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Abstract. In this paper, we study the instability of the traveling waves of a gen-
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solutions are nonlinear unstable under H
2 perturbations. These traveling wave solu-

tions converge to a constant as x → ∞.
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1 Introduction

In this paper we consider the following equation

∂u

∂t
+ D4u + D2u = D2u3 + g(u). (1.1)

The equation (1.1) arises naturally as a continuum model for growth and
dispersal in a population, see [1]. Here u(x, t) denotes the concentration of
population, the term g(u) is nonlinear function, denotes reaction term or power
with typical example as g(u) = a(1 − u2), a > 0. During the past years, many
authors have paid much attention to the equation (1.1), see [2, 3, 4]. Liu and
Pao [2] based on the fixed point principle, proved the existence of classical
solutions for periodic boundary problem. Chen and Lü [3] proved the existence,
asymptotic behavior and blow-up of classical solutions for initial boundary value
problem. Chen [4] proved existence of solutions for Cauchy problem.

In this paper we study instability of the traveling waves of the equation (1.1)
for g(u) = a(1 − u2), a > 0 . The stability and instability of special solutions
for the equation (1.1) are very important in the applied fields.

E. A. Carlen, M. C. Carvalho and E. Orlandi [8] proved the nonlinear stabil-
ity of fronts for the equation (1.1) with g(u) = 0, under L1 perturbations. We
prove that it is nonlinearly unstable under H2 perturbations, for some traveling
wave solution that is asymptotic to a constant as x → ∞. Our proof is based
on the principle of linearization. We invoke a general theorem that asserts that
linearized instability implies nonlinear instability.

Our main result is as follows

Theorem 1.1 All the traveling waves ϕ(x− ct) of the equation (1.1) satisfying
ϕ ∈ L∞(R), ϕ(n) ∈ L∞(R) ∩ L2(R) (n = 1, 2, 3, 4) are nonlinearly unstable in
the space H2(R). Where ϕ(n) denotes nth derivative of ϕ.
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This paper is organized as follows. We first find a exact traveling wave solution
for the equation(1.1) in Section 2, and then give the proof of our main theorem
in Section 3.

2 Exact Traveling Wave Solution

In this section, we construct an exact traveling wave which satisfies all conditions
of theorem 1.1.

If ϕ(x − ct) = ϕ(z) is a traveling wave solution of (1.1), then ϕ satisfies the
ordinary differential equation

−cϕ′ + ϕ′′′′ = (3ϕ2 − 1)ϕ′′ + 6ϕϕ′2 + a(1 − ϕ2). (2.1)

Let ϕ′ =
∂ϕ

∂z
= k(1 − ϕ2). Then

ϕ′′ =
∂

∂z
(k(1 − ϕ2)) = −2k2ϕ(1 − ϕ2),

ϕ′′′ =
∂

∂z
(−2k2ϕ(1 − ϕ2)) = 2k3(−1 + 3ϕ2)(1 − ϕ2),

ϕ′′′′ =
∂

∂z
(2k3(−1 + 3ϕ2)(1 − ϕ2)) = 2k4(8ϕ − 12ϕ3)(1 − ϕ2).

Substituting above equation into (2.1), we have

−ck(1− ϕ2) + 2k4(8ϕ − 12ϕ3)(1 − ϕ2)

= (3ϕ2 − 1)ϕ′′ + 6ϕk2(1 − ϕ2)2 + a(1 − ϕ2).

Then comparing the order of ϕ, we get

−ck = a,

16k4 − 8k2 = 0,

−24k4 + 12k2 = 0.

A simple calculation shows that k = 1√
2
, c = −

√
2a. Hence, we obtain

ϕ′ =
1√
2
(1 − ϕ2),

that is
1

2
ln

1 + ϕ

1 − ϕ
=

1√
2
z,

i.e.

ϕ(z) =
e

1√
2

z − e
− 1√

2
z

e
1√
2

z
+ e

− 1√
2

z
= tanh

1√
2
z.

