Self-similar solutions to a convection-diffusion processes

M. Guedda
Lamfa, CNRS UPRES-A 6119, Université de Picardie Jules Verne,
Faculté de Mathématiques et d'Informatique, 33, rue Saint-Leu 80039 Amiens, France

Zaïna, in memorium

Abstract

Geometric properties of self-similar solutions to the equation $u_{t}=u_{x x}+\gamma\left(u^{q}\right)_{x}, x>0, t>0$ are studied, q is positive and $\gamma \in \mathbb{R} \backslash\{0\}$. Two critical values of q (namely 1 and 2) appear the corresponding shapes are of very different nature.

AMS(MOS) Subject Classification: 35K55, 35K65.

1. Introduction

In this paper we shall derive properties of solutions to the equation

$$
\begin{cases}u_{t}=u_{x x}+\gamma\left(u^{q}\right)_{x}, & \tag{1.1}\\ \text { for }(x, t) \in(0,+\infty) \times(0,+\infty), \\ u_{x}(0, t)=0, & \\ \text { for } t>0,\end{cases}
$$

having the form

$$
\begin{equation*}
u(x, t)=t^{\alpha} g\left(x t^{-1 / 2}\right)=: t^{\alpha} g(\xi), \tag{1.2}
\end{equation*}
$$

where $q>0, \alpha=-\frac{1}{2(q-1)}, \gamma \in \mathbb{R} \backslash\{0\}$, and $u>0$ in the half space for appropriate nonnegative initial data.

If we substitute (1.2) into (1.1) we obtain for $q \neq 1$, the ODE

$$
\begin{equation*}
g^{\prime \prime}+\gamma\left(g^{q}\right)^{\prime}=\alpha g-\frac{1}{2} \xi g^{\prime}, \quad \xi>0, \tag{1.3}
\end{equation*}
$$

subject to the condition

$$
\begin{equation*}
g^{\prime}(0)=0 . \tag{1.4}
\end{equation*}
$$

Setting $\gamma= \pm 1$ we are led to the problem

$$
\left\{\begin{array}{l}
g^{\prime \prime}+\varepsilon\left(g^{q}\right)^{\prime}+\frac{1}{2} \xi g^{\prime}-\alpha g=0, \quad \xi>0, \tag{1.5}\\
g^{\prime}(0)=0, \quad g(0)=\lambda,
\end{array}\right.
$$

where $\varepsilon= \pm 1, \lambda>0$ and $q \neq 1$ is a positive number. This problem has a unique local solution for every $\lambda>0$. We shall be interested in possible extension of solutions and their properties. A more general equation with $\gamma \neq 0$ can be transformed to (1.5) by introducing a new function $|\gamma|^{\frac{1}{q-1}} g$ which solves (1.5) with $\lambda|\gamma|^{\frac{1}{q-1}}$ instead of λ. When $\varepsilon=1$ and $q>1$ problem (1.5) was investigated in detail by Peletier and Serafini [12]. It is shown that there exists λ_{c} such that problem (1.5) has a unique global solution $g>0$ such that $\xi^{-2 \alpha} g(\xi)$ goes to 0 if and only if $1<q<2$ and $g(0)=\lambda_{c}$ and its asymptotic behavior at infinity is given by

$$
g(\xi)=L \xi^{-2 \alpha-1} e^{-\xi^{2} / 4}\left\{1+2(2 \alpha+1)(\alpha-1) \xi^{-2}+o\left(\xi^{-2}\right)\right\}
$$

as $\xi \rightarrow+\infty$, for some positive constant L. The paper by Biler and Karch [3] is devoted to study the large-time behavior of solutions to (1.1) with $\left(u|u|^{q-1}\right)_{x}, q>1$ instead of $\gamma\left(u^{q}\right)_{x}$, where initial data satisfying $\lim _{x \rightarrow \infty} x^{\beta} u(x, 0)=A$ for some $A \in \mathbb{R}$ and $0<\beta<1$. In this paper we shall show that if $\varepsilon=-1$ and $1<q<2$ the solution of (1.5) changes the sign for every $\lambda>0$. Also we are interested on values on q and $\lambda>0$ which guarantee that problem (1.5) has a global positive solution with given behavior at infinity. The basic method used here is due to [5]. We analyze problem (1.5) in the phase plane. Somes results can be found in [3]
Equation (1.3) does not belong to the class of well-studied second order nonlinear ODE's. If we write it in the standard (from point of view of nonlinear oscillation theory) form

$$
\begin{equation*}
g^{\prime \prime}+\left(q \varepsilon g^{q-1}+\frac{1}{2} \xi\right) g^{\prime}-\alpha g=0 \tag{1.6}
\end{equation*}
$$

we can see that the "friction coefficient" which depends nonlinearly on g and on position, can change sign if $\varepsilon=-1$. The sign of α depends on q : if $q<1$ then $\alpha>0$ and $\alpha<0$ for $1<q$.

REmARK 1.1. The function $w(x, t)=x^{a} h\left(t x^{-b}\right)=: x^{a} h(\eta)$ satisfies (1.1) if and only if $b=2$ and $a=(q-2) /(q-1)$. The corresponding ODE is

$$
h^{\prime \prime}=(a-3 / 2) \frac{h^{\prime}}{\eta}+\frac{\varepsilon}{2}\left(h^{q}\right)^{\prime}+\frac{h^{\prime}}{\eta^{2}}+\frac{h}{\eta}\left(1+q a \gamma \varepsilon h^{q-1}\right), \quad \eta>0 .
$$

We shall not deal here with it.
The plan of the paper is the following:
Section 2 : Preliminary results.
Section 3 : Large ξ behaviour of all global solutions for $q>2$ and $\varepsilon=-1$.
Section 4 : The case $0<q<1$.

