left(U_{1}, 0,0,0\right)=0$ for any reasonable incidence term so that the equation for U_{1} reads

$$
\begin{equation*}
\partial_{t} U_{1}-\Delta U_{1}^{m_{1}}+\nu U_{1}=0 \text { in } \Omega \times(0,+\infty) ; \tag{1.4}
\end{equation*}
$$

this is the so-called porous medium equation. Now U_{1} verifies homogeneous Neumann boundary conditions and it is well-known (see Alikakos [1]) that as $t \longrightarrow+\infty$

$$
\begin{cases}U_{1}(., t) \longrightarrow 0 & \text { if } \nu>0 \\ U_{1}(., t) \longrightarrow \frac{1}{m e s(\Omega)} \int_{\Omega} U_{1,0}(x) d x & \text { if } \nu=0\end{cases}
$$

The case of mass action incidence was studied by Aliziane and Moulay [4] and they established the long time behavior of the solution of the SIS model, Aliziane and Langlais [3] study the case of models include a logistic effect on the demography and they established global existence result of the solution and existence of periodic solution. We also obtain the existence of the global attractor. Finally Hadjadj et al [19] study the case where the source term depends on gradient of solution, they study existence of globally bounded weak solutions or blow-up, depending on the relations between the parameters that appear in the problem.

2. Main results

2.1. Basic assumptions and notations. Herein, Ω is an open, bounded and connected domain of the N-dimensional Euclidian space $\mathbb{R}^{N}, N \geq 1$, with a smooth boundary $\partial \Omega$, a ($N-1$)-dimensional manifold so that locally Ω lies on one side of $\partial \Omega ; x=\left(x_{1}, \ldots, x_{N}\right)$ is the generic element of \mathbb{R}^{N}. Next we shall denote the gradient with respect to x by ∇ and the Laplace operator in \mathbb{R}^{N} by Δ.
Then we set $\Omega \times(0, T)=Q_{T}$ and for $0 \leq \tau<T, \Omega \times(\tau, T)=Q_{\tau, T}$. The norm in $L^{p}(\Omega)$ is $\left\|\|_{p, \Omega}\right.$ and the norm in $L^{p}\left(Q_{\tau, T}\right)$ is $\| \|_{p, Q_{\tau, T}}$ for $1 \leq p \leq+\infty$.

Next we shall assume throughout this paper
(H0) Powers m_{i} verify $m_{i}>1, i=1 . .4$.
(H1) $\mu, \alpha, \nu, m, \lambda, \pi$ are nonnegative constants, $\lambda+\mu>0, \alpha+m+\mu>0$ and $0 \leq \pi \leq 1$.
(H2) $U_{i, 0} \in C(\bar{\Omega}), \quad U_{i, 0}(x) \geq 0, x \in \Omega, \quad i=1 . .4$.
(H3) $\gamma: \mathbb{R}_{+}^{4} \longrightarrow \mathbb{R}_{+}$is a locally lipschitz continuous function with polynomial growth and $\gamma\left(0, U_{2}, U_{3}, U_{4}\right)=0$ on \mathbb{R}_{+}^{3}.
(H4) There exists nonnegative constants C_{1}, C_{2} and r such that $\gamma\left(U_{1}, U_{2}, U_{3}, U_{4}\right) \leq C_{1}+$ $C_{2} U_{1}^{r}$ on \mathbb{R}_{+}^{4}.
Remark 1. In the limiting case $\lambda+\mu=0$ the equations for U_{3} and U_{4} do not depend on U_{2}, the equation for U_{3} being a porous medium type equation as in (1.4). This condition also implies $\lambda=0$ which is not relevant if one goes back to our motivating problem.

EJQTDE, 2005 No. 2, p. 3

In the limiting case $\alpha+m+\mu=0$ one could not get $L^{\infty}\left(Q_{0, \infty}\right)$ bounds for U_{3}, but one still has global existence.

The assumption $\gamma\left(0, U_{2}, U_{3}, U_{4}\right)=0$ is required to make sure that the nonnegative orthant \mathbb{R}_{+}^{4} is forward invariant by (1.1); this is a natural assumption for our motivating problem : no new exposed individuals when there is no susceptible ones.
(H 4) removes mass action incidence terms; in that case one can also get global existence results, but no $L^{\infty}\left(Q_{0, \infty}\right)$ bounds for U_{2} and U_{3}.
2.2. Main results. System (1.1) is degenerate : when $U_{i}=0$ the equation for U_{i} degenerates into first order equation. Hence classical solutions cannot be expected for Problem (1.1) - (1.3). A suitable notion of generalized solutions is required : we adopt the notion of weak solution introduced in Oleinik et al [25].

Definition 1. A quadruple $\left(U_{1}, U_{2}, U_{3}, U_{4}\right)$ of nonnegative and continuous functions U_{i} : $\Omega \times[0,+\infty) \rightarrow[0,+\infty), i=1 . .4$, is a weak solution of Problem (1.1)-(1.3) in $Q_{T}, T>0$ if for each $i=1 . .4$ and for each $\varphi_{i} \in C^{1}\left(\bar{Q}_{T}\right)$, such that $\frac{\partial \varphi_{i}}{\partial \eta}=0$ on $\partial \Omega \times(0, T)$.
(i) $\nabla U^{m_{i}}$ exists in the sense of distribution and $\nabla U_{i}^{m_{i}} \in L^{2}\left(Q_{T}\right)$;
(ii) U_{i} verifies the identity

$$
\begin{align*}
& \int_{\Omega} U_{i}(x, T) \varphi_{i}(x, T) d x+\int_{Q_{T}} \nabla U_{i}^{m_{i}} \nabla \varphi_{i}(x, t) d x d t \tag{2.1}\\
& =\int_{Q_{T}}\left(\partial_{t} \varphi_{i} U_{i}-f_{i} \varphi_{i}\right)(x, t) d x d t+\int_{\Omega} U_{i, 0}(x) \varphi_{i}(x, 0) d x
\end{align*}
$$

We are now ready to state our first result.

Theorem 1. For each quadruple of continuous nonnegative initial functions ($U_{1,0}, U_{2,0}, U_{3,0}, U_{4,0}$) there exists a unique weak solution $\left(U_{1}, U_{2}, U_{3}, U_{4}\right)$ of Problem (1.1) - (1.3) on Q_{∞}; furthermore
(i) For all $i=1 . .3, U_{i} \in L^{1} \cap L^{\infty}\left(Q_{\infty}\right)$ and $\nabla U_{i}^{m_{i}}, \partial_{t} U_{i}^{m_{i}} \in L^{2}\left(Q_{\tau, \infty}\right), \tau>0$;
(ii) $U_{4} \in L^{1} \cap L^{\infty}\left(Q_{T}\right)$ and $\nabla U_{4}^{m_{4}}, \partial_{t} U_{4}^{m_{4}} \in L^{2}\left(Q_{\tau, T}\right), \quad \tau>0$.

The proof is found in Section $\S 4$.
Now we look at the large time behavior of weak solutions.

Theorem 2. There exist nonnegative constants U_{1}^{*}, U_{4}^{*} such that

$$
\begin{aligned}
& U_{2}(., t), U_{3}(., t) \longrightarrow 0, U_{1}(., t) \longrightarrow U_{1}^{*} \text { in } C(\bar{\Omega}) \text { as } t \longrightarrow+\infty \\
& \quad \text { and } \overline{U_{4}}(t) \longrightarrow \\
& U_{4}^{*} \text { in } L^{p}(\Omega) \text { forall } p \geq 1 \text { as } t \longrightarrow+\infty ;
\end{aligned}
$$

moreover, if $\nu>0$ then $U_{1}^{*}=0$.