We easily proved that

lim
z→+∞

ϕ(z) = 1, lim
z→−∞

ϕ(z) = −1

and ϕ(z) satisfies the conditions of the theorem.
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3 Proof of the Result

To prove the theorem 1.1, we first consider an evolution equation

∂u

∂t
= Lu + F (u), (3.1)

where L is a linear operator that generates a strongly continuous semigroup
etL on a Banach space X , and F is a strongly continuous operator such that
F (0) = 0. In [9] the authors considered the whole problem only on space X ,
that is to say, the nonlinear operator maps X into X . However, many equations
possess nonlinear terms that include derivatives and therefore F maps into a
large Banach space Z. Hence, they again got the following lemma.

Lemma 3.1 [5] Assume the following
(i) X, Z are two Banach spaces with X ⊂ Z and ‖u‖Z ≤ C1‖u‖X for u ∈ X.
(ii) L generates a strongly continuous semigroup etL on the space Z, and the

semigroup etL maps Z into X for t > 0, and
∫ 1

0 ‖etL‖Z→Xdt = C4 < ∞.
(iii) The spectrum of L on X meets the right half-plane, {Reλ > 0}.
(iv) F : X → Z is continuous and ∃ ρ0 > 0, C3 > 0, α > 1 such that ‖F (u)‖Z <
C3‖u‖α

X , for ‖u‖X < ρ0.
Then the zero solution of (3.1) is nonlinearly unstable in the space X.

In this paper, we are going to use Lemma 3.1 for proof of the theorem.

Definition 3.1 A traveling wave solution ϕ(x−ct) of the equation (1.1) is said
to be nonlinearly unstable in the space X, if there exist positive ε0 and C0, a
sequence {un} of solutions of the equation (1.1), and a sequence of time tn > 0
such that ‖un(0) − ϕ(x)‖X → 0 but ‖un(tn) − ϕ(· − ctn)‖X ≥ ε0.

If ϕ(x − ct) ∈ H2(R) is a traveling wave solution of the equation (1.1), then
letting w(x, t) = u(x, t) − ϕ(x − ct), we have

(w + ϕ)t + ∂4
x(w + ϕ) = ∂2

x[(w + ϕ)3 − (w + ϕ)] + a(1 − (w + ϕ)2)

= ∂2
x[w3 + 3wϕ2 + 3w2ϕ + ϕ3 − w − ϕ]

+a(1 − w2 − ϕ2 − 2wϕ),

that is

wt + ∂4
xw = ∂2

x[w3 + 3wϕ2 + 3w2ϕ − w] + a(−w2 − 2wϕ),

i.e.

wt + ∂4
xw − (3ϕ2 − 1)∂2

xw − 12ϕϕ′∂xw − (6ϕϕ′′ + 6ϕ′2 − 2aϕ)w = F (w) (3.2)

where

F (w) = (3ϕ′′−a)w2 +12ϕ′w∂xw +6ϕw∂2
xw +6ϕ(∂xw)2 +6w(∂xw)2 +3w2∂2

xw,
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with initial value
w(x, 0) = w0(x) ≡ u0(x) − ϕ(x). (3.3)

So the stability of traveling wave solutions of (1.1) is translated into the stability
of the zero solution of (3.2). In order to prove Theorem, taking Z = L2(R),
X = H2(R), we need to prove that the four conditions of Lemma 3.1 are satisfied
by the associated equation (3.2). The condition (i) is satisfied, by our choice of
Z and X .

Denote the linear partial differential operator in (3.2) by L = −(∂4
x + ∂2

x) +
[3ϕ2∂2

x + 12ϕϕ′∂x + (6ϕϕ′′ + 6ϕ′2 − 2aϕ)] = L0 + [3ϕ2∂2
x + 12ϕϕ′∂x + (6ϕϕ′′ +

6ϕ′2 − 2aϕ)] with L0 = −(∂4
x + ∂2

x). Then (3.2) may be rewritten in the form
(3.1)

wt = Lw + F (w),

Note that F maps H2(R) into L2(R), using Sobolev embedding theorem, we
have

‖F (w)‖L2 ≤ C‖w‖2
H2 , C > 0, for ‖w‖H2 < 1. (3.4)

So, the condition (iv) is satisfied.
To prove condition (ii) in Lemma 3.1, we need the following two lemmas.