2. Preliminaries

Rather than studying (1.5), we will deal here with the slightly more general ODE

$$
\begin{gather*}
g^{\prime \prime}+q \varepsilon|g|^{q-1} g^{\prime}=\alpha g-\frac{1}{2} \xi g^{\prime}, \quad \xi>0 \tag{2.1}\\
g(0)=\lambda, \quad g^{\prime}(0)=0 \tag{2.2}
\end{gather*}
$$

in which the nonnegative number q is not equal to $1, \alpha=-\frac{1}{2(q-1)}, \lambda>0$ and $\varepsilon \in\{-1,1\}$. Problem (1.5) is a special case of (2.1)-(2.2) in which $g>0$. As it was mentioned before, for any $\lambda>0$, problem $(2.1)-(2.2)$ has a unique maximal solution $g(., \lambda) \in C^{2}\left(\left[0, \xi_{\max }\right)\right)$. Furthermore $g(\xi, \lambda)>0$ for small $\xi>0$. An important objective is to find values of λ and q which insure that $g(., \lambda)$ is global, nonnegative and to give the asymptotic behavior as ξ tends to infinity. In this section we shall derive some properties of g which will be useful in the proof of the main results.

Lemma 2.1. Assume that $\alpha<0$. Let g be a solution to (2.1)-(2.2) such that $g>0$ on $\left[0, \xi_{0}\right)$. Then $g^{\prime}(\xi)<0$, for all $0<\xi<\xi_{0}$.

Proof. As $g^{\prime \prime}(0)=\alpha \lambda<0$ and $g^{\prime}(0)=0$, the function g is decreasing for small ξ. Suppose that there exists $\xi_{1} \in\left(0, \xi_{0}\right)$ such that $g^{\prime}(\xi)<0$ on $\left(0, \xi_{1}\right)$ and $g^{\prime}\left(\xi_{1}\right)=0$. Using (2.1) one sees $g^{\prime \prime}\left(\xi_{1}\right)<0$. Therefore we get a contradiction.

Lemma 2.2. Assume that $\varepsilon=-1$ and $\alpha \leq-\frac{1}{2}$. Then $g(., \lambda)$ changes the sign for every $\lambda>0$.
Proof. Suppose in the contrary that $g(., \lambda)>0$. Then $g^{\prime}(., \lambda)<0$ (and then $g(., \lambda)$ is global).
On the other hand Equation (2.1) can be written as

$$
g^{\prime \prime}+\frac{1}{2}(\xi g)^{\prime}=\left(\alpha+\frac{1}{2}\right) g+\left(g^{q}\right)^{\prime}
$$

Thus we have

$$
g^{\prime}(\xi)+\frac{1}{2} \xi g(\xi)=\left(\alpha+\frac{1}{2}\right) \int_{0}^{\xi} g(\eta) d \eta+g^{q}(\xi)-\lambda^{q}
$$

This implies that $g(\xi) \leq e^{-\frac{\xi^{2}}{4}}$, for all $\xi \geq 0$. Then passing to the limit, $\xi \rightarrow+\infty$, we infer

$$
0=\left(\alpha+\frac{1}{2}\right) \int_{0}^{\infty} g(\eta) d \eta-\lambda^{q}
$$

This is impossible.

Remark 2.1. The situation is different if $\varepsilon=1$. Peletier and Serafini [12] showed that if $\alpha<-\frac{1}{2}$ the solution changes the sign for λ sufficiently small. And if $0>\alpha \geq-\frac{1}{2}$, the solution g is nonnegative on $[0,+\infty[$.

Finally a standard analysis gives the following
Lemma 2.3. Assume that $\alpha>0$. Let g be a solution to (2.1)-(2.2) defined on $\left[0, \xi_{0}[\right.$, where $\varepsilon= \pm 1$. Then $g^{\prime}(\xi)>0$ for all $0<\xi<\xi_{0}$.

In fact we shall show in Section 4 that the solution g cannot blow-up for finite ξ. In the next sections we shall give the asymptotic behavior of all possible positive solutions to (2.1)-(2.2) in the following cases : $\varepsilon=-1$ and $q>2$ and $\varepsilon= \pm 1$ and $0<q<1$.

3. Global behavior for $q>2$ and $\varepsilon=-1$

The first simple consequence of the fact that $q>2$ is that $0>\alpha>-\frac{1}{2}$, and then if $g(\xi)>0$ on $(0,+\infty)$ we have $g^{\prime}(\xi)<0$ for all $\xi>0$. It is also clear that

$$
\begin{equation*}
g(\xi) \leq \lambda, \quad \forall \xi \geq 0 \tag{3.1}
\end{equation*}
$$

Actually $g(\xi) \leq \lambda$, for small ξ, in order to be bigger that λ, the solution g has to return at some $\xi_{1}>0$, and at this point $g^{\prime}\left(\xi_{1}\right)=0$ and $g^{\prime \prime}\left(\xi_{1}\right) \geq 0$ in contradiction with (2.1) for $g\left(\xi_{1}\right) \geq 0$. If $g\left(\xi_{1}\right)<0$ then g cannot cross the line $\xi=0$ again : suppose "yes" at point $\xi_{2}: g\left(\xi_{2}\right)=0$. Here we have that $g<0$ on $\left(\xi_{1}, \xi_{2}\right)$ and by a uniqueness argument we may conclude that $g^{\prime}\left(\xi_{1}\right)<0$ and $g^{\prime}\left(\xi_{2}\right)>0$. Now observe that (2.1) can be written as

$$
g^{\prime \prime}+\left(|g|^{q}\right)^{\prime}+\frac{1}{2}(\xi g)^{\prime}=\left(\alpha+\frac{1}{2}\right) g, \quad \xi \in\left(\xi_{1}, \xi_{2}\right)
$$

Integrate the last equation over $\left(\xi_{1}, \xi_{2}\right)$:

$$
g^{\prime}\left(\xi_{2}\right)=\left(\alpha+\frac{1}{2}\right) \int_{\xi_{1}}^{\xi_{2}} g d \xi+g^{\prime}\left(\xi_{1}\right)<0
$$

while the left hand side is positive. We get a contradiction. So $g(\xi)$ is bounded from above by λ. And we can conclude that

Lemma 3.1. For any $\lambda>0$, and $\varepsilon= \pm 1$, the solution $g(., \lambda)$ to (2.1)-(2.2) can have at most one zero on $(0, \infty)$.