The proof is found in Section $\S 5$.

Remark 2. In the non degenerate case $m_{4}=1$ one has that $U_{4}(., t) \longrightarrow U_{4}^{*}$ in $C(\bar{\Omega})$. More generally, this still holds provided that U_{4} lies in $L^{\infty}\left(Q_{\infty}\right)$, the proof being similar to the one for U_{1} when $\nu=0$, see subsection $\S \S 5.2$.

3. Auxiliary problem and a priori estimates

In this section we consider an auxiliary problem depending on a small parameter ε, with $0<\varepsilon \leq 1$. Namely let us introduce in $\Omega \times(0,+\infty)$ the quasilinear nondegenerate initial and boundary value problem

$$
\begin{align*}
& \left\{\begin{array}{l}
\partial_{t} U_{1}-\Delta d_{1}\left(U_{1}\right)=-\gamma\left(\left(U_{1}-\varepsilon\right)^{+}, U_{2}, U_{3}, U_{4}\right)-\nu\left(U_{1}-\varepsilon\right), \\
\partial_{t} U_{2}-\Delta d_{2}\left(U_{2}\right)=\gamma\left(\left(U_{1}-\varepsilon\right)^{+}, U_{2}, U_{3}, U_{4}\right)-(\lambda+\mu)\left(U_{2}-\varepsilon\right), \\
\partial_{t} U_{3}-\Delta d_{3}\left(U_{3}\right)=\lambda \pi\left(U_{2}-\varepsilon\right)-(\alpha+m+\mu)\left(U_{3}-\varepsilon\right), \\
\partial_{t} U_{4}-\Delta d_{3}\left(U_{4}\right)=(1-\pi) \lambda\left(U_{2}-\varepsilon\right)+\alpha\left(U_{3}-\varepsilon\right)+\nu\left(U_{1}-\varepsilon\right) .
\end{array}\right. \tag{3.1}\\
& \left\{\begin{array}{l}
U_{i, \varepsilon}(x, 0)=U_{i, 0, \varepsilon}(x) \geq 0, \quad x \in \Omega ; \\
\frac{\partial d_{i}\left(U_{i, \varepsilon}\right)}{\partial \eta}(x, t)=0, \quad x \in \partial \Omega, \quad t>0, \quad i=1 . .4 .
\end{array}\right.
\end{align*}
$$

Herein $(r)^{+}$is the nonnegative part of the real number r; for each $i=1 . .4 d_{i}: \mathbb{R} \longrightarrow\left(\frac{\varepsilon}{2},+\infty\right)$ is a smooth and increasing functions with

$$
\begin{equation*}
d_{i}(u)=u^{m_{i}}, \quad \varepsilon \leq u ; \tag{3.3}
\end{equation*}
$$

$\left(U_{i, 0, \varepsilon}\right)_{i=1 . .4}$ is a quadruple of smooth functions over $\bar{\Omega}$ such that

$$
\left\{\begin{array}{l}
U_{i, 0, \varepsilon}(x) \geq \varepsilon, \quad x \in \Omega, \quad 0<\varepsilon \leq 1 ; \tag{3.4}\\
\int_{\Omega}\left(U_{i, 0, \varepsilon}(x)-\varepsilon\right) d x=\int_{\Omega} U_{i, 0}(x) d x \\
U_{i, 0, \varepsilon} \longrightarrow U_{i, 0} \text { in } C(\bar{\Omega}), \quad \text { as } \varepsilon \longrightarrow 0 ;
\end{array} \quad i=1 . .4 ;\right.
$$

we refer to $[2,19]$ for a construction of such a set of initial data. From standard results, i.e. [22] or [26], local existence and uniqueness of a quadruple ($U_{1, \varepsilon}, U_{2, \varepsilon}, U_{3, \varepsilon}, U_{4, \varepsilon}$), a classical solution of (3.1) - (3.2) in some maximal interval $\left[0, T_{\max , \varepsilon}\right)$ is granted.

Looking at the equation for $U_{i, \varepsilon}$ it is checked that ε is a subsolution, thus $0<\varepsilon \leq$ $U_{i, \varepsilon}(x, t), x \in \Omega, 0<t<T_{m a x, \varepsilon}$. Next, from the maximum principle and the nonnegativity of γ, ν and $U_{1, \varepsilon}-\varepsilon$, it follows $U_{1, \varepsilon}(x, t) \leq\left\|U_{1, \varepsilon, 0}\right\|_{\infty, \Omega}, \quad x \in \Omega, \quad 0<t<T_{\text {max }, \varepsilon}$. As a consequence one has

$$
\left\{\begin{array}{l}
0<\varepsilon \leq U_{1, \varepsilon}(x, t) \leq\left\|U_{1, \varepsilon, 0}\right\|_{\infty, \Omega}, \quad x \in \Omega, \quad t<T_{\max , \varepsilon} \tag{3.5}\\
0<\varepsilon \leq U_{i, \varepsilon}(x, t), \quad x \in \Omega, \quad t<T_{\max , \varepsilon}, \quad i=2 . .4
\end{array}\right.
$$

Then one can apply results in [16] to show global existence, i.e. $T_{\max , \varepsilon}=+\infty$, of a classical solution for (3.1) - (3.2). Using (3.3) and (3.5) this yields global existence for the initial and EJQTDE, 2005 No. 2, p. 5
boundary value problem

$$
\left\{\begin{array}{l}
\partial_{t} U_{1}-\Delta U_{1}^{m_{1}}=-\gamma\left(U_{1}-\varepsilon, U_{2}, U_{3}, U_{4}\right)-\nu\left(U_{1}-\varepsilon\right), \tag{3.6}\\
\partial_{t} U_{2}-\Delta U_{2}^{m_{2}}=\gamma\left(U_{1}-\varepsilon, U_{2}, U_{3}, U_{4}\right)-(\lambda+\mu)\left(U_{2}-\varepsilon\right), \\
\partial_{t} U_{3}-\Delta U_{3}^{m_{3}}=\lambda \pi\left(U_{2}-\varepsilon\right)-(\alpha+m+\mu)\left(U_{3}-\varepsilon\right), \\
\partial_{t} U_{4}-\Delta U_{4}^{m_{4}}=(1-\pi) \lambda\left(U_{2}-\varepsilon\right)+\alpha\left(U_{3}-\varepsilon\right)+\nu\left(U_{1}-\varepsilon\right) .
\end{array}\right.
$$

in $\Omega \times(0,+\infty)$, together with (3.2).
We derive a priori estimates. First, using the L^{1} property of $U_{1,0, \varepsilon}$ in (3.4) and the nonnegativity of $U_{1, \varepsilon}-\varepsilon$, a straightforward integration of the equation for $U_{1, \varepsilon}$ over $\Omega \times$ $(0,+\infty)$ gives:

$$
\begin{equation*}
\int_{Q_{T}}\left(\gamma\left(U_{1, \varepsilon}-\varepsilon, U_{2, \varepsilon}, U_{3, \varepsilon}, U_{4, \varepsilon}\right)+\nu\left(U_{1, \varepsilon}-\varepsilon\right)\right)(x, t) d x d t \leq \int_{\Omega} U_{1,0}(x) d x \tag{3.7}
\end{equation*}
$$

In what follows T is a positive number, $M_{1}, . ., M_{n}$ are positive constants independent of T and $\varepsilon, 0<\varepsilon \leq 1$, and $F_{1}, . ., F_{n}$ are non decreasing functions of T independent of $\varepsilon, 0<\varepsilon \leq 1$.