Lemma 3.2 Let L0 = −(∂4
x + ∂2

x). Then

‖etL0‖Hm→Hm ≤ et/4 for m ∈ R+, 0 ≤ t < ∞, (3.5)

‖etL0‖L2→H2 ≤ a(t) ≡ 5t−1/4 for 0 < t ≤ 1. (3.6)

Proof. We write u(x, t) = etL0u0(x). By Fourier transformation,

û(ξ, t) = e−t(ξ4−ξ2)û0(ξ).

‖u‖2
Hm ≡

∫ ∞

−∞
(1 + ξ2)m|û(ξ, t)|2dξ

=

∫ ∞

−∞
(1 + ξ2)me−2t(ξ4−ξ2)|û0(ξ)|2dξ

≤ sup
ξ∈R

e−2t(ξ4−ξ2)

∫ ∞

−∞
(1 + ξ2)m|û0(ξ)|2dξ

= et/2‖u0‖2
Hm .

Hence
‖etL0‖Hm→Hm ≤ et/4.

On the other hand, letting s = ξ2, we have

‖u‖2
H2 ≤ sup

s∈R+

f(s)

∫ ∞

−∞
|û0(ξ)|2dξ

with f(s) = (1 + s)2e−2t(s2−s), t > 0. Elementary computation shows that

sup
s>0

f(s) ≤ (
3

2
+

1√
2
t−1/2)et/2.
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Thus

‖u(x, t)‖H2 ≤ (
3

2
+

1√
2
t−1/2)1/2et/4‖u0‖L2

and

‖etL0‖L2→H2 ≤ (
3

2
+

1√
2
t−1/2)1/2et/4 ≤ 5t−1/4 for 0 < t ≤ 1,

since et/4 ≤ e1/4 < 2. Thus Lemma 3.2 has been proved.

Lemma 3.3 Let L = −(∂4
x + ∂2

x) + [3ϕ2∂2
x + 12ϕϕ′∂x + (6ϕϕ′′ + 6ϕ′2 − 2aϕ)] =

L0 + [3ϕ2∂2
x + 12ϕϕ′∂x + (6ϕϕ′′ + 6ϕ′2 − 2aϕ)] with ϕ ∈ L∞(R), ϕ′ ∈ L∞(R),

ϕ′′ ∈ L∞(R). Then

‖etL‖L2→H2 ≤ C1t
−1/4 for 0 < t ≤ 1, (3.7)

‖etL‖H2→H2 ≤ C2 < ∞ for 0 < t ≤ 1. (3.8)

Proof. Consider the initial value problem

ut = Lu = L0u + 3ϕ2∂2
xu + 12ϕϕ′∂xu + (6ϕϕ′′ + 6ϕ′2 − 2aϕ)u,

u(x, 0) = u0(x).

Then u(x, t) = etLu0(x), t ≥ 0, x ∈ R. Thus

u(x, t) = etL0u0 +

∫ t

0

e(t−τ)L0 [3ϕ2∂2
xu + 12ϕϕ′∂xu + (6ϕϕ′′ + 6ϕ′2 − 2aϕ)u]dτ.

Denote A = ‖ϕ‖L∞, B = ‖ϕ′‖L∞ , C = ‖ϕ′′‖L∞ and M = 3A2 +12AB +6AC +
6B2 + 2aA.

