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Abstract

Exact linear lumping has earlier been defined for a finite dimensional

space, that is, for the system of ordinary differential equations y′ = f ◦ y

as a linear transformation M for which there exists a function f̂ such that

ŷ := My itself obeys a differential equation ŷ′ = f̂ ◦ ŷ. Here we extend

the idea for the case when the values of y are taken in a Banach space.

The investigations are restricted to the case when f is linear.

Many theorems hold for the generalization of exact lumping, such as

necessary and sufficient conditions for lumpability, and relations between

the qualitative properties of the original and the transformed equations.

The motivation behind the generalization of exact lumping is to apply

the theory to reaction-diffusion systems, to an infinite number of chemical

species, to continuous components, or to stochastic models as well.
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1 Introduction

Mathematical models of chemical reaction kinetics are used in many fields such
as in basic research in physical chemistry and biochemistry and in the design
and control of chemical reactors, in combustion, in atmospheric chemistry, in
pharmacokinetics, etc. The use of these models is often restricted because of
the large number of dependent variables, which usually are the species’ concen-
trations. There is a technique in finite dimensional real spaces, called lumping:
reduction of the number of variables by grouping them via a linear or nonlinear
function. This approach was initiated by [Wei and Kuo, 1969], and extended to
exact linear [Li, G. and Rabitz, H., 1989],[Li, G. and Rabitz, H., 1991a],
[Li, G. and Rabitz, H., 1991b] and exact nonlinear [Li, G. et al., 1994] lumping

∗This paper is in final form and no version of it will be submitted for publication elsewhere.
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of arbitrary nonlinear differential equations, and these methods have also been
applied to practical problems arising in petroleum cracking, catalytic reforming,
biochemistry, combustion, see the reference list of [Tóth et al., 1997], toxicology
[Verhaar et al., 1997] etc.

Similar reduction methods have been investigated in many areas such as
control theory, econometrics, biology, and ecology [Luenberger, 1964],
[ Los and  Los, 1974], [Iwasa et al., 1987], [Iwasa et al., 1989],
[Luckyanov et al., 1983].

In the present paper our goal is to extend the theory of lumping to infinite
dimensional abstract spaces, so as to be able to apply it to systems of partial
differential equations, such as reaction-diffusion systems, to an infinite num-
ber of chemical species (occuring e.g. in petroleum cracking), to continuous
components (where the species are parameterized by the value of some physical
quantity), or to stochastic models as well. Let us mention that reaction diffusion
systems have been treated earlier by covering also the case when the reaction is
not necessarily linear ([Li, G. and Rabitz, H., 1991b]).

The application of lumping to abstract differential equations will also be
useful for stochastic models and difference equations. We have to use some
notions and theorems from the theory of functional analysis, but beyond these,
the paper is self-contained.

In Section 2 we introduce some notions we will use in the rest of the paper.
In Section 3 we establish and prove some necessary and sufficient conditions on
exact linear lumpability. Section 4 treats the behavior of periodic solutions and
equilibria under lumping. Next, relation between stability of the original and
the lumped model is investigated. Finally, applying the theory presented we
do lump a simple, and a slightly more complicated equation in Section 6, and
discuss the possible further developments.

2 Basic notions

Let X and X̂ be Hilbert-spaces, such that X has a closed subspace W for which
W ∼= X̂. K ∈ L(X) is a (not necessarily bounded) linear transformation of X ,
u : R → X is a solution of

u̇ = Ku. (1)

Lemma 1 Suppose that k ◦ uα = l ◦ uα holds for the functions k, l : X → X̂

with some functions uα : R → X (α ∈ A, where A is a set of indices) for which
∪αRange(uα) = X holds. Then k = l is also true.

The proof is straightforward, so we omit it.

Definition 1 Let M : X → X̂ be a bounded linear operator such that
Range(M) = X̂. If for all solutions u to (1)

û := Mu (2)

EJQTDE, Proc. 7th Coll. QTDE, 2004 No. 21, p. 2



obeys a differential equation
˙̂u = K̂û (3)

with some linear transformation K̂ ∈ L(X̂), then (1) is said to be exactly
lumpable to (3) by M .

3 Lumpability

For the finite dimensional case of the statements below see [Tóth et al., 1996]

Theorem 1 Equation (1) is exactly linearly lumpable to (3) by M if and only
if

MK = K̂M (4)

holds.

Proof. A) Suppose (1) is exactly lumpable to (3). Then ˙̂u = (Mu)· = M u̇ =

MKu and ˙̂u = K̂û = K̂Mu shows the necessity through Lemma 1.
B) Suppose u is a solution of (1) and MK = K̂M holds. Then

˙̂u = (Mu)· = M u̇ = MKu = K̂Mu = K̂û

shows that (3) also holds.