Peletier and Serafini proved in fact that for $\varepsilon=1$ any solution is nonnegative.
The following lemma shows that all global positive solutions decay to 0 .
Lemma 3.2. Let g be the solution to (2.1)-(2.2) where $q>2$. Assume that $g(\xi)>0$ for any $\xi>0$. Then

$$
\lim _{\xi \rightarrow+\infty} g(\xi)=0, \quad \lim _{\xi \rightarrow+\infty} g^{\prime}(\xi)=0
$$

Proof. Since $g^{\prime}<0$ and g is bounded below by $0 g$ has a finite limit at ∞; say g_{0}. First there exists $\left(\xi_{n}\right)$ such that $g^{\prime}\left(\xi_{n}\right)$ goes to 0 as ξ_{n} tends to ∞ with n.
Now as the energy $E=\left(g^{\prime}\right)^{2}-\alpha g^{2}$ is monotone decreasing for a large ξ we deduce that g^{\prime} tends to 0 as $\xi \rightarrow \infty$. Now suppose that $g_{0}>0$. Equation (2.1) gives

$$
g^{\prime \prime}+\frac{1}{2} \xi g^{\prime}<\alpha g_{0}
$$

Multiply this by $e^{\frac{\xi^{2}}{4}}$ and integrate :

$$
\begin{equation*}
g^{\prime}(\xi)<\alpha g_{0} e^{-\frac{\xi^{2}}{4}} \int_{0}^{\xi} e^{\frac{\tau 2}{4}} d \tau \tag{3.2}
\end{equation*}
$$

Since

$$
\lim _{\xi \rightarrow+\infty} \frac{\int_{0}^{\xi} e^{\frac{\tau 2}{4}} d \tau}{\frac{1}{\xi} e^{\frac{\xi^{2}}{4}}}=2,
$$

thanks to l'Hôpital's rule, we infer

$$
g^{\prime}(\xi)<\alpha g_{0} \frac{1}{\xi}, \text { for } \xi \text { large },
$$

which implies that g goes to $-\infty$ as $\xi \rightarrow+\infty$, this is impossible.
In [3] it is shown that

$$
\begin{equation*}
g(\xi) \leq \lambda \xi^{2 \alpha}\left\{1-2 \alpha \int_{0}^{+\infty} \tau^{-2 \alpha-1} e^{-\frac{\tau^{2}}{4}} d \tau\right\} \tag{3.3}
\end{equation*}
$$

for all $\xi>0$. Therefore $g(\xi)$ goes to 0 as $\xi \rightarrow+\infty$ since $\alpha<0$.
Lemma 3.3. Assume $\varepsilon=-1$. Then there exists $\lambda_{1}>0$ such that the solution $g(., \lambda)$ to (2.1)-(2.2), where $q>2$ and $\lambda>\lambda_{1}$, has exactly one positive zero.

Proof. Assume that for all $\lambda>0$ the solution, $g(., \lambda)$, to (2.1)-(2.2) is positive on $(0,+\infty)$ and then $g^{\prime}(., \lambda)<0$.
Set $g=g(., \lambda)$.
Integrating of (2.1) over $(0, \xi)$ yields

$$
g^{\prime}(\xi)+\frac{1}{2} \xi g(\xi)=\left(\alpha+\frac{1}{2}\right) \int_{0}^{\xi} g(\tau) d \tau+g^{q}(\xi)-\lambda^{q} .
$$

Then

$$
g^{\prime}(\xi) \leq\left(\alpha+\frac{1}{2}\right) \lambda \xi-\lambda^{q}+g^{q}(\xi) .
$$

From the last inequality and (3.3), we deduce that

$$
g(\xi) \leq \lambda+\frac{1}{2}\left(\alpha+\frac{1}{2}\right) \lambda \xi^{2}-\lambda^{q} \xi+C \lambda^{q},
$$

for some positive constant C, which is independent of λ.
Setting $\xi=2 C$ we infer

$$
g(2 C) \leq \lambda+2\left(\alpha+\frac{1}{2}\right) C^{2} \lambda-C \lambda^{q} .
$$

This shows that $g(2 C)<0$ if λ is large, a contradiction.
Let us now investigate in more detail how $\left(g, g^{\prime}\right)$ behaves in the phase plane as ξ increases. We proceed as in [5]. Set $h=g^{\prime}$, equation (2.1) is reduced to the following first order system

$$
\left\{\begin{array}{l}
g^{\prime}=h, \tag{3.4}\\
h^{\prime}=\alpha g+q|g|^{q-1} h-\frac{1}{2} \xi h,
\end{array}\right.
$$

with the initial condition

$$
\begin{equation*}
g(0)=\lambda, \quad h(0)=0 . \tag{3.5}
\end{equation*}
$$

This system has only one critical point $(0,0)$ and since $q>1$, problem (3.4)-(3.5) has a unique local solution (g, h) for every $\lambda>0$.
For each $\gamma>0$ we define

$$
P_{\gamma}=\{(g, h) ; g>0, h<0, h \geq-\gamma g\},
$$

and we introduce

$$
\xi(\lambda, \gamma)=2\left(-\frac{\alpha}{\gamma}+\gamma\right)+2 q \lambda^{q-1}
$$

Arguing as in [5, 9] we obtain
Lemma 3.4. For any fixed $\gamma>0$, the set P_{γ} is positively invariant for $\xi_{0}>\xi(\lambda, \gamma)$; that is if $\xi_{0}>\xi(\lambda, \gamma)$ and $\left(g\left(\xi_{0}\right), h\left(\xi_{0}\right)\right) \in P_{\gamma}$, then $(g(\xi), h(\xi)) \in P_{\gamma}$ for all $\xi \geq \xi_{0}$.

