CORRIGENDUM TO ON A CLASS OF
 DIFFERENTIAL-ALGEBRAIC EQUATIONS WITH INFINITE DELAY

Luca Bisconti* Marco Spadini ${ }^{\dagger}$

Abstract

This paper serves as a corrigendum to the paper titled On a class of differential-algebraic equations with infinite delay appearing in EJQTDE no. 81, 2011. We present here a corrected version of Lemma 5.5 and Corollary 5.7.

1 Introduction

In Section 5 of [1] we investigated examples of applications of that paper's results to a particular class of implicit differential equations. For so doing we used a technical lemma from linear algebra that, unfortunately, turns out to be flawed. As briefly discussed below this affects only marginally our paper's results (just a corollary in Section 5 of [1]).

The simple example below shows that there is something wrong with Lemma 5.5 in [1]. In the next section we provide an amended version of this result.

Example 1.1. Consider the matrices

$$
E=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad C=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) .
$$

[^0]Clearly, $\operatorname{ker} C^{T}=\operatorname{ker} E^{T}=\operatorname{span}\left\{\binom{0}{1}\right\}$ for all $t \in \mathbb{R}$. The matrices

$$
P=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad Q=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),
$$

realize a singular value decomposition for E. Nevertheless

$$
P^{T} C Q=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

which is not the form expected from Lemma 5.5 in [1]. The problem, as it turns out, is that $\operatorname{ker} C \neq \operatorname{ker} E$.

Luckily, the impact of the wrong statement of [1, Lemma 5.5] on [1] is minor: all results and examples (besides Lemma 5.5, of course) remain correct, with the exception of Corollary 5.7 where it is necessary to assume the following further hypothesis:

$$
\operatorname{ker} C(t)=\operatorname{ker} E, \forall t \in \mathbb{R}
$$

(A corrected statement of Corollary 5.7 of [1] can be found in the next section, Corollary 2.2.)

2 Corrected Lemma and its consequences

We present here a corrected version of Lemma 5.5 in [1].
Lemma 2.1. Let $E \in \mathbb{R}^{n \times n}$ and $C \in C\left(\mathbb{R}, \mathbb{R}^{n \times n}\right)$ be respectively a matrix and a matrix-valued function such that

$$
\begin{equation*}
\operatorname{ker} C^{T}(t)=\operatorname{ker} E^{T}, \forall t \in \mathbb{R}, \text { and } \operatorname{dim} \operatorname{ker} E^{T}>0, \tag{2.1}
\end{equation*}
$$

Put $r=\operatorname{rank} E$, and let $P, Q \in \mathbb{R}^{n \times n}$ be orthogonal matrices that realize a singular value decomposition for E. Then it follows that

$$
P^{T} C(t) Q=\left(\begin{array}{cc}
\widetilde{C}_{11}(t) & \widetilde{C}_{12}(t) \tag{2.2}\\
0 & 0
\end{array}\right), \quad \forall t \in \mathbb{R}
$$

with $\widetilde{C}_{11} \in C\left(\mathbb{R}, \mathbb{R}^{r \times r}\right)$ and $\widetilde{C}_{12} \in C\left(\mathbb{R}, \mathbb{R}^{r \times n}\right)$.
If, furthermore,

$$
\begin{equation*}
\operatorname{ker} C(t)=\operatorname{ker} E, \forall t \in \mathbb{R} \tag{2.3}
\end{equation*}
$$

then $\widetilde{C}_{12}(t) \equiv 0$. Namely, in this case,

$$
P^{T} C(t) Q=\left(\begin{array}{cc}
\widetilde{C}_{11}(t) & 0 \tag{2.4}\\
0 & 0
\end{array}\right), \quad \forall t \in \mathbb{R}
$$

with $\widetilde{C}_{11}(t)$ nonsingular for all $t \in \mathbb{R}$.

Proof. Our proof is essentially a singular value decomposition (see, e.g., [2]) argument, based on a technical result from [3].

Observe that (2.1) imply $\operatorname{rank} E=\operatorname{rank} C(t)=r>0$ for all $t \in \mathbb{R}$. In fact,

$$
\begin{aligned}
\operatorname{rank} E=\operatorname{rank} E^{T}=n- & \operatorname{dim} \operatorname{ker} E^{T}= \\
& =n-\operatorname{dim} \operatorname{ker} C(t)^{T}=\operatorname{rank} C(t)^{T}=\operatorname{rank} C(t)
\end{aligned}
$$

Since $\operatorname{rank} C(t)$ is constantly equal to $r>0$, by inspection of the proof of Theorem 3.9 of [3, Chapter 3, §1] we get the existence of orthogonal matrixvalued functions $U, V \in C\left(\mathbb{R}, \mathbb{R}^{n \times n}\right)$ and $C_{r} \in C\left(\mathbb{R}, \mathbb{R}^{r \times r}\right)$ such that, for all $t \in \mathbb{R}, \operatorname{det} C_{r}(t) \neq 0$ and

$$
U^{T}(t) C(t) V(t)=\left(\begin{array}{cc}
C_{r}(t) & 0 \tag{2.5}\\
0 & 0
\end{array}\right) .
$$