Remark 1 Li and Rabitz [Li, G. and Rabitz, H., 1991b] investigated reaction-
diffusion systems of the form

u̇ = Ku + D∆u, (5)

where K and D are operators induced by matrices K and D. They tried to
lump it to another reaction-diffusion system

˙̂u = K̂û + D̂∆û (6)

by M, so that û = Mu, where M is induced by the matrix M . In this special
case they found that (5) is exactly linearly lumpable to (6) if and only if both
of the requirements

MK = K̂M (7)

and
MD = D̂M (8)

are fulfilled. Multiplying (8) by ∆ from the right and adding it to (7) we get

M(K +D∆) = (K̂ + D̂∆)M, (9)

which shows that the case treated by Li and Rabitz is a special case of ours.
Nevertheless our last example in Section (6) is a reaction-diffusion system,

and we also lump it to another reaction-diffusion system in that special case,
when D = d · I , d is a positive constant.
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Definition 2 ([Luenberger, 1969], p. 163) Let X and X̂ be Hilbert spaces,

M ∈ L(X, X̂) continuous and Range(M) closed. Let x̂ ∈ X̂ be fixed and denote
by ŷ ∈ Range(M) the element for which ‖x̂−ŷ‖ ≤ ‖x̂−ỹ‖ for all ỹ ∈ Range(M).
Let Y ⊂ X, Y := {x ∈ X |Mx = ŷ} and denote by y ∈ Y that element for

which ‖y‖X ≤ ‖y‖X holds for all y ∈ Y. Let us define the operatorM ∈ L(X̂,X)
by M x̂ := y. This operator is referred to as the pseudoinverse of M, and can
be shown to be continuous.

Definition 3 Suppose for a linear operator M : X → X̂ there exists another
linear operator M : X̂ → X such that MM = I �

X
. This will be referred to as a

generalized (right) inverse of M .

Remark 2 The pseudoinverse of a continuous linear operator is not always a
generalized inverse as well.

Lemma 2 ([Luenberger, 1969], p. 165) Suppose M : X → X̂ is a contin-

uous linear operator, such that Range(M) = X̂. Then the pseudoinverse M of
M, can be calculated as M∗(MM∗)−1, where M∗ is the adjoint of M and this
pseudoinverse is also a generalized inverse.

Theorem 2 Let M be a generalized inverse of M . Then (1) is exactly linearly
lumpable to (3) by M if and only if MK = MKMM holds.

Proof. A) Suppose (1) is exactly linearly lumpable to (3). Then, Theorem 1

implies that, MK = K̂M . Composing both sides with M from the right we get
MKM = K̂, and this again with M from the right MKMM = K̂M = MK,

where the last equality also comes from Theorem 1.
B) To prove sufficiency, let K̂ := MKM and use the assumption to obtain

K̂M = MKMM = MK, which is known to be a sufficient condition to exact
lumpability by Theorem 1.

Theorem 3 If (1) is exactly linearly lumpable to (3) by M, then the right hand

side K̂ does not depend on the specific choice of the generalized inverse of M .

Proof. Let M and M̃ be two generalized inverses of M . Then by Theorem 2
(MK)M = (MKM̃M)M = MKM̃(MM) = MKM̃.

Theorem 4 Equation (1) is exactly linearly lumpable to (3) with M if and
only if Ker(M) is invariant for K.

Proof. A) We need to prove that for any x ∈ X such that Mx = 0̂ ∈ X̂,
MKx = 0̂ is also valid. Suppose x ∈ X , such that Mx = 0̂, and use Theorem
1 to get MKx = K̂Mx = K̂0̂ = 0̂.

B) Conversely, let x ∈ X . Mx = MMMx, so M(x −MMx) = 0̂, that is,
x −MMx ∈ Ker(M), so using our assumption we have MK(x −MMx) = 0̂,
which means that MKx = MKMMx. Now Theorem 2 proves sufficiency.
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Remark 3 The theorem above implies that for all linear systems there exists
a linear lumping operator. The analogous statement is not true for nonlinear
systems.

Remark 4 This means that to construct a lumping operator M, it is enough
to search for invariant subspaces of X for a given linear transformation.

We shall also use the statement (which is easy to prove) below.

Lemma 3 Let W ⊂ X be a linear subspace, and let K ∈ L(X) be a linear
operator on X . W is invariant for K if and only if W⊥ is invariant for K∗,
where K∗ is the adjoint of K.

Corollary 1 Equation (1) is exactly linearly lumpable to (3) with M if and
only if Ker(M)⊥ is invariant for K∗

Definition 4 (1) is said to induce the dynamical system (or: characterisitc
function) ψ : R ×X → X, where ψ(t,u0) is the solution of (1) with the initial
condition u(0) = u0 at time t ∈ R. We also use the notation ψt := ψ(t, .) to
denote the flow induced by (1).

Theorem 5 The flow induced by (3) is the function ψ̂t := Mψt ◦M. Further-

more, ψ̂t ◦M = Mψt also holds.