According to Lemmas 3.2 and 3.4 we have
Lemma 3.5. Let g be the solution to (2.1). Assume that $g(\xi)>0$ for all $\xi>0$. Then

$$
\begin{equation*}
\text { either } \quad \lim _{\xi \rightarrow+\infty} \frac{g^{\prime}(\xi)}{g(\xi)}=0 \quad \text { or } \quad \lim _{\xi \rightarrow+\infty} \frac{g^{\prime}(\xi)}{g(\xi)}=-\infty . \tag{3.6}
\end{equation*}
$$

The proof is similar to the proof of the corresponding results in $[5,9,12]$.
Setting

$$
L^{\star}(\lambda)=\lambda\left\{1-2 \alpha \int_{0}^{+\infty} \tau^{-2 \alpha-1} e^{-\frac{\tau^{2}}{4}} d \tau\right\}
$$

Proposition 3.1. Let g be the solution to (2.1)-2.2) such that $g>0$. Then the limit

$$
L(\lambda)=\lim _{\xi \rightarrow \infty} \xi^{-2 \alpha} g(\xi),
$$

exists in $\left[0, L^{\star}(\lambda)\right]$ and we have

$$
\begin{aligned}
& \lim _{\xi \rightarrow \infty} \frac{g^{\prime}(\xi)}{g(\xi)}=-\infty \quad \Rightarrow \quad L(\lambda)=0 \\
& \lim _{\xi \rightarrow \infty} \frac{g^{\prime}(\xi)}{g(\xi)}=0 \quad \Rightarrow L(\lambda)>0
\end{aligned}
$$

Proof. If $\lim _{\xi \rightarrow \infty} \frac{g^{\prime}(\xi)}{g(\xi)}=-\infty$, then $g(\xi)=O\left(e^{-k \xi}\right)$ as $\xi \rightarrow \infty$, so that $\xi^{-2 \alpha} g(\xi)$ goes to 0 as $\xi \rightarrow \infty$. Now assume that

$$
\lim _{\xi \rightarrow \infty} \frac{g^{\prime}(\xi)}{g(\xi)}=0
$$

Set

$$
u(\xi)=\frac{g^{\prime}(\xi)}{g(\xi)} .
$$

Thus

$$
\begin{equation*}
u^{\prime}+\frac{1}{2} \xi u=-\frac{1}{2} \frac{2-q}{q-1}+\varphi(\xi), \quad u(0)=0 \tag{3.7}
\end{equation*}
$$

where $\varphi(\xi)=q g^{q-1} u-u^{2}$.
Note that φ goes to 0 as $\xi \rightarrow+\infty$ and u can be defined by

$$
\begin{equation*}
u(\xi)=e^{-\frac{\xi^{2}}{4}} \int_{0}^{\xi}\{\alpha+\varphi(\tau)\} e^{\frac{\tau^{2}}{4}} d \tau \tag{3.8}
\end{equation*}
$$

hence

$$
\begin{equation*}
\xi u(\xi)=\frac{\left.\int_{0}^{\xi}\{\alpha+\varphi(\tau)\} e^{\frac{\tau^{2}}{4}}\right\} d \tau}{\frac{1}{\xi} e^{\frac{\xi^{2}}{4}}}, \quad \forall \xi>0 \tag{3.9}
\end{equation*}
$$

Applying the l'Hôpital's rule to the right-hand side of (3.9), we infer

$$
\begin{equation*}
\lim _{\xi \rightarrow \infty} \xi u(\xi)=2 \alpha . \tag{3.10}
\end{equation*}
$$

This shows in particular that for any $\tau>0$ there exists $K_{\tau}>0$ such that

$$
\begin{equation*}
g(\xi) \leq K_{\tau} \xi^{(2 \alpha+\tau)}, \text { for all } \xi \geq 0 \tag{3.11}
\end{equation*}
$$

Now given $1 \leq k<2-\tau(q-1)$. Since

$$
\xi^{k} \varphi(\xi)=q g^{q-1} \xi^{k} u-\xi^{k} u^{2}
$$

we get

$$
\xi^{k}|\varphi(\xi)| \leq q K_{\tau}^{q-1} \xi^{k-2+\tau(q-1)}+\xi^{k-2}(\xi u)^{2} .
$$

According to the choice of k and to (3.10) we deduce $\lim _{\xi \rightarrow+\infty} \xi^{k} \varphi(\xi)=0$.
On the other hand u satisfies:

$$
\xi^{k}\{\xi u(\xi)-2 \alpha\}=\frac{\int_{0}^{\xi}(\alpha+\varphi(\tau)) e^{\frac{\tau^{2}}{4}}-2 \alpha e^{\frac{\xi^{2}}{4}} \xi^{-1}}{e^{\frac{\tau^{2}}{4}} \xi^{-1-k}}
$$

Then, by l'Hôpital's rule, we get that

$$
\lim _{\xi \rightarrow+\infty} \xi^{k}\{\xi u(\xi)-2 \alpha\}=2 \lim _{\xi \rightarrow+\infty} \xi^{k} \varphi(\xi)=0 .
$$

It follows from this that

$$
\frac{g^{\prime}}{g}=2 \alpha \frac{1}{\xi}+\frac{\epsilon(\xi)}{\xi^{k+1}}
$$

for all $\xi>\xi_{0}$.
Hence

$$
g(\xi)=L(\lambda) \xi^{2 \alpha}\left\{1+o\left(\frac{1}{\xi}\right)\right\}, L(\lambda)>0 .
$$

Now we are in position to give the asymptotic behavior of $g(., \lambda)$.
Theorem 3.1. Let g be the solution to (2.1)-(2.2) such that $g(\xi)>0$ for all $\xi>0$.