Let $U_{r}, V_{r} \in C\left(\mathbb{R}, \mathbb{R}^{n \times r}\right)$ and $U_{0}, V_{0} \in C\left(\mathbb{R}, \mathbb{R}^{n \times(n-r)}\right)$ be matrix-valued functions formed, respectively, by the first r and $n-r$ columns of U and V. An argument involving Equation (2.5) shows that, for all $t \in \mathbb{R}$, the space $\operatorname{im} C(t)$ is spanned by the columns of $U_{r}(t)$. Also, (2.5) imply that the columns of $V_{0}(t), t \in \mathbb{R}$, belong to $\operatorname{ker} C(t)$ for all $t \in \mathbb{R}$. A dimensional argument shows that they constitute a basis ker $C(t)$. Analogously, transposing (2.5), we see that the columns of $V_{r}(t)$ and $U_{0}(t)$ are bases of $\mathrm{im} C(t)^{T}$ and ker $C(t)^{T}$ respectively. ${ }^{1}$

Let now P_{r}, Q_{r} and P_{0}, Q_{0} be the matrices formed taking the first r and $n-r$ columns of P and Q, respectively. Since P and Q realize a singular value decomposition of E, proceeding as above one can check that the columns of P_{r}, Q_{r}, P_{0} and Q_{0} span $\operatorname{im} E, \operatorname{im} E^{T}$, $\operatorname{ker} E^{T}$, and $\operatorname{ker} E$, respectively.

We claim that $P_{0}^{T} U_{r}(t)$ is constantly the null matrix in $\mathbb{R}^{(n-r) \times r}$. To prove this, it is enough to show that for all $t \in \mathbb{R}$, the columns of P_{0} are orthogonal to those of $U_{r}(t)$. Let v and $u(t), t \in \mathbb{R}$, be any column of P_{0} and of $U_{r}(t)$, respectively. Since for all $t \in \mathbb{R}$ the columns of $U_{r}(t)$ are in $\operatorname{im} C(t)$, there is a vector $w(t) \in \mathbb{R}^{n}$ with the property that $u(t)=C(t) w(t)$, and

$$
\langle v, u(t)\rangle=\langle v, C(t) w(t)\rangle=\left\langle C(t)^{T} v, w(t)\right\rangle=0, \quad \forall t \in \mathbb{R},
$$

because $v \in \operatorname{ker} E^{T}=\operatorname{ker} C(t)^{T}$ for all $t \in \mathbb{R}$. This proves the claim. A similar argument shows that $P_{r}^{T} U_{0}(t)$ is identically zero as well.

[^1]Since for all $t \in \mathbb{R}$

$$
P^{T} U(t)=\left(\begin{array}{cc}
P_{r}^{T} U_{r}(t) & 0 \\
0 & P_{0}^{T} U_{0}(t)
\end{array}\right)
$$

is nonsingular, we deduce in particular that so is $P_{r}^{T} U_{r}(t)$.
Let us compute the matrix product $P^{T} C(t) Q$ for all $t \in \mathbb{R}$. We omit here, for the sake of simplicity, the explicit dependence on t.

$$
\begin{aligned}
P^{T} C Q & =P^{T} U U^{T} C V V^{T} Q=\left(\begin{array}{cc}
P_{r}^{T} U_{r} & 0 \\
0 & P_{0}^{T} U_{0}
\end{array}\right)\left(\begin{array}{cc}
C_{r} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
V_{r}^{T} Q_{r} & V_{r}^{T} Q_{0} \\
V_{0}^{T} Q_{r} & V_{0}^{T} Q_{0}
\end{array}\right) \\
& =\left(\begin{array}{cc}
P_{r}^{T} U_{r} C_{r} V_{r}^{T} Q_{r} & P_{r}^{T} U_{r} C_{r} V_{r}^{T} Q_{0} \\
0 & 0
\end{array}\right),
\end{aligned}
$$

which proves (2.2).
Let us now assume that also (2.3) holds. We claim that in this case $V_{0}^{T} Q_{r}$ is identically zero. To see this we proceed as done above for the products $P_{0}^{T} U_{r}$ and $P_{r}^{T} U_{0}$. Let $v(t), t \in \mathbb{R}$, be any column of $V_{0}(t)$, hence a vector of $\operatorname{ker} C(t)$ for all $t \in \mathbb{R}$, and let q be a column of $Q_{r}(t)$. Since the columns of Q_{r} lie in $\operatorname{im} E^{T}$, there is a vector $\ell \in \mathbb{R}^{n}$ with the property that $q=E^{T} \ell$, and

$$
\langle v(t), q\rangle=\left\langle v(t), E^{T} \ell\right\rangle=\langle E v(t), \ell\rangle=0, \quad \forall t \in \mathbb{R},
$$