‖u(t)‖H2

≤ ‖etL0‖L2→H2‖u0‖L2 +

∫ t

0

‖e(t−τ)L0‖L2→H23‖ϕ‖2
L∞‖∂2

xu‖L2dτ

+

∫ t

0

‖e(t−τ)L0‖L2→H212‖ϕ‖L∞‖ϕ′‖L∞‖∂xu‖L2dτ

+

∫ t

0

‖e(t−τ)L0‖L2→H26‖ϕ‖L∞‖ϕ′′‖L∞‖u‖L2dτ

+

∫ t

0

‖e(t−τ)L0‖L2→H26‖ϕ′‖2
L∞‖u‖L2dτ

+

∫ t

0

‖e(t−τ)L0‖L2→H22a‖ϕ‖L∞‖u‖L2dτ

≤ a(t)‖u0‖L2 + M

∫ t

0

a(t − τ)‖u(τ)‖H2dτ,

(3.9)

where a(t) is defined in Lemma 3.2 and we use u(t) to denote u(·, t).
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By iteration,

‖u(t)‖H2 ≤ a(t)‖u0‖L2 + M

∫ t

0

a(t − τ)

[a(τ)‖u0‖L2 + M

∫ τ

0

a(τ − s)‖u(s)‖H2ds]dτ

= a(t)‖u0‖L2 + M

∫ t

0

a(t − τ)a(τ)‖u0‖L2dτ

+M2

∫ t

0

∫ τ

0

a(t − τ)a(τ − s)‖u(s)‖H2dsdτ.

(3.10)

The second term on the right of (3.10) is

M

∫ t

0

a(t − τ)a(τ)‖u0‖L2dτ

= M‖u0‖L2

∫ t

0

5(t − τ)−1/45τ−1/4dτ

= 25M‖u0‖L2

∫ t

0

t−1/2
(

1 − τ

t

)−1/4 (τ

t

)−1/4

dτ

= 25MC3t
1/2‖u0‖L2 , for 0 < t ≤ 1,

(3.11)

where C3 =

∫ 1

0

(1 − r)−1/4r−1/4dr. By exchanging the order of integration, we

get from the third term on the right side of (3.10),

∫ t

0

∫ τ

0

a(t−τ)a(τ −s)‖u(s)‖H2dsdτ =

∫ t

0

[
∫ t

s

a(t − τ)a(τ − s)dτ

]

‖u(s)‖H2ds.

Now
∫ t

s

a(t − τ)a(τ − s)dτ = 25

∫ t

s

(t − τ)−1/4(τ − s)−1/4dτ

= 25C3(t − s)1/2 ≤ 25C3, for 0 < s ≤ t ≤ 1.

(3.12)

Therefore (3.9)-(3.12) imply

‖u(t)‖H2 ≤ [a(t) + 25C3M ]‖u0‖L2

+25C3M
2

∫ t

0

‖u(s)‖H2ds, for 0 < t ≤ 1.
(3.13)

Let v(t) =

∫ t

0

‖u(s)‖H2ds. Then

dv(t)

dt
≤ [a(t) + 25C3M ]‖u0‖L2 + 25C3M

2v(t), for 0 < t ≤ 1.

Multiplying both sides of the above inequality by e−25C3M2t, we have

d(e−25C3M2tv(t))

dt
≤ e−25C3M2t[a(t) + 25C3M ]‖u0‖L2 , for 0 < t ≤ 1.
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Integrating the above inequality with respect to t over (0, t), we obtain

e−25C3M2tv(t) ≤
∫ t

0

e−25C3M2s[a(s) + 25C3M ]ds‖u0‖L2 ,

that is

v(t) ≤ e25C3M2t

∫ t

0

e−25C3M2s[a(s) + 25C3M ]ds‖u0‖L2 .