1. If $L(\lambda)=0$, there exists $A>0$ such that

$$
g(\xi)=A e^{-\frac{\xi^{2}}{4}} \xi^{\frac{2-q}{q-1}}\left\{1-\frac{b}{\xi^{2}}+o\left(\frac{1}{\xi^{2}}\right)\right\},
$$

2. if $L(\lambda)>0$, then

$$
g(\xi)=L(\lambda) \xi^{-\frac{1}{q-1}}\left\{1-\frac{c}{\xi^{2}}+o\left(\frac{1}{\xi^{2}}\right)\right\}
$$

as $\xi \rightarrow \infty$, where $b=\frac{(2 q-3)(q-2)}{(q-1)^{2}}$ and $c=2 q \alpha(L(\lambda))^{q-1}+2 \alpha(1-2 \alpha)$.
Proof. For the proof of item 2 it is sufficient to settle $\lim _{\xi \rightarrow+\infty} \xi^{2}(\xi u(\xi)-2 \alpha)$. Same as above we have

$$
\lim _{\xi \rightarrow+\infty} \xi^{2}[\xi u(\xi)-2 \alpha]=2 \lim _{\xi \rightarrow+\infty} \xi^{2} \varphi(\xi)+4 \alpha .
$$

This yields that

$$
\lim _{\xi \rightarrow+\infty} \xi^{2}[\xi u(\xi)-2 \alpha]=4 q \alpha(L(\lambda))^{q-1}-2(2 \alpha)^{2}+4 \alpha .
$$

Consequently

$$
\begin{equation*}
\frac{g^{\prime}}{g}=-2 \frac{c}{\xi^{3}}-\frac{1}{q-1} \frac{1}{\xi}+\frac{\epsilon(\xi)}{\xi^{3}}, \tag{3.12}
\end{equation*}
$$

where $c=2 q \alpha(L(\lambda))^{q-1}+2 \alpha(1-2 \alpha)$.
A simple integration of (3.12) yields the desired asymptotic.
Now we shall prove item 1. Here we assume that $L(\lambda)=0$. By Equation (2.1) one sees

$$
\frac{g^{\prime \prime}}{\xi g^{\prime}(\xi)+g}=\frac{-\frac{1}{2}+\alpha \frac{g}{\xi g^{\prime}}+\frac{q g^{q-1}}{\xi}}{1+\frac{g}{\xi g^{\prime}}}
$$

Now using the l'Hôpital's rule and the fact that $g / g^{\prime} \rightarrow 0$ at infinity we obtain

$$
\begin{equation*}
\lim _{\xi \rightarrow \infty} \frac{g^{\prime}}{\xi g}=-\frac{1}{2} \tag{3.13}
\end{equation*}
$$

Next define

$$
G(\xi)=\xi g^{\prime}+\frac{1}{2} \xi^{2} g, \quad F(\xi)=\xi^{2} G-a \xi^{2} g,
$$

where

$$
a=-(2 \alpha+1)=\frac{q-2}{q-1} .
$$

A simple computation shows that

$$
\begin{equation*}
\frac{G^{\prime}}{g^{\prime}}=1+\frac{\xi g}{g^{\prime}}+q \xi g^{q-1}+\alpha \frac{\xi g}{g^{\prime}} \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{F^{\prime}(\xi)}{g^{\prime}(\xi)}=2(\alpha+1) \xi \frac{g}{g^{\prime}} \frac{G}{g}+q \xi^{3} g^{q-1}+2 \frac{\xi g}{g^{\prime}}\left[\frac{G}{g}-a\right] . \tag{3.15}
\end{equation*}
$$

Applying again the l'Hôpital's rule to (3.14)-(3.15) we deduce successively

$$
\lim _{\xi \rightarrow+\infty} \frac{G(\xi)}{g(\xi)}=a
$$

and

$$
\lim _{\xi \rightarrow+\infty} \frac{F(\xi)}{g(\xi)}=2 b
$$

where $b=\frac{(2 q-3)(q-2)}{(q-1)^{2}}$. Same as above results we get item 1 by an easy integration.
Remark 3.1. The results of Theorem 3.1 have been recently obtained independently by P. Biler and G. Karch in [3].

Remark 3.2. It follows from Theorem 3.1 that if $g \in L^{1}((0,+\infty))$ and is positive then g satisfies item 1;

$$
g(\xi)=A e^{-\frac{\eta^{2}}{4}} \xi^{\frac{2-q}{q-1}}\left\{1-\frac{b}{\xi^{2}}+o\left(\frac{1}{\xi^{2}}\right)\right\}
$$

Integrating (2.1) over $(0, \xi)$ yields

$$
g^{\prime}(\xi)+\frac{1}{2} \xi g(\xi)-g^{q}(\xi)+\lambda^{q}=\left(\alpha+\frac{1}{2}\right) \int_{0}^{\xi} g(\eta) d \eta
$$

Passing to the limit, as $\xi \rightarrow \infty$, we deduce

$$
\lambda^{q} \frac{2(q-1)}{q-2}=\int_{0}^{\infty} g(\xi) d \xi
$$

This shows in particular the following uniqueness result.

Proposition 3.2. Let $q>2$. Let f and h be two solutions to

$$
\left\{\begin{array}{l}
g^{\prime \prime}-\left(g^{q}\right)^{\prime}=\alpha g-\frac{1}{2} \xi g^{\prime}, \text { on }(0,+\infty), \\
g^{\prime}(0)=0, \quad g(\xi)>0, \text { for all } \xi \geq 0,
\end{array}\right.
$$

such that

$$
\int_{0}^{\infty} f(\xi) d \xi=\int_{0}^{\infty} h(\xi) d \xi .
$$

Then $f \equiv h$.
Now we shall show that problem (2.1)-(2.2) has a positive solution satisfying item 2 provided that the initial data $g(0)$ is sufficiently small. To this end we set

$$
f=g / \lambda .
$$

Therefore f satisfies

$$
\left\{\begin{array}{l}
f^{\prime \prime}+\frac{1}{2} \xi f^{\prime}-q \lambda^{q-1}|f|^{q-1} f^{\prime}-\alpha f=0, \tag{3.16}\\
f^{\prime}(0)=0, \quad f(0)=1
\end{array}\right.
$$