Lemma 1. There exists a constant M_{1} and nondecreasing function F_{1}, independent of $\varepsilon, 0<$ $\varepsilon \leq 1$ such that

$$
\begin{align*}
& 0<\varepsilon \leq U_{i, \varepsilon}(x, t) \leq M_{1}, \quad x \in \Omega, t>0, i=1 . .3 \tag{3.8}\\
& \varepsilon \leq U_{4, \varepsilon}(x, t) \leq F_{1}(T), \quad x \in \Omega, \quad 0<t<T \tag{3.9}
\end{align*}
$$

Proof. The estimate for $U_{1, \varepsilon}$ follows from (3.5) and the choice of $\left(U_{1,0, \varepsilon}\right)_{\varepsilon>0}$.
Multiplying the equation for $U_{2, \varepsilon}$ by $p\left(U_{2, \varepsilon}-\varepsilon\right)^{p-1}, p \geq 1$, and integrating over Ω one has

$$
\begin{aligned}
& \frac{d}{d t}\left\|U_{2, \varepsilon}(., t)-\varepsilon\right\|_{p, \Omega}^{p}+p(\lambda+\mu)\left\|U_{2, \varepsilon}(., t)-\varepsilon\right\|_{p, \Omega}^{p} \\
& \quad \leq p \int_{\Omega} \gamma\left(U_{1, \varepsilon}-\varepsilon, U_{2, \varepsilon}, U_{3, \varepsilon}, U_{4, \varepsilon}\right)\left(U_{2, \varepsilon}-\varepsilon\right)^{p-1}(x, t) d x
\end{aligned}
$$

keeping in mind $\lambda+\mu>0$ from (H1), one gets from Young's inequality

$$
\begin{equation*}
\frac{d}{d t}\left\|U_{2, \varepsilon}(., t)-\varepsilon\right\|_{p, \Omega}^{p} \leq\left(\frac{1}{\lambda+\mu}\right)^{p-1} \int_{\Omega}\left[\gamma\left(U_{1, \varepsilon}-\varepsilon, U_{2, \varepsilon}, U_{3, \varepsilon}, U_{4, \varepsilon}\right)\right]^{p}(x, t) d x \tag{3.10}
\end{equation*}
$$

A further integration over $(0, T)$ leads to

$$
\left\|U_{2, \varepsilon}(., T)-\varepsilon\right\|_{p, \Omega}^{p} \leq\left\|U_{2,0, \varepsilon}-\varepsilon\right\|_{p, \Omega}^{p}+\left(\frac{1}{\lambda+\mu}\right)^{p-1} \int_{Q_{T}}\left[\gamma\left(U_{1, \varepsilon}-\varepsilon, U_{2, \varepsilon}, U_{3, \varepsilon}, U_{4, \varepsilon}\right)\right]^{p}(x, t) d x d t
$$

Using the already known L^{∞} estimate for $U_{1, \varepsilon}$, assumption (H4) and inequality (3.7) one arrives at: for each $T>0$

$$
\begin{equation*}
\left\|U_{2, \varepsilon}(., T)-\varepsilon\right\|_{p, \Omega}^{p} \leq\left\|U_{2,0, \varepsilon}-\varepsilon\right\|_{p, \Omega}^{p}+\left(\frac{1}{\lambda+\mu}\right)^{p-1}\left(C_{1}+C_{2} M_{1}^{r}\right)^{p-1}\left\|U_{1,0}\right\|_{1, \Omega} \tag{3.11}
\end{equation*}
$$

EJQTDE, 2005 No. 2, p. 6

To conclude, one observes that $U_{2, \varepsilon}-\varepsilon$ being continuous on $\bar{\Omega} \times[0,+\infty)$ it follows

$$
\lim _{p \rightarrow+\infty}\left\|U_{2, \varepsilon}(., t)-\varepsilon\right\|_{p, \Omega}=\left\|U_{2, \varepsilon}(., t)-\varepsilon\right\|_{\infty, \Omega} .
$$

Hence for some constant M_{2} independent of $\varepsilon, 0<\varepsilon \leq 1$, one gets

$$
\begin{equation*}
0<\varepsilon \leq U_{2, \varepsilon}(x, t) \leq M_{2}, \quad x \in \Omega, \quad t>0 . \tag{3.12}
\end{equation*}
$$

Now, integrating the equation for $U_{2, \varepsilon}$ over $\Omega \times[0, T)$, using the L^{1} property of $U_{2,0, \varepsilon}$ in (3.4), the nonnegativity of $U_{2, \varepsilon}-\varepsilon$ and (3.7) one has for $0<\varepsilon \leq 1$

$$
\begin{equation*}
(\lambda+\mu) \int_{Q_{T}}\left(U_{2, \varepsilon}-\varepsilon\right)(x, t) d x d t \leq \int_{\Omega}\left[U_{1,0, \varepsilon}(x)+U_{2,0, \varepsilon}(x)\right] d x . \tag{3.13}
\end{equation*}
$$

The estimate for $U_{3, \varepsilon}$ follows from computations similar to the ones for $U_{2, \varepsilon}$ above, carried over the equation for $U_{3, \varepsilon}$ and getting help from (3.13) and from the positivity of $\alpha+m+\mu$.

Along the same lines, from the equation for $U_{3, \varepsilon}$ one gets for $0<\varepsilon \leq 1$

$$
\begin{equation*}
(\alpha+m+\mu) \int_{Q_{T}}\left(U_{3, \varepsilon}-\varepsilon\right) d x d t \leq \int_{\Omega}\left[U_{1,0, \varepsilon}(x)+U_{2,0, \varepsilon}(x)+U_{3,0, \varepsilon}(x)\right] d x \tag{3.14}
\end{equation*}
$$

Hence, going back to the equation for $U_{4, \varepsilon}$ one can derive the a priori estimate upon multiplying it by $p\left(U_{2, \varepsilon}-\varepsilon\right)^{p-1}, p \geq 1$ and using (3.13) - (3.14).

Lemma 2. There exist constants $M_{i, 3}, i=1 . .3$ and a nondecreasing function F_{2}, independent of $\varepsilon, 0<\varepsilon \leq 1$ such that

$$
\begin{gather*}
\int_{Q_{T}}\left\|\nabla U_{i, \varepsilon}^{m_{i}}\right\|^{2}(x, t) d x d t \leq M_{i, 3}, \quad T>0, \quad i=1 . .3 \tag{3.15}\\
\int_{Q_{T}}\left\|\nabla U_{4, \varepsilon}^{m_{i}}\right\|^{2}(x, t) d x d t \leq F_{2}(T), \quad T>0 \tag{3.16}
\end{gather*}
$$

Proof. The estimate for $\nabla U_{1, \varepsilon}^{m_{1}}$ is obtained upon multiplying the equation for $U_{1, \varepsilon}$ by $U_{1, \varepsilon}^{m_{1}}$, integrating over $\Omega \times(0, T)$ and using the nonnegativity of γ and $U_{1, \varepsilon}-\varepsilon$. One finds

$$
M_{1,3}=\frac{1}{m_{1}+1} \int_{\Omega} U_{1, \varepsilon}^{m_{1}+1}(x, 0) d x
$$