Proof. Let û0 := Mu0 and let us show that t 7→ ψ̂t(û0) is the solution of the
differential equation (3) with the initial condition û(0) = û0. Let us start with
the initial condition Mψ0(M û0) = MM û0 = û0. Now let us calculate the time

derivative of t 7→ ψ̂t(û0):

(ψ̂t)
·(û0) = Mψ̇t(M û0) = MKψt(M û0) =

= K̂Mψt(M û0) = K̂ψ̂t(û0)

The proof of the second statement is similar.

Remark 5 The relation between ψ̂t and ψt is a generalized conjugacy
[Godbillon, 1969].

4 Invariant sets

Definition 5 A set S ⊂ X is said to be invariant under the flow ψt, if ψt(S) ⊂
S for all t ∈ R.

Theorem 6 Invariant sets under the flow generated by (1) are transformed by
a lumping operator into invariant sets of (3).
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Proof. Let S be an invariant set of (1), and let Ŝ be defined as the set ob-

tained from S by lumping: Ŝ :=
{
Mu|u ∈ S

}
. Let us denote the flow generated

by (1) by ψt. Let û ∈ Ŝ be an arbitrary vector. By definition, there exists u ∈ S

such that û = Mu holds. By Theorem 5, ψ̂t(û) = ψ̂t(Mu) = Mψt(u). However,

ψt(u) ∈ S because S is invariant; thus Mψt(u) ∈ Ŝ as it is a result of applying
the mapping M to an element of S.

Definition 6 Let K ∈ L(X). The vector u∗ ∈ X for which Ku∗ = 0 holds is
an equilibrium.

Theorem 7 Equilibria are lumped into equilibria.

Proof. Let u∗ be an equilibrium of the original system: Ku∗ = 0, and let
û∗ := Mu∗. Then

K̂û∗ = K̂Mu∗ = MKu∗ = 0̂.

Theorem 8 Periodic solutions of (1) are lumped into periodic solutions of (3).

Proof. Let u be a periodic solution of (1) with the fundamental period
T ∈ R+ : u(t + T ) = u(t) for all t ∈ R. Then û := Mu is a periodic solution
to (3) as well, since û(t + T ) = Mu(t + T ) = Mu(t) = û(t) shows, and the
fundamental period of û can easily be seen not to be larger than T.

The finite dimensional version of the statement below has been proved in
[Tóth et al., 1997]. Here we give the proof by Prof. Z. Sebestyén for the infinite
dimensional case.

Theorem 9 Let X, X̂ Hilbert-spaces, X̂ ⊂ X , M ∈ L(X, X̂), Range(M) = X̂,

A ∈ L(X̂), B ∈ L(X). If the relation AM = MB holds, then the spectrum of
A is a subset of the spectrum of B, i.e.: σ(A) ⊂ σ(B).

Proof. Let us show that (A−λI �

X
) is not invertible for any λ ∈ C implies (B−

λIX ) is not invertible for the same λ either, that is σ(A) ⊂ σ(B). Nevertheless,
if we can prove that, if (B−λIX ) is invertible, then (A−λI �

X
) is invertible too,

that is the resolvent of B is a subset of the resolvent of A : ρ(B) ⊂ ρ(A), this
statement is equivalent to the original one.
Now, suppose for λ ∈ C there exists (B − λIX )−1. We show that in this case

there exists (A − λI �

X
)−1, as well. Because of the assumption Range(M) = X̂,

by Lemma 2 there exists a generalised inverse M of M. The only thing we have
to do is to check that M(B − λIX )−1M gives us the inverse of (A− λI �

X
)−1.

(A− λI �

X
)(M(B − λIX )−1M) = (AM − λM)(B − λIX )−1M

= (MB − λM)(B − λIX )−1M = M(B − λIX )(B − λIX )−1M

= MM = I �

X
.
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5 Stability

For the investigation of stability we use standard notions and a statement. For
the case of linear systems, it is enough to study the stability of the zero solution.

Definition 7 Let A be the generator the generator of a strongly continuous
semigroup (T (t))t≥0 on a Banach space E. Then

1. ω(f) := inf{w : ‖T (t)f‖ ≤ Mewtfor some M and every t ≥ 0} is called
the (exponential) growth bound of T (·)f .

2. ω1(A) := sup{ω(f) : f ∈ D(A)} is called the (exponential) growth bound
of the solutions of the Cauchy problem u̇(t) = Au(t).

3. ω(A) = sup{ω(f) : f ∈ E} is called the (exponential) growth bound of the
mild solutions of the Cauchy problem u̇(t) = Au(t).

Definition 8 The semigroup (T (t))t≥0 is called

1. uniformly exponentially stable if ω(A) < 0;

2. exponentially stable if ω1(A) < 0;

3. uniformly stable if ‖T (t)f‖ → 0 (as t→ +∞) for every f ∈ E;

4. stable if ‖T (t)f‖ → 0 as t→ +∞) for every f ∈ D(A).