Observing that v(t) =

∫ t

0

‖u(s)‖H2ds, and substituting above inequality into

(3.13), we get

‖u(t)‖H2 ≤ C1t
−1/4‖u0‖L2 for 0 < t ≤ 1, C1 > 0. (3.14)

Thus (3.7) has been proven. To prove (3.8), replacing the first term on the right
side of (3.9) by ‖etL0‖H2→H2‖u0‖H2 and using (3.5), we have

‖u(t)‖H2 ≤ et/4‖u0‖H2 + M

∫ t

0

a(t − τ)‖u(τ)‖H2dτ for 0 < t ≤ 1. (3.15)

Similarly iterating and computing as above, we obtain

‖u(t)‖H2 ≤ [2 + 25C3M ] exp[25C3M
2]‖u0‖H2 ≡ C2‖u0‖H2 . (3.16)

Hence (3.8) is proven and proof of Lemma 3.3 is finished. By Lemma 3.3 con-
dition (ii) is proved.

We now proceed to verify condition (iii) of Lemma 3.1. Observing that if
u(x, t) satisfies

∂u(x, t)

∂t
= −∂4u

∂x4
− ∂2u

∂x2
+ 3ϕ2 ∂2u

∂x2
+ 12ϕϕ′ ∂u

∂x
+ (6ϕϕ′′ + 6ϕ′2 − 2aϕ)u

then u(x, s + t) also satisfies the above equation. By uniqueness of solution, we
know that L generates a strongly continuous semigroup on the Banach space
H2(R) (see [6] p.344). By Fourier transformation, the essential spectrum of L0

on H2(R) is
σ(L0) ⊃ {−ξ4 + ξ2| ξ ∈ R}.

The curve λ = −ξ4 + ξ2 meets the vertical lines Reλ = α for −∞ < α ≤ 1/4
because −∞ < −ξ4 + ξ2 ≤ 1/4.

We now prove that the same curve belongs to the essential spectrum of L.

Lemma 3.4 The essential spectrum of L on H2(R) contains that of L0.

Proof. Let ξ ∈ R and let λ = P (ξ) = −ξ4 + ξ2. Following Schechter [7],
λ ∈ σ(L) if there exists a sequence {ξn} ⊂ H2(R) with

‖ξn‖H2 = 1, ‖(L − λ)ξn‖H2 → 0,
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and {ξn} does not have a strongly convergent subsequence in H2(R). (here we
use the definition: λ 6∈ σ(L) if and only if L − λ is Fredholm with index zero.)
Now let ξ0 6≡ 0 be a C∞ function with compact support in (0,∞). Define

ξn(x) = cneiξxξ0(x/n)/
√

n, n = 1, 2, · · · ,

where cn is chosen so that ‖ξn‖H2 = 1. In fact,

‖ξn‖L2 = cn‖ξ0‖L2 and 1 = ‖ξn‖H2 ≤ kcn

for some positive constant k. Hence cn ≥ 1/k > 0. Since ‖ξn‖L∞ → 0 but
‖ξn‖L2 is bounded away from zero, {ξn} can have no convergent subsequence in
L2(R).

It remains to show that ‖(L − λ)ξn‖H2 → 0. We write

L − λ = L0 − λ + 3ϕ2∂2
x + 12ϕϕ′∂x + (6ϕϕ′′ + 6ϕ′2 − 2aϕ)

A simple calculation shows that

(L0 − λ)ξn(x) = eiξx
∑

1≤s≤4

P (s)(ξ)cnξ
(s)
0 (

x

n
)/(s!n1/2+s),

∂(L0 − λ)ξn(x) = iξ(L0 − λ)ξn(x) + eiξx
∑

1≤s≤4

P (s)(ξ)cnξ
(s+1)
0 (

x

n
)/(s!n3/2+s),

and

∂2(L0 − λ)ξn(x)

= −ξ2(L0 − λ)ξn(x) + 2iξeiξx
∑

1≤s≤4

P (s)(ξ)cnξ
(s+1)
0 (

x

n
)/(s!n3/2+s)

+eiξx
∑

1≤s≤4

P (s)(ξ)cnξ
(s+2)
0 (

x

n
)/(s!n5/2+s).