Proceeding along the same lines for $U_{2, \varepsilon}$ one gets

$$
\begin{gathered}
\frac{1}{m_{2}+1} \int_{\Omega} U_{2, \varepsilon}^{m_{2}+1}(x, T) d x+\int_{Q_{T}}\left\|\nabla U_{2, \varepsilon}^{m_{2}}(x, t)\right\|^{2} d x d t \leq \\
\frac{1}{m_{2}+1} \int_{\Omega} U_{2, \varepsilon}^{m_{2}+1}(x, 0) d x+\int_{Q_{T}} \gamma\left(U_{1, \varepsilon}-\varepsilon, U_{2, \varepsilon}, U_{3, \varepsilon}, U_{4, \varepsilon}\right)\left[U_{2, \varepsilon}\right]^{m_{2}}(x, t) d x d t
\end{gathered}
$$

Using the properties of $U_{2,0, \varepsilon}$, the uniform estimate for $U_{2, \varepsilon}$ in Lemma 1 and the L^{1} estimate for γ in (3.7) we obtain

$$
\int_{Q_{T}}\left\|\nabla U_{2, \varepsilon}^{m_{2}}(x, t)\right\|^{2} d x d t \leq M_{2,3}, \quad T>0 .
$$

A similar computation supplies the estimate for $U_{3, \varepsilon}$. The estimate for $U_{4, \varepsilon}$ then follows.

Lemma 3. For all $t>0$

$$
\begin{align*}
& \left\|\nabla U_{1, \varepsilon}^{m_{1}}(., t)\right\|_{2, \Omega}^{2} \leq \frac{2}{t\left(m_{1}+1\right)} \int_{\Omega} U_{1,0, \varepsilon}^{m_{1}+1}(x) d x \\
& \quad+m_{1}^{2} \nu^{2}\left\|U_{1,0}\right\|_{\infty, \Omega}^{m_{1}-1} \int_{Q_{\frac{t}{2}, t}}\left(U_{1, \varepsilon}-\varepsilon\right)^{2}(x, s) d x d s \tag{3.17}\\
& \quad+m_{1}^{2}\left\|U_{1,0}\right\|_{\infty, \Omega}^{m-1}\left(C_{1}+C_{2}\left\|U_{1,0}\right\|_{\infty, \Omega}^{r}\right) \int_{Q_{\frac{t}{2}, t}} \gamma\left(U_{1, \varepsilon}-\varepsilon, U_{2, \varepsilon}, U_{3, \varepsilon}, U_{4, \varepsilon}\right)(x, s) d x d s
\end{align*}
$$

Proof. Let us multiply the equation for $U_{1, \varepsilon}$ by $\partial_{t} U_{1, \varepsilon}^{m_{1}}$ and integrate over $\Omega \times(\tau, t), \quad \frac{t}{2} \leq \tau \leq t$; then one finds

$$
\begin{align*}
& \left(\frac{2}{m_{1}+1}\right)^{2} \int_{Q_{\tau, t}}\left(\partial_{t} U_{1, \varepsilon}^{\frac{m_{1}+1}{2}}\right)^{2}(x, s) d x d s+\left\|\nabla U_{1, \varepsilon}^{m_{1}}(., t)\right\|_{2, \Omega}^{2} \tag{3.18}\\
& \quad \leq \int_{Q_{\tau, t}}\left(-\gamma\left(U_{1, \varepsilon}-\varepsilon, U_{2, \varepsilon}, U_{3, \varepsilon}, U_{4, \varepsilon}\right)-\nu\left(U_{1, \varepsilon}-\varepsilon\right)\right) \partial_{t} U_{1, \varepsilon}^{m_{1}}(x, s) d x d s+\left\|\nabla U_{1, \varepsilon}^{m_{1}}(., \tau)\right\|_{2, \Omega}^{2} .
\end{align*}
$$

Next, for any suitably smooth and nonnegative function U and any $m>1$ one gets $\partial_{t} U^{m}=\frac{2 m}{m+1} U^{\frac{m-1}{2}} \partial_{t} U^{\frac{m+1}{2}}$ so that

$$
\begin{align*}
\int_{Q_{T, t}} & \left(-\gamma\left(U_{1, \varepsilon}-\varepsilon, U_{2, \varepsilon}, U_{3, \varepsilon}, U_{4, \varepsilon}\right)-\nu\left(U_{1, \varepsilon}-\varepsilon\right)\right) \partial_{t} U_{1, \varepsilon}^{m_{1}}(x, s) d x d s \\
\leq & \frac{2}{\left(m_{1}+1\right)^{2}} \int_{Q_{\frac{t}{2}, t}}\left(\partial_{t} U_{1, \varepsilon}^{\left(\frac{m_{1}+1}{2}\right)}\right)^{2}(x, s) d x d s \\
& +m_{1}^{2} \nu^{2} \int_{Q_{\frac{t}{2}, t}}\left[\left(U_{1, \varepsilon}-\varepsilon\right) U_{1, \varepsilon}^{\frac{m-1}{2}}\right]^{2}(x, s) d x d s \tag{3.19}\\
& +m_{1}^{2} \int_{Q_{\frac{t}{2}, t}}\left[\gamma\left(U_{1, \varepsilon}-\varepsilon, U_{2, \varepsilon}, U_{3, \varepsilon}, U_{4, \varepsilon}\right) U_{1, e p s i l o o n}^{\frac{m-1}{2}}\right]^{2}(x, s) d x d s .
\end{align*}
$$

The last term on the right hand side of this inequality is bounded from above by

$$
m_{1}^{2}\left\|U_{1, \varepsilon}\right\|_{\infty, Q_{\infty}}^{m-1}\left\|\gamma\left(U_{1, \varepsilon}-\varepsilon, U_{2, \varepsilon}, U_{3, \varepsilon}, U_{4, \varepsilon}\right)\right\|_{\infty, Q_{\infty}} \int_{Q_{\frac{t}{2}, t}} \gamma\left(U_{1, \varepsilon}-\varepsilon, U_{2, \varepsilon}, U_{3, \varepsilon}, U_{4, \varepsilon}\right)(x, s) d x d s
$$

putting this estimate in (3.18) one obtains

$$
\begin{align*}
& \left\|\nabla U_{1, \varepsilon}^{m_{1}}(., t)\right\|_{2, \Omega}^{2} \leq\left\|\nabla U_{1, \varepsilon}^{m_{1}}(., \tau)\right\|_{2, \Omega}^{2}+m_{1}^{2} \nu^{2}\left\|U_{1,0}\right\|_{\infty, \Omega}^{m_{1}-1} \int_{Q_{\frac{t}{2}, t}}\left(U_{1, \varepsilon}-\varepsilon\right)^{2}(x, s) d x d s \\
& +m_{1}^{2}\left\|U_{1,0}\right\|_{\infty, \Omega}^{m_{1}-1}\left(C_{1}+C_{2}\left\|U_{1,0}\right\|_{\infty, \Omega}^{r}\right) \int_{Q_{\frac{t}{2}, t}} \gamma\left(U_{1, \varepsilon}-\varepsilon, U_{2, \varepsilon}, U_{3, \varepsilon}, U_{4, \varepsilon}\right)(x, t) d x d t . \tag{3.20}
\end{align*}
$$

Integrating this inequality in τ over $\left(\frac{t}{2}, t\right)$ and using the explicit value for $M_{1,3}$ found in the proof of Lemma 2 we deduce the desired result.

