CORRIGENDUM TO ON A CLASS OF DIFFERENTIAL-ALGEBRAIC EQUATIONS WITH INFINITE DELAY

Luca Bisconti^{*} Marco Spadini[†]

Abstract

This paper serves as a corrigendum to the paper titled On a class of differential-algebraic equations with infinite delay appearing in EJQTDE no. 81, 2011. We present here a corrected version of Lemma 5.5 and Corollary 5.7.

1 Introduction

In Section 5 of [1] we investigated examples of applications of that paper's results to a particular class of implicit differential equations. For so doing we used a technical lemma from linear algebra that, unfortunately, turns out to be flawed. As briefly discussed below this affects only marginally our paper's results (just a corollary in Section 5 of [1]).

The simple example below shows that there is something wrong with Lemma 5.5 in [1]. In the next section we provide an amended version of this result.

Example 1.1. Consider the matrices

$$E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

²⁰⁰⁰ Mathematics Subject Classifications: 34A09, 34K13, 34C40

Keywords and phrases: differential-algebraic equations, retarded functional equations, periodic solution, periodic perturbation, infinite delay

^{*}Dipartimento di Sistemi e Informatica, Università di Firenze, Via Santa Marta 3, 50139 Firenze, Italy, e-mail: luca.bisconti@unifi.it

[†]Dipartimento di Sistemi e Informatica, Università di Firenze, Via Santa Marta 3, 50139 Firenze, Italy, e-mail: marco.spadini@unifi.it

Clearly, ker $C^T = \ker E^T = \operatorname{span}\{\begin{pmatrix} 0\\ 1 \end{pmatrix}\}$ for all $t \in \mathbb{R}$. The matrices

$$P = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad Q = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

realize a singular value decomposition for E. Nevertheless

$$P^T C Q = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

which is not the form expected from Lemma 5.5 in [1]. The problem, as it turns out, is that ker $C \neq \text{ker } E$.

Luckily, the impact of the wrong statement of [1, Lemma 5.5] on [1] is minor: all results and examples (besides Lemma 5.5, of course) remain correct, with the exception of Corollary 5.7 where it is necessary to assume the following further hypothesis:

$$\ker C(t) = \ker E, \ \forall t \in \mathbb{R}.$$

(A corrected statement of Corollary 5.7 of [1] can be found in the next section, Corollary 2.2.)

2 Corrected Lemma and its consequences

We present here a corrected version of Lemma 5.5 in [1].

Lemma 2.1. Let $E \in \mathbb{R}^{n \times n}$ and $C \in C(\mathbb{R}, \mathbb{R}^{n \times n})$ be respectively a matrix and a matrix-valued function such that

$$\ker C^{T}(t) = \ker E^{T}, \ \forall t \in \mathbb{R}, \ and \ \dim \ker E^{T} > 0,$$
(2.1)

Put $r = \operatorname{rank} E$, and let $P, Q \in \mathbb{R}^{n \times n}$ be orthogonal matrices that realize a singular value decomposition for E. Then it follows that

$$P^{T}C(t)Q = \begin{pmatrix} \widetilde{C}_{11}(t) & \widetilde{C}_{12}(t) \\ 0 & 0 \end{pmatrix}, \quad \forall t \in \mathbb{R},$$
(2.2)

with $\widetilde{C}_{11} \in C(\mathbb{R}, \mathbb{R}^{r \times r})$ and $\widetilde{C}_{12} \in C(\mathbb{R}, \mathbb{R}^{r \times n})$. If, furthermore, $\ker C(t) = \ker E, \forall t$

$$\ker C(t) = \ker E, \ \forall t \in \mathbb{R},$$
(2.3)

then $\widetilde{C}_{12}(t) \equiv 0$. Namely, in this case,

$$P^{T}C(t)Q = \begin{pmatrix} \widetilde{C}_{11}(t) & 0\\ 0 & 0 \end{pmatrix}, \quad \forall t \in \mathbb{R},$$
(2.4)

with $\widetilde{C}_{11}(t)$ nonsingular for all $t \in \mathbb{R}$.

Proof. Our proof is essentially a singular value decomposition (see, e.g., [2]) argument, based on a technical result from [3].