Definition 9 The semigroup (T (t))t≥0 is called eventually norm continuous if
there exists t′ ≥ 0 such that the function t → T (t) from (t′,+∞) into L(E) is
norm continuous.

Remark 6 In the equation

u̇ = Ku + D∆u, (10)

where K and D are operators induced by matricesK andD, the operator K+D∆
is eventually norm continuous with all t′ > 0.

Theorem 10 [Engel and Nagel, 2000, p. 302] An eventually norm-continuous
semigroup (T (t))t≥0 is uniformly exponentially stable if and only if the spectral
abscissa β := sup{Re(λ);λ ∈ σ(A)} of its generator A satisfies β < 0.

Corollary 2 Consider the abstract differential equation (1) u̇ = Ku which can

be exactly linearly lumped to (3) ˙̂u = K̂û, and consider also one of the equilibria
u∗ ∈ X of (1). By Theorem 7 û∗ := Mu∗ is an equilibrium of (3).

1. If the spectral abscissa of the operator on the right hand side of the orig-
inal equation (1) is negative, then both the equilibrium 0 of the original
equation and 0̂ of the lumped equation are globally stable.
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2. If the spectral abscissa of the operator on the right hand side of the lumped
equation (3) is positive, then both the equilibrium of the lumped equation
û∗ and the original equation u∗ are unstable.

Proof.

1. First of all note that, if the spectral abscissa of an operator on the right
hand side of an equation is negative, then 0 is not an eigenvalue of the
operator, so the kernel of the operator consists only of 0.

By Theorem 9, which says σ(K̂) ⊂ σ(K), the spectral abscissa of K̂ ≤
the spectral abscissa of K.

(These also mean that the equilibrium points u∗ and û∗ in the assumption

of the theorem must be 0 ∈ X and 0̂ ∈ X̂, respectively.)

2. Again, we use the fact that σ(K̂) ⊂ σ(K), the spectral abscissa of K̂ ≤
the spectral abscissa of K, and also Theorem 10.

6 Examples

The first example shows that our framework is a generalization of the finite
dimensional theory.

Example 1 The usual mass action type deterministic model of the formal
chemical reaction A+U −→ 2U + 2V V −→ U , where A is an external species
of constant concentration is the ordinary differential equation

ċu = cu + cv, ċv = 2cu − cv

for the concentrations t 7→ cu(t), t 7→ cv(t) of the species U and V
[Érdi and Tóth, 1989]. In the present case X = R2;K =

(
1 1
2 −1

)
, and all

the invariant subspaces under K∗ can be obtained by calculating its eigenvectors
and putting them into the matrix M as rows. (Multiplications with nonsingu-
lar matrices from the left are also allowed, because the same subspace will be

generated.) The eigenvectors of K∗ being

(
1 +

√
3

1

)
and

(
1 −

√
3

1

)
(cor-

responding to the eigenvalues
√

3 and −
√

3, respectively) the possible choices
for M are:

(
n(1 +

√
3) n

)
(n ∈ R \ {0}), (11)

(
n(1 −

√
3) n

)
(n ∈ R \ {0}), (12)

(
n11 n12

n21 n22

)(
1 +

√
3 1

1 −
√

3 1

)

(nij ∈ R; i, j ∈ {1, 2}, n11n22 − n12n21 6= 0). (13)
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Using the first possibility with n := 1 we obtain for ĉ := (1 +
√

3)cu + cv the
lumped differential equation

˙̂c =
√

3ĉ

in accordance with the classical finite dimensional theory [Li, 1984],
[Li, G. and Rabitz, H., 1989].

The second example shows the obviously expected fact that elimination of
diffusion leads to the original kinetic differential equation.

Example 2 Now let us have the previous reaction system with diffusion, that
is, we are given a partial differential equation system, where the operator ∆
represents the diffusion, and assume that Neumann boundary conditions hold
true:

∂0u(t, x) = ∆u(t, x) + u(t, x) + v(t, x), ∂0v(t, x) = ∆v(t, x) + 2u(t, x) − v(t, x)

∂1u(t,−π) = 0, ∂1u(t, π) = 0 ∂1v(t,−π) = 0, ∂1v(t, π) = 0, (14)

with ∆ := ∂2
1 . It is convenient to introduce the following Hilbert spaces:

X := H2([−π, π]) ×H2([−π, π]),

where H2([−π, π]) is the Sobolev space of distributions which are twice differ-
entiable and square integrable together with their second derivative on [−π, π],
with the scalar product

〈(
u1

v1

)
,

(
u2

v2

)〉
:=

∫ π

−π

u1v1 +

∫ π

−π

u2v2;

and X̂ := R2 with the usual scalar product in R2.

The right hand side of (14) is obtained by applying the operator K to the
elements of X, where K is defined in the following way:

(
K

(
u

v

))
(t, x) :=

(
∆u(t, x) + u(t, x) + v(t, x)
∆v(t, x) + 2u(t, x) − v(t, x)

)
.