Lemma 4. There exists a constant M_{1} and non decreasing function F_{1}, independent of $\varepsilon, 0<\varepsilon \leq 1$ such that

$$
\begin{gather*}
\int_{Q_{T}}\left|\left(U_{i, \varepsilon}^{m_{i}}\right)_{t}\right|^{2}(x, t) d x d t \leq M_{2}, \quad T>0, \quad i=1 . .3 ; \tag{3.21}\\
\int_{Q_{T}}\left|\left(U_{4, \varepsilon}^{m_{i}}\right)_{t}\right|^{2}(x, t) d x d t \leq F_{2}(T), \quad T>0 . \tag{3.22}
\end{gather*}
$$

Proof. The estimate for $U_{1, \varepsilon}$ is immediatly deduced from (3.18) keeping in mind that

$$
\left|\left(U_{1, \varepsilon}^{m_{1}}\right)_{t}\right|^{2}(x, t) \leq \frac{m_{1}^{2}}{2}\left\|U_{1, \varepsilon}\right\|_{\infty, \Omega}^{m_{1}-1}\left(U_{1, \varepsilon}^{\frac{m_{1}+1}{2}}\right)_{t}^{2}(x, t)
$$

And one can establish such estimates for $U_{2, \varepsilon}, U_{3, \varepsilon}$ and $U_{4, \varepsilon}$ in the same way.

4. Existence and uniqueness: Proofs

In this section we supply a quick proof of Theorem 1.
4.1. Existence. Let us fix $T>0$. From the estimates established in the previous section one has : for each $i=1 . .4\left(U_{i, \varepsilon}-\varepsilon\right)_{0<\varepsilon \leq 1}$ and $\left(\nabla U_{i, \varepsilon}^{m_{i}}\right)_{0<\varepsilon \leq 1}$ are respectively bounded in $L^{2}\left(Q_{T}\right)$ and $\left(L^{2}\left(Q_{T}\right)\right)^{N}$. Then there exists two sequences which one still denotes $\left(U_{i, \varepsilon}-\varepsilon\right)_{0<\varepsilon \leq 1}$ and $\left(\nabla U_{i, \varepsilon}^{m_{i}}\right)_{0<\varepsilon \leq 1}$ such that for $i=1 . .4$ as $\varepsilon \rightarrow 0:\left(U_{i, \varepsilon}-\varepsilon\right)_{0<\varepsilon \leq 1}$ is weakly convergent to some U_{i} in $L^{2}\left(Q_{T}\right)$ and $\left(\nabla U_{i, \varepsilon}^{m_{i}}\right)_{0<\varepsilon \leq 1}$ is weakly convergent to some V_{i} in $\left(L^{2}\left(Q_{T}\right)\right)^{N}$.
On the other hand $\left(U_{i, \varepsilon}\right)_{0<\varepsilon \leq 1}$ is bounded in $L^{\infty}\left(Q_{T}\right)$; using a weak formulation of the equation for $U_{i, \varepsilon}$ one can invoke the results in Di Benedetto [11] to get : $\left(U_{i, \varepsilon}\right)_{0<\varepsilon \leq 1}$ is a relatively compact subset of $C(\bar{\Omega} \times[0, T])$. It follows that actually $\left(U_{i, \varepsilon}-\varepsilon\right)_{0<\varepsilon \leq 1}$ is convergent to U_{i} in $C(\bar{\Omega} \times[0, T])$ and $\left(U_{i, \varepsilon}^{m_{i}}\right)_{0<\varepsilon \leq 1}$ is convergent to $U_{i}^{m_{i}}$ in $C(\bar{\Omega} \times[0, T])$.
As a first consequence one has : $V_{i}=\nabla U_{i}^{m_{i}}$; next one also has :

$$
\gamma\left(U_{1, \varepsilon}-\varepsilon, U_{2, \varepsilon}, U_{3, \varepsilon}, U_{4, \varepsilon}\right) \rightarrow \gamma\left(U_{1}, U_{2}, U_{3}, U_{4}\right) \text { in } C(\bar{\Omega} \times[0, T]) \text { as } \varepsilon \rightarrow 0
$$

From standard arguments one may conclude that the quadruple $\left(U_{1}, U_{2}, U_{3}, U_{4}\right)$ is a desirable weak solution.

The regularity results for $\nabla U_{i}^{m_{i}}$ and $\partial_{t} U_{i}^{m_{i}}$ follow from the a priori estimates in Lemma 2 and Lemma 4.
4.2. Uniqueness. Assume there exist two quadruples $\left(U_{j, 1}, U_{j, 2}, U_{j, 3}, U_{j, 4}\right)_{j=1,2}$, both weak solutions of Problem (1.1) - (1.3). They verify the integral identity, for $i=1 . .4$

$$
\begin{align*}
& \int_{\Omega}\left(U_{1, i}-U_{2, i}\right)(x, T) \varphi_{i}(x, T) d x+\int_{Q_{T}} \nabla\left(U_{1, i}^{m_{i}}-U_{2, i}^{m_{i}}\right) \nabla \varphi_{i}(x, t) d x d t \tag{4.1}\\
& =\int_{Q_{T}}\left[\partial_{t} \varphi_{i}\left(U_{1, i}-U_{2, i}\right)-\left(f_{i}\left(U_{1,1}, U_{1,2}, U_{1,3}, U_{1,4}\right)-f_{i}\left(U_{2,1}, U_{2,2}, U_{2,3}, U_{2,4}\right)\right) \varphi_{i}\right](x, t) d x d t
\end{align*}
$$ for every $\varphi_{i} \in C^{1}\left(\bar{Q}_{T}\right)$, such that $\frac{\partial \varphi_{i}}{\partial \eta}=0$ on $\partial \Omega \times(0, T)$ and $\varphi_{i}>0$.

We follow an idea of [24] and introduce a function ψ_{i} as follows

$$
\psi_{i}(x, t)= \begin{cases}\frac{U_{1, i}^{m_{i}}-U_{2, i}^{m_{i}}}{U_{1, i}-U_{2, i}} & \text { if } U_{1, i} \neq U_{2, i}, \quad i=1 . .4 \tag{4.2}\\ 0 & \text { otherwise. }\end{cases}
$$

Let us consider a sequence of smooth functions $\left(\psi_{i, \varepsilon}\right)_{\varepsilon \geq 0}$ such that $\psi_{i, \varepsilon} \geq \varepsilon, \psi_{i, \varepsilon}$ is uniformly bounded in $L^{\infty}\left(Q_{T}\right)$ and

$$
\lim _{\varepsilon \rightarrow 0}\left\|\left(\psi_{i, \varepsilon}-\psi_{i}\right) / \sqrt{\psi_{i, \varepsilon}}\right\|_{L^{2}\left(Q_{T}\right)}=0
$$

For any $0<\varepsilon \leq 1, \sigma>0$ let us introduce the adjoint nondegenerate boundary value problem

$$
\begin{cases}\partial_{t} \varphi_{i}+\psi_{i, \varepsilon} \Delta \varphi_{i}=0 & \text { in } \Omega \times(0, T) \tag{4.3}\\ \frac{\partial \varphi_{i}}{\partial \eta}(x, t)=0 & \text { in } \partial \Omega \times(0, T) \quad i=1 . .4 \\ \varphi_{i}(x, T)=\chi_{i} & \text { in } \Omega\end{cases}
$$

For any smooth χ_{i} with $0 \leq \chi_{i}(x, t) \leq 1, i=1 . .4$, any $0<\varepsilon \leq 1$ and any $\sigma>0$ this problem has a unique classical solution $\varphi_{i, \varepsilon}$ such that see [24]

$$
\begin{gather*}
0 \leq \varphi_{i, \varepsilon}(x, t) \leq 1 \tag{4.4}\\
\int_{Q_{T}} \psi_{i, \varepsilon}\left(\Delta \varphi_{i, \varepsilon}\right)^{2} d x d t \leq K_{1}, \tag{4.5}
\end{gather*}
$$