Thus

‖(L0 − λ)ξn(x)‖H2

≤ (1 + |ξ|2)
∑

1≤s≤4

|P (s)(ξ)|cn‖ξ(s)
0 (

x

n
)‖L2/(s!n1/2+s)

+2|ξ|
∑

1≤s≤4

|P (s)(ξ)|cn‖ξ(s+1)
0 (

x

n
)‖L2/(s!n3/2+s)

+
∑

1≤s≤4

|P (s)(ξ)|cn‖ξ(s+2)
0 (

x

n
)‖L2/(s!n5/2+s) → 0, as n → ∞.

Moreover, for any positive integer m, ‖∂m
x ξn‖L∞ → 0 as n → ∞, so we have

‖3ϕ2∂2
xξn‖2

L2 ≤ ‖∂2
xξn‖2

L∞‖3ϕ2‖2
L∞ → 0,

‖∂x[3ϕ2∂2
xξn]‖2

L2 ≤ ‖∂3
xξn‖2

L∞‖3ϕ2‖2
L2 + ‖∂2

xξn‖2
L∞‖6ϕϕ′‖2

L∞ → 0,
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and

‖∂2
x[3ϕ2∂2

xξn]‖2
L2

≤ ‖∂3
xξn‖2

L∞‖12ϕϕ′‖2
L2 + ‖∂2

xξn‖2
L∞‖6ϕϕ′′ + 6ϕ′2‖2

L2 + ‖∂4
xξn‖2

L∞‖3ϕ2‖2
L∞ → 0.

From the assumptions on ϕ, we obtain

‖12ϕϕ′∂xξn‖2
L2 ≤ ‖∂xξn‖2

L∞‖12ϕϕ′‖2
L2 → 0,

‖∂x[12ϕϕ′∂xξn]‖2
L2 ≤ ‖∂2

xξn‖2
L∞‖12ϕϕ′‖2

L2 + ‖∂xξn‖2
L∞‖12ϕϕ′′ + 12ϕ′2‖2

L2 → 0,

and

‖∂2
x[12ϕϕ′∂xξn]‖2

L2 ≤ ‖∂3
xξn‖2

L∞‖12ϕϕ′‖2
L2 + ‖∂2

xξn‖2
L∞‖24ϕϕ′′ + 24ϕ′2‖2

L2

+‖∂xξn‖2
L∞‖36ϕ′ϕ′′ + 12ϕϕ′′′‖2

L2 → 0.

In addition,

‖(6ϕϕ′′ + 6ϕ′2 − 2aϕ)ξn‖2
L2 ≤ ‖ξn‖2

L∞‖6ϕϕ′′ + 6ϕ′2 − 2aϕ‖2
L2 → 0,

‖∂x[(6ϕϕ′′ + 6ϕ′2 − 2aϕ)ξn]‖2
L2

≤ ‖∂xξn‖2
L∞‖6ϕϕ′′ + 6ϕ′2 − 2aϕ‖2

L2 + ‖ξn‖2
L∞‖18ϕ′ϕ′′ + 6ϕϕ′′′ − 2aϕ′‖2

L2 → 0,

and

‖∂2
x[(6ϕϕ′′ + 6ϕ′2 − 2aϕ)ξn]‖2

L2

≤ ‖∂2
xξn‖2

L∞‖6ϕϕ′′ + 6ϕ′2 − 2aϕ‖2
L2 + 2‖∂xξn‖2

L∞‖18ϕ′ϕ′′ + 6ϕϕ′′′ − 2aϕ′‖2
L2

+‖ξn‖2
L∞‖24ϕ′ϕ′′′ + 18ϕ′′2 + 6ϕϕ′′′′ − 2aϕ′′‖2

L2 → 0.

Thus

‖3ϕ2∂2
xξn + 12ϕϕ′∂xξn + (6ϕϕ′′ + 6ϕ′2 − 2aϕ)ξn‖H2 → 0 as n → ∞.

So from the estimates above,

‖(L − λ)ξn‖H2 → 0, as n → ∞.

The proof of Lemma 3.4 is completed.
Therefore all the four conditions of Lemma 3.1 are satisfied by the linearized

equation (3.2) and theorem 1.1 has been proved.
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