because $v(t) \in \operatorname{ker} C(t)=\operatorname{ker} E$ for all $t \in \mathbb{R}$. This proves the claim. A similar argument shows that $V_{r}^{T} Q_{0}(t)$ is identically zero as well. Hence,

$$
V(t)^{T} Q=\left(\begin{array}{cc}
V_{r}(t)^{T} Q_{r} & 0 \\
0 & V_{0}(t)^{T} Q_{0}
\end{array}\right)
$$

thus $V_{r}^{T}(t) Q_{0}$, and $V_{0}^{T}(t) Q_{r}$ are nonsingular. Also, plugging $V_{0}^{T} Q_{r}=0$ in the above expression for $P^{T} C Q$ one gets (we omit again the explicit dependence on t)

$$
P^{T} C Q=\left(\begin{array}{cc}
P_{r}^{T} U_{r} C_{r} V_{r}^{T} Q_{r} & 0 \tag{2.6}\\
0 & 0
\end{array}\right) .
$$

Which proves the assertion because $P_{r}^{T} U_{r}, C_{r}$, and $V_{r}^{T} Q_{r}$ are nonsingular.
In view of the corrected version of the above lemma, the statement of Corollary 5.7 of [1] can be rewritten as follows:

Corollary 2.2. Consider Equation

$$
\begin{equation*}
E \dot{\mathbf{x}}(t)=\mathcal{F}(\mathbf{x}(t))+\lambda C(t) S\left(\mathbf{x}_{t}\right) \tag{2.7}
\end{equation*}
$$

where the maps $C: \mathbb{R} \rightarrow \mathbb{R}^{n \times n}$ and $S: B U\left((-\infty, 0], \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n}$ are continuous, E is a (constant) $n \times n$ matrix, \mathcal{F} is locally Lipschitz and S verifies condition (\boldsymbol{K}) in [1]. Suppose also that C and E satisfy (2.1) and (2.3), and that C is T-periodic. Let $r>0$ be the rank of E and assume that there exists an orthogonal basis of $\mathbb{R}^{n} \simeq \mathbb{R}^{r} \times \mathbb{R}^{n-r}$ such that E has the form

$$
E \simeq\left(\begin{array}{cc}
E_{11} & E_{12} \\
0 & 0
\end{array}\right) \text {, with } E_{11} \in \mathbb{R}^{r \times r} \text { invertible and } E_{12} \in \mathbb{R}^{r \times(n-r)} .
$$

Assume also that, relatively to this decomposition of $\mathbb{R}^{n}, \partial_{2} \mathcal{F}_{2}(\xi, \eta)$ is invertible for all $x=(\xi, \eta) \in \mathbb{R}^{r} \times \mathbb{R}^{n-r}$.

Let Ω be an open subset of $[0,+\infty) \times C_{T}\left(\mathbb{R}^{n}\right)$ and suppose that $\operatorname{deg}(\mathcal{F}, \Omega \cap$ \mathbb{R}^{n}) is well-defined and nonzero. Then, there exists a connected subset Γ of nontrivial T-periodic pairs for (2.7) whose closure in Ω is noncompact and meets the set $\{(0, \overline{\mathbf{p}}) \in \Omega: \mathcal{F}(\mathbf{p})=0\}$.

This result follows as in [1] taking into account the modified version of the lemma.

References

[1] L. Bisconti and M. Spadini, On a class of differential-algebraic equations with infinite delay, Electronic Journal of Qualitative Theory of Differential Equations 2011, No. 81, 1-21.
[2] G. H. Golub and C. F. Van Loan, Matrix computations, $3^{\text {rd }}$ edition, J. Hopkins Univ. Press, Baltimore 1996.
[3] P. Kunkel and V. Mehrmann, Differential-Algebraic Equations: Analysis and Numerical Solution, EMS Textbooks in Mathematics, 2006.
(Received November 22, 2012)

[^0]: 2000 Mathematics Subject Classifications: 34A09, 34K13, 34C40
 Keywords and phrases: differential-algebraic equations, retarded functional equations, periodic solution, periodic perturbation, infinite delay
 *Dipartimento di Sistemi e Informatica, Università di Firenze, Via Santa Marta 3, 50139 Firenze, Italy, e-mail: luca.bisconti@unifi.it
 ${ }^{\dagger}$ Dipartimento di Sistemi e Informatica, Università di Firenze, Via Santa Marta 3, 50139 Firenze, Italy, e-mail: marco.spadini@unifi.it

[^1]: ${ }^{1}$ In fact, the orthogonality of the matrices $V(t)$ and $U(t)$ for all $t \in \mathbb{R}$, imply that the columns of $U_{r}(t), V_{r}(t), U_{0}(t)$ and $V_{0}(t)$ are respective orthogonal bases of the spaces $\operatorname{im} C(t), \operatorname{im} C(t)^{T}, \operatorname{ker} C(t)^{T}$ and $\operatorname{ker} C(t)$.