If in (4.1) we replace φ_{i} by $\varphi_{i, \varepsilon}$, which is the solution of problem (4.3) with $\chi_{i}=\operatorname{sign}\left(\left(U_{i}-\right.\right.$ $\left.V_{i}\right)^{+}$) we obtain.

$$
\begin{align*}
& \int_{\Omega}\left(U_{1, i}-U_{2, i}\right)^{+}(x, T) \varphi_{i, \varepsilon}(x, T) d x+\int_{Q_{T}}\left(\psi_{i}-\psi_{i, \varepsilon}\right)\left(U_{1, i}-U_{2, i}\right) \Delta \varphi_{i, \varepsilon} d x d t \\
& =\int_{Q_{T}}\left(f_{i}\left(U_{1,1}, U_{1,2}, U_{1,3}, U_{1,4}\right)-f_{i}\left(U_{2,1}, U_{2,2}, U_{2,3}, U_{2,4}\right)\right) \varphi_{i, \varepsilon} d x d t \tag{4.6}
\end{align*}
$$

Using the local lipschitz continuity of f_{i} and the properties of $\psi_{i, \varepsilon}$ and $\varphi_{i, \varepsilon}$ we deduce by letting $\varepsilon \rightarrow 0$

$$
\begin{equation*}
\int_{\Omega}\left(U_{1, i}-U_{2, i}\right)^{+}(x, T) d x \leq K \int_{Q_{T}} \sum_{i=1}^{4}\left|U_{1, i}-U_{2, i}\right|(x, t) d x d t \tag{4.7}
\end{equation*}
$$

In a similar fashion we establish an analogous inequality for $\left(U_{i}-V_{i}\right)^{-}$and deduce

$$
\begin{equation*}
\int_{\Omega} \sum_{i=1}^{4}\left|U_{1, i}-U_{2, i}\right|(x, T) d x \leq K \int_{Q_{T}} \sum_{i=1}^{4}\left|U_{1, i}-U_{2, i}\right|(x, t) d x d t \tag{4.8}
\end{equation*}
$$

Uniqueness follows from Gronwall's Lemma.

5. Large time behavior: proofs

The semi-orbit $\left\{\left(U_{1}(., t), U_{2}(., t), U_{3}(., t)\right), t \geq 0\right\}$ is relatively compact in $(C(\bar{\Omega}))^{3}$: it is actually bounded in $\left(L^{\infty}\left(Q_{\infty}\right)\right)^{3}$ by (3.15) and then one may use a result of [11].
5.1. Case $\nu>0$. A convergence and continuity argument allows to deduce from (3.7)

$$
\begin{equation*}
\int_{Q_{T}} \gamma\left(U_{1}, U_{2}, U_{3}, U_{4}\right)(x, t) d x d t+\nu \int_{Q_{T}} U_{1}(x, t) d x d t \leq\left\|U_{1,0}\right\|_{1, \Omega}, \quad T>0 \tag{5.1}
\end{equation*}
$$

Hence $U_{1} \in L^{1}(\Omega \times(0,+\infty))$ and there is a sequence $\left(\tau_{j}\right)_{j \geq 0}$ such that $\tau_{j} \longrightarrow+\infty$ as $j \longrightarrow+\infty$ and $\int_{\Omega} U_{1}\left(x, \tau_{j}\right) d x \longrightarrow 0$ as $j \longrightarrow+\infty$. Next, given any $t>\tau_{j}$, one has

$$
\begin{equation*}
0 \leq \int_{\Omega} U_{1}(x, t) d x \leq \int_{\Omega} U_{1}\left(x, \tau_{j}\right) d x \tag{5.2}
\end{equation*}
$$

actually such an identity holds for $U_{1, \varepsilon}$ from a straightforward integration over $\Omega \times\left(\tau_{j}, t\right)$ and is preserved upon letting $\varepsilon \longrightarrow 0$ because $U_{1, \varepsilon} \rightarrow U_{1}$ in $C^{0}(\bar{\Omega} \times(0,+\infty)$ as $\varepsilon \rightarrow 0$. This shows that $U_{1}(., t) \longrightarrow 0$ in $L^{1}(\Omega)$ as $t \longrightarrow+\infty$ and also in $C(\bar{\Omega})$.

Then, along the same lines, from (3.13) and (3.14) one has for $T>0$

$$
\begin{align*}
& (\lambda+\mu) \int_{Q_{T}} U_{2}(x, t) d x d t+(\alpha+m+\mu) \int_{Q_{T}} U_{3}(x, t) d x d t \tag{5.3}\\
& \leq 2\left\|U_{1,0}\right\|_{1, \Omega}+2\left\|U_{2,0}\right\|_{1, \Omega}+\left\|U_{3,0}\right\|_{1, \Omega} .
\end{align*}
$$

Again, for some sequence $\left(\tau_{j}\right)_{j \geq 0}$ such that $\tau_{j} \longrightarrow+\infty$ one has $\int_{\Omega} U_{2}\left(x, \tau_{j}\right) d x \longrightarrow 0$ as $j \longrightarrow+\infty$. Integrating over $\Omega \times\left(\tau_{j}, t\right)$ the equation in (3.6) for $U_{2, \varepsilon}$ and letting $\varepsilon \longrightarrow 0$ one finds

$$
\begin{equation*}
0 \leq \int_{\Omega} U_{2}(x, t) d x \leq \int_{\tau_{j}}^{t} \int_{\Omega} \gamma\left(U_{1}, U_{2}, U_{3}, U_{4}\right)(x, \tau) d x d \tau+\int_{\Omega} U_{2}\left(x, \tau_{j}\right) d x \tag{5.4}
\end{equation*}
$$

thus again $U_{2}(., t) \longrightarrow 0$ in $L^{1}(\Omega)$ and in $C(\bar{\Omega})$ because γ lies in $L^{1}(\Omega \times(0,+\infty)$.
The conclusion for $U_{3}(., t)$ is derived in the same fashion, using the third equation in (3.6).
Now we will establish the long time behavior of U_{4}, to do this let us consider for any $\tau>0$ the following problem

$$
\begin{cases}\partial_{t} V-\Delta V^{m_{4}}=0, & (x, t) \in \Omega \times(0,+\infty) \tag{5.5}\\ V(x, 0)=U_{4}(x, \tau), & x \in \Omega \\ \frac{\partial V^{m_{4}}}{\partial \eta}(x, t)=0 . & x \in \partial \Omega, \quad t>0\end{cases}
$$