If we now let $\lambda \rightarrow 0$, we formally obtain

$$
\left\{\begin{array}{l}
f^{\prime \prime}+\frac{1}{2} \xi f^{\prime}-\alpha f=0, \tag{3.17}\\
f^{\prime}(0)=0, \quad f(0)=1 .
\end{array}\right.
$$

Since the energy function $H=\left(f^{\prime}\right)^{2}-\alpha f^{2}$ is nonincreasing and uniformly bounded by $-\alpha>0, f$ is global and goes to 0 . Moreover $f>0, f^{\prime}<0$ and satisfies item 2 of Theorem 3.1 (otherwise we get $0=\|f\|_{1}$, a contradiction -see Remark 3.1-). Since (3.16) is a regular perturbation of (3.17) it follows that the solution to (3.16) is global, positive and satisfies item 1 for λ sufficiently small. Results of the present section gives us quite a good picture of the main properties of solutions to (2.1)-(2.2). We have one of the following properties:
a) $g(\xi)>0$ on some $\left(0, \xi_{0}\right)$ and $g\left(\xi_{0}\right)=0$,
b) $g(\xi)>0$ for all $\xi \geq 0$ and $g(\xi)=L(\lambda) \xi^{-\frac{1}{q-1}}\left\{1-\frac{c}{\xi^{2}}+o\left(\frac{1}{\xi^{2}}\right)\right\}$,
c) $g(\xi)>0$ for all $\xi \geq 0$ and $g(\xi)=A e^{-\frac{\xi^{2}}{4}} \xi^{\frac{2-q}{q-1}}\left\{1-\frac{b}{\xi^{2}}+o\left(\frac{1}{\xi^{2}}\right)\right\}$.

Returning to the original variables u and x we can see that the asymptotics behavior given in a) and b) yield the following two possibilities
a1) either

$$
\int_{0}^{\infty} u(x, t) d x=+\infty, \quad \text { for any } t>0
$$

b1) or

$$
\int_{0}^{\infty} u(x, t) d x=M t^{\frac{1}{2} \frac{q-2}{q-1}}, \quad \text { for any } t>0
$$

4. Case $0<q<1$ and $\varepsilon= \pm 1$

In this section we consider

$$
\begin{gather*}
g^{\prime \prime}+\varepsilon q|g|^{q} g^{\prime}=\alpha g-\frac{1}{2} \xi g^{\prime}, \quad \xi>0 \tag{4.1}\\
g(0)=\lambda>0, \quad g^{\prime}(0)=0 \tag{4.2}
\end{gather*}
$$

in which $\alpha=-\frac{1}{2} \frac{1}{q-1}, 0<q<1$ and $\varepsilon= \pm 1$. We study the asymptotic behavior of global solutions to (4.1)-(4.2). Note that $\alpha>0$ and the standard theory of initial value problems implies the existence and uniqueness of such solutions in a neighbourhood of the origin. At $\xi=0 g^{\prime \prime}(0)=\alpha \lambda>0$. So in a small neighbourhood of $0 g$ is increasing. In order to show that problem (4.1)-(4.2) has a unique global solution, it is sufficient to show the following

Lemma 4.1. The solution $g(\xi)$ to (4.1)-(4.2) cannot blow-up for finite ξ; moreover $g^{\prime}(\xi)>0$ for all $\xi>0$.

Proof. Let $\xi_{0}>0$ be the first positive zero for g^{\prime}. At this point $g>0$ so is $g^{\prime \prime}$ which is impossible in a small left neighbourhood of ξ_{0}.
Now assume that g blows-up at $\bar{\xi}$. Set

$$
\begin{equation*}
E=\left(g^{\prime}\right)^{2}-\alpha g^{2} \tag{4.3}
\end{equation*}
$$

Using (4.1)-(4.2) one sees that $E^{\prime}(\xi)=-2\left(g^{\prime}\right)^{2}(\xi)\left[\frac{1}{2} \xi+\varepsilon q g^{q-1}\right]$. Since $g^{q-1}(\xi)$ goes to 0 as $\xi \rightarrow \bar{\xi}$ we deduce that the limit $\lim _{\xi \rightarrow \bar{\xi}} E(\xi)=L$ exits in $[-\infty, A], A<+\infty$. This implies that

$$
\frac{g^{\prime}}{g} \leq \sqrt{\alpha}+\gamma, \gamma>0
$$

for all $\xi \in\left(\xi_{\gamma}, \bar{\xi}\right)$. And the last inequality yields that

$$
g(\xi) \leq g\left(\xi_{\gamma}\right) e^{(\sqrt{\alpha}+\gamma)\left(\xi-\xi_{\gamma}\right)}
$$

Therefore we get a contradiction. This means that g is bounded and then is global.
LEMMA 4.2. $\lim _{\xi \rightarrow+\infty} g(\xi)=+\infty$.
Proof. Suppose to the contrary that g is bounded. In that case, because of the monotonicity of g, we have $g(\xi) \rightarrow g_{0}, 0<g_{0}<+\infty$ and $g^{\prime}\left(\xi_{m}\right) \rightarrow 0$ for some sequence ξ_{m} converging to $+\infty$ with m. Using E we can see that $\lim _{\xi \rightarrow+\infty} g^{\prime}(\xi)=0$. Therefore

$$
\lim _{\xi \rightarrow+\infty} g^{\prime \prime}+\frac{1}{2} \xi g^{\prime}=\alpha g_{0}
$$

thanks to equation (4.1).
Arguing as in the proof of Lemma 3.2 we get

$$
g^{\prime}>\frac{C}{\xi}, \quad \text { for large } \xi
$$

and then g goes to infinity which leads to a contradiction.
Now we shall study the large ξ behaviour of g. First we prove that $u=g^{\prime} / g$ decays to 0 as $\xi \rightarrow \infty$. Recall that u is bounded and satisfies

$$
\begin{equation*}
u^{\prime}+\frac{1}{2} \xi u=\alpha+\varphi(\xi) \tag{4.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi(\xi)=\varepsilon q u g^{q-1}-u^{2} . \tag{4.5}
\end{equation*}
$$