(One question is: how to find all the nontrivial invariant subspaces of the linear
operator K. Here we choose only one possibility.)

We shall show that the kernel of the operator M : X −→ X̂ defined by(
M

(
u

v

))
(t) :=

∫ π

−π

(
u(t, x)
v(t, x)

)
dx is invariant to K.

Let

(
u

v

)
∈ X be an element of the kernel of M. Then, applying K we

have to prove that

(
∆u+ u+ v

∆v + 2u− v

)
is also in the kernel of M . Let’s apply M :

∫ π

−π

(
∆u(t, x) + u(t, x) + v(t, x)
∆v(t, x) + 2u(t, x) − v(t, x)

)
dx =

( ∫ π

−π
∆u(t, x)dx +

∫ π

−π
u(t, x)dx+

∫ π

−π
v(t, x)dx∫ π

−π
∆v(t, x)dx + 2

∫ π

−π
u(t, x)dx−

∫ π

−π
v(t, x)dx

)
=

(
0
0

)
,
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taking into consideration that, ∆u = div gradu, so by Gauss–Ostrogradski theo-
rem or divergence theorem (to think of the multidimensional case)

∫
[−π,π] ∆u =∫

[−π,π] div grad u = grad u(t, π) − grad u(t,−π) = 0, for every u or v in X. By

this, the operator M is a lumping operator.
Let’s look for an appropriate K̂.

˙̂(
u

v

)
(t) =

(
M

(
u

v

))·

(t) = M∂0

( u
v

)
(t) =

∫ π

−π

(
∂0u(t, x)
∂0v(t, x)

)
dx

=

∫ π

−π

(
∆u(t, x) + u(t, x) + v(t, x)
∆v(t, x) + 2u(t, x) − v(t, x)

)
dx

=

( ∫ π

−π
∆u(t, x)dx+

∫ π

−π
u(t, x)dx +

∫ π

−π
v(t, x)dx∫ π

−π
∆v(t, x)dx + 2

∫ π

−π
u(t, x)dx −

∫ π

−π
v(t, x)dx

)

=

( ∫ π

−π
u(t, x)dx+

∫ π

−π
v(t, x)dx

2
∫ π

−π
u(t, x)dx−

∫ π

−π
v(t, x)dx

)

= K̂

(̂
u

v

)
(t), (15)

where K̂ acts on the space X̂ as K̂

(
du

dv

)
(t) = K̂

(
du(t)
dv(t)

)
and K̂ =

(
1 1
2 −1

)
.

Upon denoting du(t) :=
∫ π

−π
u(t, x)dx, dv(t) :=

∫ π

−π
v(t, x)dx, by lumping

we have obtained from the original PDE this ODE:

d′u(t) = du(t) + dv(t), d′v(t) = 2du(t) − dv(t). (16)

Although the above two examples might be instructive, the structure of the
next one is much closer to real life applications.

Example 3 Now let us have the same partial differential equation system, as
above. Now our aim is to simplify it, but not necessarily eliminate diffusion.

∂0u = ∆u+ u+ v, ∂0v = ∆v + 2u− v.

If we define the operator
(
w1

w2

)
= w 7→ Kw := (∆w1 + w1 + w2,∆w2 + 2w1 − w2)

on pairs of analytic functions, we get the abstract form of the above partial
differential equation system:

ẇ = Kw.

First, we try to solve this equation. Let us represent the values of the
solutions of the two above examples in L2[−π, π]×L2[−π, π] using the orthogonal
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basis: {cos(nx), sin(nx)} (n ∈ N). Now we are looking for solutions in the
form:

w(t) = x 7→
(
a0(t) +

∑+∞

n=1

(
an(t) cos(nx) + bn(t) sin(nx)

)

c0(t) +
∑+∞

n=1

(
cn(t) cos(nx) + dn(t) sin(nx)

)
)

(17)

with differentiable functions an, bn, cn, dn, for n ∈ N0. What does it mean that
the function (17) is the solution of the original equation ẇ = Kw? Calculating
the time derivative term by term we get

(ẇ(t))(x) =

(
a′0(t) +

∑+∞

n=1

(
a′n(t) cos(nx) + b′n(t) sin(nx)

)

c′0(t) +
∑+∞

n=1

(
c′n(t) cos(nx) + d′n(t) sin(nx)

)
)
.