EJQTDE, 2005 No. 2, p. 11

It is well known see [1] that $\lim _{t \rightarrow+\infty} V(., t)=\bar{V}(0)=\overline{U_{4}}(\tau)$ in $L^{p}(\Omega)$, for all $p \geq 1$, and in another hand from [6] we have for all $p \geq 1$

$$
\begin{equation*}
\left\|U_{4}(x, \tau+h)-V(x, h)\right\|_{p, \Omega} \leq \int_{h}^{\tau+h}\left\|f_{4}(x, s)\right\|_{p, \Omega} d s \tag{5.6}
\end{equation*}
$$

with $f_{4}(x, t)=(1-\pi) \lambda U_{2}(x, t)+\alpha U_{3}(x, t)+\nu U_{1}(x, t)$. Set $\tau=h=\frac{t}{2}$, we can write

$$
\begin{aligned}
\left\|U_{4}(x, t)-\overline{U_{4}}\left(\frac{t}{2}\right)\right\|_{p, \Omega} & \leq\left\|U_{4}(x, t)-V\left(x, \frac{t}{2}\right)\right\|_{p, \Omega}+\left\|V(x, t)-\overline{U_{4}}\left(\frac{t}{2}\right)\right\|_{p, \Omega} \\
& \leq \int_{\frac{t}{2}}^{t}\left\|f_{4}(x, s)\right\|_{p, \Omega} d s+\left\|V(x, t)-\overline{U_{4}}\left(\frac{t}{2}\right)\right\|_{p, \Omega} ; p \geq 1
\end{aligned}
$$

since $f_{4} \in L^{1}\left(Q_{\infty}\right) \cap L^{\infty}\left(Q_{\infty}\right)$ we deduce that $\lim _{t \rightarrow+\infty}\left\|U_{4}(x, t)-\overline{U_{4}}\left(\frac{t}{2}\right)\right\|_{p, \Omega}=0$, furthermore $f_{4} \geq 0$ allow to show that $t \longrightarrow \overline{U_{4}}(t)$ is bounded and nondecreasing and then converges to some nonnegative constant U_{4}^{*} and this yields $\lim _{t \rightarrow+\infty} U_{4}(., t)=\lim _{t \rightarrow+\infty} \overline{U_{4}}(t)=U_{4}^{*}$ in $L^{p}(\Omega)$ for all $p \geq 1$.
5.2. Case $\nu=0$. The analysis of the behavior of $\left\{U_{1}(., t), t>0\right\}$ requires modifications because it is not known, and actually it is not true, that $U_{1} \in L^{1}(\Omega \times(0,+\infty))$. Set

$$
\bar{\phi}(t)=\frac{1}{\operatorname{mes}(\Omega)} \int_{\Omega} \phi(x, t) d x
$$

then multiplying the equation for $U_{1, \varepsilon}$ in (3.7) by $\frac{1}{m_{1}} U_{1, \varepsilon}^{m_{1}-1}$ and integrating over $\Omega \times(\tau, \tau+t)$ yields

$$
\begin{equation*}
\overline{U_{1, \varepsilon}^{m_{1}}}(\tau) \geq \overline{U_{1, \varepsilon}^{m_{1}}}(\tau+t) \geq 0, \tau>0, t>0 \tag{5.7}
\end{equation*}
$$

so that upon letting $\varepsilon \longrightarrow 0$, the average $\bar{U}_{1}^{m_{1}}$ is a nonincreasing function of time. From the inequality of Poincaré-Wirtinger one can conclude the existence of a constant $K(\Omega)$ such that for $t>0$

$$
\begin{equation*}
\left\|U_{1}^{m_{1}}(., t)-\overline{U_{1}^{m_{1}}}(t)\right\|_{2, \Omega} \leq K(\Omega)\left\|\nabla U_{1}^{m_{1}}(., t)\right\|_{2, \Omega} . \tag{5.8}
\end{equation*}
$$

Now, one gets from Lemma 3 with $\nu=0$ that

$$
\begin{align*}
& \left\|\nabla U_{1}^{m_{1}}(., t)\right\|_{2, \Omega}^{2} \leq \frac{2}{t\left(m_{1}+1\right)} \int_{\Omega} U_{1,0}^{m_{1}+1}(x) d x \\
& +m_{1}^{2}\left\|U_{1,0}\right\|_{\infty, \Omega}^{m-1}\left(C_{1}+C_{2}\left\|U_{1,0}\right\|_{\infty, \Omega}^{r}\right) \int_{Q_{\frac{t}{2}, t}} \gamma\left(U_{1}, U_{2}, U_{3}, U_{4}\right)(x, s) d x d s \tag{5.9}
\end{align*}
$$

It follows that $\left\|\nabla U_{1}^{m_{1}}(., t)\right\|_{2, \Omega} \longrightarrow 0$ as $t \longrightarrow+\infty$, so that $\left\|U_{1}^{m_{1}}(., t)-\bar{U}_{1}^{m_{1}}(t)\right\|_{2, \Omega} \longrightarrow 0$ by (5.8). The monotonicity of $t \longrightarrow \overline{U_{1}^{m_{1}}}(t)$ yields $\lim _{t \rightarrow+\infty} U_{1}^{m_{1}}(., t)=\lim _{t \rightarrow+\infty} \bar{U}_{1}^{m_{1}}(t)=U_{1}^{*}$ in $L^{2}(\Omega)$ and also in $C(\bar{\Omega})$.
5.3. An elementary spatially homogeneous system. Let us consider the system of ordinary differential equation

$$
\left\{\begin{array}{l}
U_{1}^{\prime}=-\gamma\left(U_{1}, U_{2}, U_{3}, U_{4}\right) \tag{5.10}\\
U_{2}^{\prime}=\gamma\left(U_{1}, U_{2}, U_{3}, U_{4}\right)-\lambda U_{2}-\mu U_{2} \\
U_{3}^{\prime}=\lambda \pi U_{2}-\alpha U_{3}-\mu U_{3}-m U_{3} \\
U_{4}^{\prime}=(1-\pi) \lambda U_{2}+\alpha U_{3}
\end{array}\right.
$$

With $U_{i}(0) \geq 0, \quad i=1 . .4, \quad U_{1}(0)>0, \quad U_{3}(0) \geq 0$ and,

$$
\left\{\begin{array}{l}
\lambda>0, \alpha>0, \quad m \geq 0, \quad \mu \geq 0, \\
\gamma\left(U_{1}, U_{2}, U_{3}, U_{4}\right)=\sigma\left(U_{2}, U_{3}, U_{4}\right) U_{1}
\end{array}\right.
$$

γ having either a masse action or a proportionate mixing form : see the introduction.
Then $U_{1}(t)=U_{1}(0) \exp \left(-\int_{0}^{t} \sigma\left(U_{2}, U_{3}, U_{4}\right)(\tau) d \tau\right)$ so that $U_{1}(t) \searrow U_{1}^{*} \geq 0$ as $t \longrightarrow+\infty$ and $U_{1}^{*}=0$ if and only if $\int_{0}^{+\infty} \sigma\left(U_{2}, U_{3}, U_{4}\right)(\tau) d \tau=+\infty$.

Next $U_{1}+U_{2}=-(\lambda+\mu) U_{2}(t)$ and upon integrating over $(0,+\infty)$ one gets U_{2} lies in $L^{1}(0,+\infty)$ so that $U_{2}(t) \longrightarrow 0$ as $t \longrightarrow+\infty$ because U_{2}^{\prime} is bounded.

A similar argument yields U_{3} lies in $L^{1}(0,+\infty)$ and $U_{3}(t) \longrightarrow 0$ as $t \longrightarrow+\infty$. Then one has $U_{4}(t)=U_{4}(0)+(1-\pi) \lambda \int_{0}^{t} U_{2}(\tau) d \tau+\alpha \int_{0}^{t} U_{3}(\tau) d \tau$. Here $U_{4}(t) \nearrow U_{4}^{*}>0$ as $t \longrightarrow+\infty$.