A standard analysis of (4.4) implies that $u(\xi)$ converges to 0 as $\xi \rightarrow \infty$, and then $\varphi(\xi) \rightarrow 0$.
Theorem 4.1. Assume that $0<q<1$. Let g be the solution to (4.1)-(4.2). Then there exists $L(\lambda)>0$ such that

$$
\begin{equation*}
g(\xi)=L(\lambda) \xi^{2 \alpha}\left\{1-\frac{c}{\xi^{2}}+o\left(\frac{1}{\xi^{2}}\right)\right\}, \quad \text { as } \quad \xi \rightarrow+\infty \tag{4.6}
\end{equation*}
$$

where $c=2 \alpha(1-2 \alpha)+2 \varepsilon q \alpha(L(\lambda))^{q-1}$.
The proof is similar as in Section 3. We show that $u=\frac{g^{\prime}}{g}$ satisfies

$$
\begin{equation*}
\xi u=2 \alpha+2 \frac{c}{\xi^{2}}+o\left(\frac{1}{\xi^{2}}\right) \tag{4.7}
\end{equation*}
$$

which leads to (4.6).
The following result gives a more precise estimate of g as ξ goes to infinity.
Proposition 4.1. Let g be the solution to (4.1)-(4.2). Assume that $0<q<1$, then

$$
\begin{equation*}
g(\xi)=L(\lambda) \xi^{2 \alpha}\left\{1-\frac{c}{\xi^{2}}-\frac{d}{\xi^{4}}+o\left(\frac{1}{\xi^{4}}\right)\right\}, \quad \text { as } \quad \xi \rightarrow+\infty \tag{4.8}
\end{equation*}
$$

where

$$
c=2 \alpha(1-2 \alpha)+2 \varepsilon q \alpha(L(\lambda))^{q-1} \quad \text { and } \quad d=3-4 \alpha-2 \varepsilon q L^{q-1}(\lambda) c
$$

Proof. It is sufficient to calculate

$$
\lim _{\xi \rightarrow+\infty} \xi^{2}\left[\xi^{2}(\xi u(\xi)-2 \alpha)-2 c\right]
$$

In fact by (4.4) we deduce that

$$
\xi^{2}\left[\xi^{2}(\xi u(\xi)-2 \alpha)-2 c\right]=\frac{\int_{0}^{\xi}\left(\alpha+\varphi(s) e^{\frac{s^{2}}{4}} d s-2 \alpha \xi^{-1} e^{\frac{\xi^{2}}{4}}-2 c \xi^{-3} e^{\frac{\xi^{2}}{4}}\right.}{e^{\frac{\xi^{2}}{4}} \xi^{-5}}
$$

Thus

$$
\lim _{\xi \rightarrow+\infty} \xi^{2}\left[\xi^{2}(\xi u(\xi)-2 \alpha)-2 c\right]=12 c+2 \lim _{\xi \rightarrow+\infty} \xi^{2}\left[\xi^{2} \varphi(\xi)+2 \alpha-c\right]
$$

thanks to l'Hôpital's rule. Define

$$
A(\xi)=\xi^{2} \varphi(\xi)+2 \alpha-c
$$

Thus

$$
\begin{aligned}
& \left.A(\xi)=(2 \alpha)^{2}-(\xi u)^{2}-\varepsilon q\left\{\xi^{2} g^{q-1} u-2 \alpha(L(\lambda))^{q-1}\right)\right\} \\
& \left.A(\xi)=(2 \alpha-\xi u)(2 \alpha+\xi u)-\varepsilon q\left\{\xi^{2} g^{q-1} u-2 \alpha(L(\lambda))^{q-1}\right)\right\}
\end{aligned}
$$

By (4.7) and (4.8), we conclude that

$$
\xi^{2} A(\xi)=-8 \alpha c-4 \varepsilon q(L(\lambda))^{q-1} c+o(1)
$$

as $\xi \rightarrow 0$. Therefore

$$
\lim _{\xi \rightarrow+\infty} \xi^{2}\left[\xi^{2}(\xi u(\xi)-2 \alpha)-2 c\right]=\left(12-16 \alpha-8 \varepsilon q(L(\lambda))^{q-1}\right) c=: 4 d
$$

The proof is completed as in the proof of the Theorem 3.1.
In what follows we give some properties of $L(\lambda)$ in the case where $\varepsilon=1$. We shall establish in particular that $L(\lambda)$ is strictly increasing with respect to $\lambda, L(\lambda)$ goes to 0 with λ and

$$
L(\lambda)=l . \lambda+o(1), l>0, \quad \text { as } \lambda \rightarrow+\infty
$$

This is a consequence of the following
THEOREM 4.2. The function $\lambda \rightarrow L(\lambda)$ is continuous. Moreover for any $\lambda_{2}>\lambda_{1}$ we have

$$
\frac{L\left(\lambda_{2}\right)}{\lambda_{2}} \geq \frac{L\left(\lambda_{1}\right)}{\lambda_{1}}
$$

and there exists $L^{\star}>0$ such that $L(\lambda)<\lambda L^{\star}$, for any $\lambda>0$.
Proof. First we claim that if g_{1} and g_{2} are two solutions to problem (4.1)-(4.2) with initial values $\lambda_{1}<\lambda_{2}$, then

$$
\frac{g_{2}(\xi)}{g_{1}(\xi)} \geq \frac{\lambda_{2}}{\lambda_{1}}
$$

This leads in particular to

$$
\frac{L\left(\lambda_{2}\right)}{L\left(\lambda_{1}\right)} \geq \frac{\lambda_{2}}{\lambda_{1}}
$$