On the other hand, applying the operator K we obtain

((Kw)(t))(x) =

(
a0(t) + c0(t) +

∑+∞

n=1

(
an(t) + cn(t) − n2an(t)

)
cos(nx)+

2a0(t) − c0(t) +
∑+∞

n=1

(
2an(t) − cn(t) − n2cn(t)

)
cos(nx)+

+
∑+∞

n=1

(
bn(t) + dn(t) − n2bn(t)

)
sin(nx)

+
∑+∞

n=1

(
2bn(t) − dn(t) − n2dn(t)

)
sin(nx)

)
,

and comparing the coefficients we get

a′0(t) = a0(t) + c0(t) c′0(t) = 2a0(t) − c0(t),

and the infinite system of linear constant coefficient differential equations

a′n(t) = an(t) + cn(t) − n2an(t) c′n(t) = 2an(t) − cn(t) − n2cn(t),

b′n(t) = bn(t) + dn(t) − n2bn(t) d′n(t) = 2bn(t) − dn(t) − n2dn(t),

(n = 1, 2, . . .) consisting of 2 × 2 blocks, which is therefore easily solvable.
If we would like to lump our system, we have to find if not all, but at least

one of the nontrivial invariant subspaces of the linear operator K, if we wish to
lump the equation by the method described above.

Now, it is obvious, that with respect to the operator K, the closed linear
subspace:

V :=

{
v|v =

(
x 7→ a0 +

∑+∞

k=1

(
a2k cos(2kx) + b2k sin(2kx)

)

x 7→ c0 +
∑+∞

k=1

(
c2k cos(2kx) + d2k sin(2kx)

)
)
,

+∞∑

k=1

k2(|ak|2 + |bk|2 + |ck|2 + |dk|2) < +∞
}

(actually, H2 again) is invariant: KV ⊂ V. Let us define the linear operator
M : V × V → V by

(Mw)(x) := M

(
a0 +

∑+∞

n=1

(
an cos(nx) + bn sin(nx)

)

c0 +
∑+∞

n=1

(
cn cos(nx) + dn sin(nx)

)
)

= c1 + a1 cos(x) + b1 sin(x) +

+∞∑

k=1

(
c2k+1 cos(2kx) + d2k+1 sin(2kx)

+ a2k+1 cos((2k + 1)x) + b2k+1 sin((2k + 1)x)
)
.
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Lemma 4 With the above definitions we have V = Ker(M).

Proof. A) It is obvious that V ⊂ Ker(M).
B) Now let us take an element from Ker(M), and let us show that it should be

of the form which can be found in the definition of the subspace V. (Mw)(x) = 0
means that that for all x ∈ [−π, π] we have

(c1 + a1 cos(x) + b1 sin(x) +

+∞∑

k=1

(
c2k+1 cos(2kx) + d2k+1 sin(2kx)

+a2k+1 cos((2k + 1)x) + b2k+1 sin((2k + 1)x)
)

= 0.

This, however, implies that all the coefficients with odd indices are zero,
therefore w ∈ V.

The next step is to find a generalized inverse M of M , because knowing it
will give us K̂ = MKM. To do this, we shall construct M∗ first, and then M

comes (according to Lemma 2) from the equation M = M ∗(MM∗)−1.

By straightforward, although lengthy calculations M ∗ is derived:

M∗

(
a0 +

+∞∑

n=1

an cos(nx) + bn sin(nx)

)
=




∑+∞

k=1

(
a2k−1 cos((2k − 1)x) + b2k−1 sin((2k − 1)x)

)

2a0 cos(x) +
∑+∞

k=1

(
a2k cos((2k + 1)x) + b2k sin((2k + 1)x)

)



and then,

M

(
a0 +

+∞∑

n=1

an cos(nx) + bn sin(nx)

)
=

M∗(MM∗)−1

(
a0 +

+∞∑

n=1

an cos(nx) + bn sin(nx)

)
=




∑+∞

k=1

(
a2k−1 cos((2k − 1)x) + b2k−1 sin((2k − 1)x)

)

a0 cos(x) +
∑+∞

k=1

(
a2k cos((2k + 1)x) + b2k sin((2k + 1)x)

)



Now, denoting û(x) := a0 +
∑+∞

n=1 an cos(nx) + bn sin(nx), we have

K̂û = MKM û =
(
− 2a0 + 2a1 + a0 cos(x) +

+∞∑

k=1

α2k cos(2kx) + β2k sin(2kx) +

α2k+1 cos((2k + 1)x) + β2k+1 sin((2k + 1)x)
)

where
α2k := 2a2k+1 − a2k − (2k + 1)2a2k

β2k := 2b2k+1 − b2k − (2k + 1)2b2k

α2k+1 := a2k + a2k+1 − (2k + 1)2a2k+1

β2k+1 := b2k + b2k+1 − (2k + 1)2b2k+1
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Comparing the derivative

˙̂u =

(
a′0(t) +

+∞∑

n=1

a′n(t) cos(nx) + b′n(t) sin(nx)

)
,

and the right hand side

K̂û =
(
− 2a0(t) + 2a1(t) + a0(t) cos(x) +

+∞∑

k=1

α2k(t) cos(2kx) +

β2k(t) sin(2kx) + α2k+1(t) cos((2k + 1)x) +

β2k+1(t) sin((2k + 1)x)
)

the lumped equation ˙̂u = K̂û takes the form

a′0(t) = −2a0(t) + 2a1(t)

a′1(t) = a0(t)

b′1(t) = 0

a′2k(t) = 2a2k+1(t) − a2k(t) − (2k + 1)2a2k(t)

a′2k+1(t) = a2k(t) + a2k+1(t) − (2k + 1)2a2k+1(t)

b′2k(t) = 2b2k+1(t) − b2k(t) − (2k + 1)2b2k(t)

b′2k+1(t) = b2k(t) + b2k+1(t) − (2k + 1)2b2k+1(t)

(k=1,2,. . . ). Again we have a 2×2 blocks, but now we only have 2 one-parameter
families of functions, instead of the original 4 families.