Observe that (2.1) imply rank $E = \operatorname{rank} C(t) = r > 0$ for all $t \in \mathbb{R}$. In fact,

$$\operatorname{rank} E = \operatorname{rank} E^T = n - \dim \ker E^T =$$
$$= n - \dim \ker C(t)^T = \operatorname{rank} C(t)^T = \operatorname{rank} C(t).$$

Since rank C(t) is constantly equal to r > 0, by inspection of the proof of Theorem 3.9 of [3, Chapter 3, §1] we get the existence of orthogonal matrixvalued functions $U, V \in C(\mathbb{R}, \mathbb{R}^{n \times n})$ and $C_r \in C(\mathbb{R}, \mathbb{R}^{r \times r})$ such that, for all $t \in \mathbb{R}$, det $C_r(t) \neq 0$ and

$$U^{T}(t)C(t)V(t) = \begin{pmatrix} C_{r}(t) & 0\\ 0 & 0 \end{pmatrix}.$$
 (2.5)

Let $U_r, V_r \in C(\mathbb{R}, \mathbb{R}^{n \times r})$ and $U_0, V_0 \in C(\mathbb{R}, \mathbb{R}^{n \times (n-r)})$ be matrix-valued functions formed, respectively, by the first r and n - r columns of U and V. An argument involving Equation (2.5) shows that, for all $t \in \mathbb{R}$, the space im C(t) is spanned by the columns of $U_r(t)$. Also, (2.5) imply that the columns of $V_0(t), t \in \mathbb{R}$, belong to ker C(t) for all $t \in \mathbb{R}$. A dimensional argument shows that they constitute a basis ker C(t). Analogously, transposing (2.5), we see that the columns of $V_r(t)$ and $U_0(t)$ are bases of im $C(t)^T$ and ker $C(t)^T$ respectively.¹

Let now P_r , Q_r and P_0 , Q_0 be the matrices formed taking the first r and n-r columns of P and Q, respectively. Since P and Q realize a singular value decomposition of E, proceeding as above one can check that the columns of P_r , Q_r , P_0 and Q_0 span im E, im E^T , ker E^T , and ker E, respectively.

We claim that $P_0^T U_r(t)$ is constantly the null matrix in $\mathbb{R}^{(n-r)\times r}$. To prove this, it is enough to show that for all $t \in \mathbb{R}$, the columns of P_0 are orthogonal to those of $U_r(t)$. Let v and u(t), $t \in \mathbb{R}$, be any column of P_0 and of $U_r(t)$, respectively. Since for all $t \in \mathbb{R}$ the columns of $U_r(t)$ are in im C(t), there is a vector $w(t) \in \mathbb{R}^n$ with the property that u(t) = C(t)w(t), and

$$\langle v, u(t) \rangle = \langle v, C(t)w(t) \rangle = \langle C(t)^T v, w(t) \rangle = 0, \quad \forall t \in \mathbb{R},$$

because $v \in \ker E^T = \ker C(t)^T$ for all $t \in \mathbb{R}$. This proves the claim. A similar argument shows that $P_r^T U_0(t)$ is identically zero as well.

¹In fact, the orthogonality of the matrices V(t) and U(t) for all $t \in \mathbb{R}$, imply that the columns of $U_r(t)$, $V_r(t)$, $U_0(t)$ and $V_0(t)$ are respective orthogonal bases of the spaces im C(t), im $C(t)^T$, ker $C(t)^T$ and ker C(t).

Since for all $t \in \mathbb{R}$

$$P^T U(t) = \begin{pmatrix} P_r^T U_r(t) & 0\\ 0 & P_0^T U_0(t) \end{pmatrix}$$

is nonsingular, we deduce in particular that so is $P_r^T U_r(t)$.

Let us compute the matrix product $P^T C(t)Q$ for all $t \in \mathbb{R}$. We omit here, for the sake of simplicity, the explicit dependence on t.

$$P^{T}CQ = P^{T}UU^{T}CVV^{T}Q = \begin{pmatrix} P_{r}^{T}U_{r} & 0\\ 0 & P_{0}^{T}U_{0} \end{pmatrix} \begin{pmatrix} C_{r} & 0\\ 0 & 0 \end{pmatrix} \begin{pmatrix} V_{r}^{T}Q_{r} & V_{r}^{T}Q_{0}\\ V_{0}^{T}Q_{r} & V_{0}^{T}Q_{0} \end{pmatrix}$$
$$= \begin{pmatrix} P_{r}^{T}U_{r}C_{r}V_{r}^{T}Q_{r} & P_{r}^{T}U_{r}C_{r}V_{r}^{T}Q_{0}\\ 0 & 0 \end{pmatrix},$$

which proves (2.2).