To conclude that $U_{1}^{*}>0$ note that

- When $\gamma\left(U_{1}, U_{2}, U_{3}, U_{4}\right)=\gamma U_{1} U_{3}$ then $\sigma\left(U_{2}, U_{3}, U_{4}\right)=\gamma U_{3}$ lies in $L^{1}(0,+\infty)$.
- When $\gamma\left(U_{1}, U_{2}, U_{3}, U_{4}\right)=\gamma \frac{U_{1} U_{3}}{U_{1}+U_{2}+U_{3}+U_{4}}$ then $\sigma\left(U_{2}, U_{3}, U_{4}\right)=\gamma \frac{U_{3}}{U_{1}+U_{2}+U_{3}+U_{4}}$

Now $\left(U_{1}+U_{2}+U_{3}+U_{4}\right)(t) \longrightarrow U_{1}^{*}+U_{4}^{*}$ as $t \longrightarrow+\infty$ and $U_{1}^{*}+U_{4}^{*}>0$, because $U_{4}^{*}>0$ and $U_{1}^{*} \geq 0$; hence for $t \geq t_{0}$ one has

$$
\frac{1}{2}\left(U_{1}^{*}+U_{4}^{*}\right) \leq\left(U_{1}+U_{2}+U_{3}+U_{4}\right)(t) \leq\left(U_{3}+U_{4}\right)(0)
$$

which implies

$$
\frac{U_{3}(t)}{\left(U_{3}+U_{4}\right)(0)} \leq \sigma\left(U_{2}, U_{3}, U_{4}\right)(t) \leq 2 \frac{U_{3}(t)}{U_{1}^{*}+U_{4}^{*}}, t \geq t_{0}
$$

As a conclusion $\sigma\left(U_{2}, U_{3}, U_{4}\right)$ lies in $L^{1}(0,+\infty)$ and $U_{1}^{*}>0$.
Last when $m=\mu=0, \quad U_{1}^{*}+U_{4}^{*}=\left(U_{1}+U_{2}+U_{3}+U_{4}\right)(0)$.

References

[1] N. Alikakos and R. Rostamian, Large time behavior of solution neumann boundary value problem of the porous medium equation, Indiana University Mathematics Journal 30 (1981), no. 5, 749-785.
[2] T. Aliziane, Etude de la régularité pour un problème d'évolution dégénéré en dimension supérieure de l'espace, USTHB, Algiers, 1993.
[3] T. Aliziane and M. Langlais, Global existence and periodic solution for a system of degenerate evolution equations, (preprint) Faculté de Mathématiques USTHB, 2003.

EJQTDE, 2005 No. 2, p. 13
[4] T. Aliziane and M. S. Moulay, Global existence and asymptotic behaviour for a system of degenerate evolution equations, Maghreb Math Rev 9 (2000), no. $1 \& 2,9-22$.
[5] R.M. Anderson, H.C. Jackson, R.M. May, and A.D.M. Smith, Population dynamics of fox rabies in europe, Nature 289 (1981), 765-770.
[6] P. Baras, Compacité de l'opérateur $f \longmapsto u$ solution d'une équation non linéaire $(d u / d t)+A u \ni f, \mathrm{C}$. R. Acad. Sc. (1978), 1113 - 1116.
[7] S. Busenberg and K.C. Cooke, Vertically transmitted diseases, Biomathematics, vol. 23, Springer Verlag, Berlin, 1993.
[8] V. Capasso, Mathematical structures of epidemic systems, Lecture Notes in Biomathematics (1993), no. 97.
[9] V. Capasso and G. Serio, A generalization of the kermack-mckendrick deterministic epidemic model, Math. Biosci. 42 (1978), 41-61.
[10] F. Courchamp, Ch. Suppo, E. Fromont, and C. Bouloux, Dynamics of two feline retroviruses (fiv and felv) within one population of cats, Proc. Roy. Soc. London. B 264 (1997), 785-794.
[11] E. DiBenedetto, Continuity of weak solutions to a general pourous medium equation, Indiana University Mathematic Journal 32 (1983), no. 1, 83-118.
[12] O. Diekmann, M. C. De Jong, A. A. De Koeijer, and P. Reijders, The force of infection in populations of varying size: A modeling problem, Journal of Biological Systems 3 (1995), no. 2, 519-529.
[13] Le Dung, Global attractors for a class of degenerate nonlinear parabolic systems, J. Diff. Eqns., 147 (1998), pp. 1-29.
[14] W.E. Fitzgibbon and M. Langlais, Diffusive seir models with logistic population control, Communication on Applied Nonlinear Analysis 4 (1997), 1-16.
[15] W.E. Fitzgibbon, M. Langlais, and J.J. Morgan, Eventually uniform bounds for a class of quasipositive reaction-diffusion systems, Japan Journal of Industrial And Applied Mathematics 16 (1999), no. 2, 225-241.
[16] W.E. Fitzgibbon, J.J. Morgan, and S.J Waggoner, A quasilinear system modeling the spread of infectious disease, Rocky Mountain Journal of Mathematics 2 (1992), 579-592.
[17] E. Fromont, M. Artois, M. Langlais, F. Courchamp, and D. Pontier, Modelling the feline leukemia virus (felv) in a natural population of cats (it Felis catus), Theoretical Population Biology 52 (1997), 60-70.
[18] E. Fromont, D. Pontier, and M. Langlais, Dynamics of a feline retroviretrovirusrus (felv) in host populations with variable structures, (1998).
[19] L. Hadjadj, T. Aliziane, and M. S. Moulay, Non linear reaction diffusion system of degenerate parabolic type (submitted).
[20] M. C. De Jong, O. Diekmann, and H. Heesterbeek, How does transmission of infection depend on population size? epidemic models, Publication of the Newton Institute (1995), no. 5, 84-94.
[21] W.O Kermack and A.G. McKendrick, Contribution to the mathematical theory of epidemics. ii-the problem of endemicity, Proc. Roy. Soc. Edin A 138 (1932), 55-83.
[22] O.A. Ladyzenskaja, V.A. Solonikov, and N.N. Ural'ceva, Linear and quasilinear equation of parabolic type, Transl. Math. Monographs, vol. 23, American Math. Society, Providence, 1968.
[23] M. Langlais and Ch. Suppo, A remark on a generic seirs model and application to cat retroviruses and fox rabies, Mathematical and Computer Modelling 31 (2000), 117-124.
[24] L. Maddalena, Existence, uniqueness and qualitative properties of the solution of a degenerate nonlinear parabolic system, J. Math. Anal. Applications 127 (1987), 443-458.
[25] O. A. Oleinik, A. S. Kalashnikov, and C. Yui-Lin, The cauhy problem and boundary value problem for the equation of insteady filtration type, Izv. Akad. Nauk SSSR, Soc. Math. 22 (1958), 667-704.
[26] J. Smoller, Shock waves and reaction-diffusion equation, Springer, Berlin Heidelberg New York Tokyo, 1983.
[27] G.F. Webb, Reaction diffusion model for deterministic diffusive epidemics, J. Math. App 84 (1981), 150-161.

University of Sciences and Technology Houari Boumediene, Faculty of Mathematics, Po.Box 32 El Alia, Algiers, Algeria.

E-mail address: taliziane@usthb.dz
UPRES A 5466, "Mathématiques Appliquées de Bordeaux" U.F.R M.I.2S, B.P 26, Université Victor Segalen, 33076 Bordeaux Cedex. FRANCE

E-mail address: langlais@sm.u-bordeaux2.fr

[^0]: 1991 Mathematics Subject Classification. Primary 74G25, 35B40; Secondary 35K65, 35K57, 92D30.
 Key words and phrases. Global existence, asymptotic behavior, degenerate equation, reaction-diffusion equations, population dynamics.