As for a remark of the stability of the original partial differential equation
system. Take that equation (14) with Neumann boundary condition and with
a special initial condition:

∂0u(t, x) = ∆u(t, x) + u(t, x) + v(t, x), ∂0v(t, x) = ∆v(t, x) + 2u(t, x) − v(t, x)

∂1u(t,−π) = 0, ∂1u(t, π) = 0 ∂1v(t,−π) = 0, ∂1v(t, π) = 0

u(0, x) = v(0, x) = (x− π)2(x+ π)2. (18)

Solving this numerically with a computer, the solution shows instability of
the zero solution, as the figures show below.

The plots and solutions were generated by Mathematica. They suggest that
there must be at least one eigenvalue with positive real part of the operator K.

Let’s look for the spectrum of operator K. α ∈ σ(K) if and only if K − αI

is not invertible, that is,

(
∆u+ u+ v − αu

∆v + 2u− v − αv

)
=

(
0
0

)
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Figure 1: Concentration of species U at location x at time t
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Figure 2: Concentration of species V at location x at time t

with Neumann boundary condition has a nontrivial pair of solutions (u, v)T .

This means, for any x ∈ [−π, π]
(
u′′(x) + u(x) + v(x) − αu(x)
v′′(x) + 2u(x) − v(x) − αv(x)

)
=

(
0
0

)

and
u′(−π) = u′(π) = v′(−π) = v′(π) = 0

simultaneously hold, with the assertion that there is at least one x ∈ [−π, π],
for which (u(x))2 + (v(x))2 > 0 holds. Reformulate our claim. When does the
system

y′ = (α− 1)u − v

z′ = − 2u + (αv + 1)v
u′ = y

v′ = z
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u′(−π) = u′(π) = v′(−π) = v′(π) = 0

have a solution other than the trivial one. It is well known that it is true if and
only if the determinant of the coefficient matrix of this system equals to zero.
Let us check it.

0 0 α− 1 −1
0 0 −2 α+ 1
1 0 0 0
0 1 0 0

=
α− 1 −1
−2 α+ 1

= α2 − 3 = 0,

for α = ±
√

3. We could say the
√

3 eigenvalue of operator K has positive
real part. This, together with Theorem 10 verifies our guess suggested by the
two figures above, that the zero solution of our special, numerically calculated
system is unstable.

Example 4 We introduce here a concept. Take an arbitrary function space
of real valued functions H , and take the vector space Hn (n ∈ N). Let u =
(u1, . . . , un) ∈ V := Hn. Let K be an n × n matrix. We define the operator
K on V induced by the matrix K: Ku := K · (u1, . . . , un)T , in the same way
we can define the operator M : V → Hm induced by the matrix Mm×n for
arbitrary m ∈ N.

Let A := {ai|i = 1, . . . , k} (for some k ∈ N and ai ∈ Rn) be a vector-system.

We define a subset of V with them: S := {∑k

i=1 a
iui} where ui ∈ H . It is

easy to check that S is a subspace of V . If A is an eigensystem of K, then S is
invariant for K. If A spans kerM , then S = kerM. Take one of the Laplacians
∆. This is linear, thus ∆

∑k

i=1 aiui =
∑k

i=1 ai∆ui. That is S is invariant for
∆. A diagonal matrix D will only have eigenvectors from the standard base.
Therefore S is not invariant for an arbitrary D, only if it is dI, (induced by dI);
the unit operator multiplied with at most a scalar d ∈ R.

Now here is a partial differential equation system derived from a genetical
system of ten coupled genes. [Yeung, Tegnér, Collins, 2002] (This paper consid-
ers a genetical system near steady state, therefore approximates it by a linear
system. For simplicity we omitted external stimuli, noise and decaying of the
species.)

∂0u1 = −u2 + u3 + d1∆u1

∂0u2 = u1 − u3 + d2∆u2

∂0u3 = u1 + d3∆u3

∂0u4 = u3 + u5 − u7 + d4∆u4

∂0u5 = u7 + u9 + d5∆u5

∂0u6 = −u4 + u8 − u9 + d6∆u6

∂0u7 = u4 + u6 + u8 − u9 + d7∆u7

∂0u8 = −u7 + u10 + d8∆u8

∂0u9 = u8 + d9∆u9

∂0u10 = −u4 + u5 + u7 − u8 + d10∆u10
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Translate it to an Abstract Cauchy Problem. Introduce the matrix

K :=




0 −1 1 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 −1 0 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 −1 0 0 0 1 −1 0
0 0 0 1 0 1 0 1 −1 0
0 0 0 0 0 0 −1 0 0 1
0 0 0 0 0 0 0 1 0 0
0 0 0 −1 1 0 1 −1 0 0




and the diagonal matrix D := diag{d1, . . . , d10}. Let K and D be the operators
induced by K and D. The new equation is u̇ = Ku + D∆u. Linear lumping
won’t work unless D = dI , that is D := diag{d, . . . , d}.