Let us now assume that also (2.3) holds. We claim that in this case $V_0^T Q_r$ is identically zero. To see this we proceed as done above for the products $P_0^T U_r$ and $P_r^T U_0$. Let $v(t), t \in \mathbb{R}$, be any column of $V_0(t)$, hence a vector of ker C(t) for all $t \in \mathbb{R}$, and let q be a column of $Q_r(t)$. Since the columns of Q_r lie in im E^T , there is a vector $\ell \in \mathbb{R}^n$ with the property that $q = E^T \ell$, and

$$\langle v(t), q \rangle = \langle v(t), E^T \ell \rangle = \langle Ev(t), \ell \rangle = 0, \quad \forall t \in \mathbb{R},$$

because $v(t) \in \ker C(t) = \ker E$ for all $t \in \mathbb{R}$. This proves the claim. A similar argument shows that $V_r^T Q_0(t)$ is identically zero as well. Hence,

$$V(t)^T Q = \begin{pmatrix} V_r(t)^T Q_r & 0\\ 0 & V_0(t)^T Q_0 \end{pmatrix}$$

thus $V_r^T(t)Q_0$, and $V_0^T(t)Q_r$ are nonsingular. Also, plugging $V_0^TQ_r = 0$ in the above expression for P^TCQ one gets (we omit again the explicit dependence on t)

$$P^T C Q = \begin{pmatrix} P_r^T U_r C_r V_r^T Q_r & 0\\ 0 & 0 \end{pmatrix}.$$
 (2.6)

Which proves the assertion because $P_r^T U_r$, C_r , and $V_r^T Q_r$ are nonsingular. \Box

In view of the corrected version of the above lemma, the statement of Corollary 5.7 of [1] can be rewritten as follows:

Corollary 2.2. Consider Equation

$$E\dot{\mathbf{x}}(t) = \mathcal{F}(\mathbf{x}(t)) + \lambda C(t)S(\mathbf{x}_t), \qquad (2.7)$$

where the maps $C: \mathbb{R} \to \mathbb{R}^{n \times n}$ and $S: BU((-\infty, 0], \mathbb{R}^n) \to \mathbb{R}^n$ are continuous, E is a (constant) $n \times n$ matrix, \mathcal{F} is locally Lipschitz and S verifies condition (**K**) in [1]. Suppose also that C and E satisfy (2.1) and (2.3), and that C is T-periodic. Let r > 0 be the rank of E and assume that there exists an orthogonal basis of $\mathbb{R}^n \simeq \mathbb{R}^r \times \mathbb{R}^{n-r}$ such that E has the form

$$E \simeq \begin{pmatrix} E_{11} & E_{12} \\ 0 & 0 \end{pmatrix}$$
, with $E_{11} \in \mathbb{R}^{r \times r}$ invertible and $E_{12} \in \mathbb{R}^{r \times (n-r)}$.

Assume also that, relatively to this decomposition of \mathbb{R}^n , $\partial_2 \mathcal{F}_2(\xi, \eta)$ is invertible for all $x = (\xi, \eta) \in \mathbb{R}^r \times \mathbb{R}^{n-r}$.

Let Ω be an open subset of $[0, +\infty) \times C_T(\mathbb{R}^n)$ and suppose that $\deg(\mathcal{F}, \Omega \cap \mathbb{R}^n)$ is well-defined and nonzero. Then, there exists a connected subset Γ of nontrivial *T*-periodic pairs for (2.7) whose closure in Ω is noncompact and meets the set $\{(0, \overline{\mathbf{p}}) \in \Omega : \mathcal{F}(\mathbf{p}) = 0\}.$

This result follows as in [1] taking into account the modified version of the lemma.

References

- L. Bisconti and M. Spadini, On a class of differential-algebraic equations with infinite delay, Electronic Journal of Qualitative Theory of Differential Equations 2011, No. 81, 1-21.
- [2] G. H. Golub and C. F. Van Loan, *Matrix computations*, 3rd edition, J. Hopkins Univ. Press, Baltimore 1996.
- [3] P. Kunkel and V. Mehrmann, *Differential-Algebraic Equations: Analysis* and Numerical Solution, EMS Textbooks in Mathematics, 2006.

(Received November 22, 2012)