We compute the eigenvectors of the transpose of K, choose two, and arrange
them into rows. These make M .

M =

(
1 −1 2 0 0 0 0 0 0 0

0.25 0.28 −0.5 0.48 −1.66 −0.3 0.27 −0.89 1.83 1

)

kerM consists of the eigenvectors of K. Our statements mentioned above guar-
antees that the S subspace of V made from these eigenvectors is invariant for
K + dI∆ and S = kerM. Let’s compute K̂.

M(K + dI∆)M = MKM +MdI∆M =

= MKM + dMI∆M =

= MKM + dM∆M =

= MKM + dMM∆ =

= MKM + dÎ∆ =

= K̂ + dÎ∆

K̂ =

(
1 0

0.002 −0.9

)

The new system of partial differential equation ˙̂u = K̂û + d∆û.

∂0û1 = û1 + d∆û1

∂0û2 = 0.002û1 − 0.9û1 + d∆û2.

7 Discussion and perspectives

Some of the calculations on the examples would have been a bit more compli-
cated if we included different diffusion coefficients before the individual Lapla-
cians.
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The main differences between our approach and the one presented in
[Li, G. and Rabitz, H., 1991b] are as follows. Li and Rabitz allows higher than
first order reactions and a positive definite diagonal matrix different from the
identity in the concrete applications. We exclude higher order reactions but
do not exclude the presence of a positive definite diagonal matrix of diffusion
coefficients, although it didn’t play any role in the examples. They only treat
reaction-diffusion equations and use a very strict requirement: they want to
have a reaction diffusion equation as the lumped model. The lumping operator
can only be generated by a matrix in the natural way. We allow a very broad
class of linear equations and also a very broad class of lumping operators (which
gives greater flexibility) and only require that the lumped equation be linear.
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[Rădulescu and Rădulescu, 1980] Rădulescu, M. and Rădulescu, S.: Global in-
version theorems and applications to differential equations, Nonlinear Anal-
ysis, Theory, Methods and Applications, 4 (1980) 951–965.
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8 Notation

an, bn, cn, dn real numbers or functions like: an : R → R

A,B A ∈ L(X̂), B ∈ L(X)
A,U ,V formal signs of chemical species
cu, cv concentrations of species U ,V , respectively,

also they are R → R functions
ĉ concentration of a fictive species, R → R function
du, dv concentrations of species U ,V , respectively,

also they are R → R functions

I �

X
the identity operator of space X̂

k, l k, l : X → X̂

K K ∈ L(X)

K̂ K̂ ∈ L(X̂)

K̂ n× n matrix

M M ∈ L(X, X̂)
M∗ the adjoint of M

M, M̃ the generalized inverses of M
n n ∈ N, within theoretical sections,

n ∈ R \ {0}, within Examples
n11, n12, n21, n22, real numbers
S S ⊂ X , an invariant subspace of X under the flow ψt

t t ∈ R, time
T T ∈ R+, fundamental period
u u : R → X

u∗, û∗ u∗ ∈ X, û∗ ∈ X̂ equilibrium points

u0, û0 u0 ∈ X, û0 ∈ X̂,u0 = u(0), û0 = û(0)
w w : R → X

ŵ ŵ : R → X̂ means ŵ = Mw

W W ⊂ X , X̂ ∼= W

W⊥ orthogonal complement of W
x n-dimensional space vector, specially in this paper n = 1,

i.e. x ∈ R
x x ∈ X

x̂ x̂ ∈ X̂

X Hilbert space

X̂ Hilbert space
y,y y ∈ X,y ∈ X

ŷ, ỹ ŷ ∈ X̂, ỹ ∈ X̂

Y Y ⊂ X
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α α ∈ C
αn, βn real numbers, in particular constant coefficients
β the sepctral abscissa of an operator, i.e. sup{Re(λ);λ ∈ σ(K)}
δ δ ∈ R+

ε ε ∈ R+

λ λ ∈ C, an eigenvalue of an operator
ψ ψ : R×X → X the dynamical system, induced by (1)
ψt ψt = ψ(t, .)
ρ the resolvent set of an operator
σ the spectrum of an operator

0,0, 0̂ the zero element of the vector space R, X, X̂, respectively
˙ ˙= d

dt
, i.e. the time derivative of

∆ the Laplacian operator, i.e. ∆ = ∇2

∂0 time derivative of
∂n partial derivative of a function in the n-th variable
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