Proof of the claim.
We show that the quotient $v=\frac{g_{2}}{g_{1}}$ is an increasing function. To this end we study the sign of the Wronskian

$$
W=g_{1} g_{2}^{\prime}-g_{1}^{\prime} g_{2}
$$

Using (4.1)-(4.2) one sees that W satisfies

$$
\begin{equation*}
\left(e^{h(\xi)} W\right)^{\prime}=-q g_{2}^{\prime} g_{1} e^{h(\xi)}\left[g_{2}^{q-1}-g_{1}^{q-1}\right], \quad W(0)=0 \tag{4.9}
\end{equation*}
$$

where

$$
h(\xi):=\frac{\xi^{2}}{4}+q \int_{0}^{\xi} g_{1}^{q-1}(\tau) d \tau .
$$

By assumption $\lambda_{2}>\lambda_{1}$ the number

$$
\xi_{0}:=\sup \left\{\xi, g_{2}(\tau)>g_{1}(\tau) \text { on }[0, \xi]\right\}
$$

is nonnegative. Suppose that $\xi_{0}<+\infty$. It is clear that $g_{1}\left(\xi_{0}\right)=g_{2}\left(\xi_{0}\right)$ and $g_{1}^{\prime}\left(\xi_{0}\right)>g_{2}^{\prime}\left(\xi_{0}\right)$, so $W\left(\xi_{0}\right)<0$. But since $q<1$ we have

$$
\left(e^{h(\xi)} W\right)^{\prime}>0
$$

on $\left(0, \xi_{0}\right)$. This implies that

$$
e^{h(\xi)} W(\xi)>W(0)=0,
$$

for any $0<\xi<\xi_{0}$. By continuity of W we deduce that $W\left(\xi_{0}\right) \geq 0$. We get a contradiction.
This means that $\xi_{0}=+\infty$ and $W(\xi)>0$ for any $\xi>0$. Therefore v is increasing. Now to prove that $L(\lambda) / \lambda$ is bounded, we consider problem (3.16) :

$$
\left\{\begin{array}{l}
f^{\prime \prime}+\frac{1}{2} \xi f^{\prime}+q \lambda^{q-1}|f|^{q-1} f^{\prime}-\alpha f=0, \tag{4.10}\\
f^{\prime}(0)=0, \quad f(0)=1 .
\end{array}\right.
$$

If we now let $\lambda \rightarrow \infty$, we get

$$
\left\{\begin{array}{l}
f^{\prime \prime}+\frac{1}{2} \xi f^{\prime}-\alpha f=0, \tag{4.11}\\
f^{\prime}(0)=0, \quad f(0)=1
\end{array}\right.
$$

Let f_{0} be the solution to (4.11). Arguing as above we deduce that

$$
f_{0}(\xi)=L^{\star} \xi^{2 \alpha}\left\{1-\frac{c^{\star}}{\xi^{2}}+o\left(\frac{1}{\xi^{2}}\right)\right\} .
$$

Thus we conclude that $L(\lambda)<\lambda L^{\star}$ for any $\lambda>0$.
Now we are in position to prove the continuity of the function $\lambda \rightarrow L(\lambda)$. We follow an idea due to [12]. Fix $\lambda_{0}>0, \xi_{0}>0$ and let $\delta>0$ be a constant to be specified later.
Set $\lambda_{1}=\lambda_{0}-\delta, \lambda_{2}=\lambda_{0}+\delta$. For any $\lambda_{1} \leq \lambda \leq \lambda_{2}$ we have

$$
\left.\frac{g^{\prime}(\xi, \lambda)}{g(\xi, \lambda}\right)=\frac{2 \alpha}{\xi}+r(\xi, \lambda), \quad \xi \geq \xi_{0}
$$

where

$$
r(\xi, \lambda)=2 \frac{c}{\xi^{3}}+o\left(\frac{1}{\xi^{3}}\right), c=2 \alpha(1-2 \alpha)+2 q \alpha(L(\lambda))^{q-1}
$$

thanks to (4.7). As $L(\lambda)$ is bounded on $\left[\lambda_{1}, \lambda_{2}\right]$ there exists \bar{c}, which depends only on λ_{1}, λ_{2} and ξ_{0} such that

$$
|r(\xi, \lambda)| \leq \bar{c} \frac{1}{\xi^{3}}, \quad \forall \xi \geq \xi_{0} .
$$

This yields that

$$
\xi^{-2 \alpha} g(\xi, \lambda)=\xi_{0}^{-2 \alpha} g\left(\xi_{0}, \lambda\right) \exp \left(\int_{\xi_{0}}^{+\infty} r(\tau, \lambda) d \tau\right),
$$

and for any $\beta>0$

$$
\left|\exp \left(\int_{\xi_{0}}^{+\infty} r(\tau, \lambda) d \tau\right)-1\right|<\beta,
$$

if $\xi_{0}>\xi_{1}(\beta)$. This implies that for $\xi_{0}>\xi_{1}(\beta)$ and $\lambda_{1} \leq \lambda \leq \lambda_{2}$

$$
\left|L(\lambda)-\xi_{0}^{-2 \alpha} g\left(\xi_{0}, \lambda\right)\right|<\beta \xi_{0}^{-2 \alpha} g\left(\xi_{0}, \lambda\right)
$$

therefore

$$
\xi_{0}^{-2 \alpha} g\left(\xi_{0}, \lambda\right)<\frac{L(\lambda)}{1-\beta} \leq \frac{L\left(\lambda_{2}\right)}{1-\beta} .
$$

Consequently if $\beta=\frac{\varepsilon}{8 L\left(\lambda_{2}\right)}<\frac{1}{2}$, for ε small, we get

$$
\left|L(\lambda)-\xi_{0}^{-2 \alpha} g\left(\xi_{0}, \lambda\right)\right|<\frac{\varepsilon}{4},
$$

for any $\lambda_{1} \leq \lambda \leq \lambda_{2}$.
Hence

$$
\left|L(\lambda)-L\left(\lambda_{0}\right)\right| \leq\left|L(\lambda)-\xi_{0}^{-2 \alpha} g\left(\xi_{0}, \lambda\right)\right|+\left|\xi_{0}^{-2 \alpha} g\left(\xi_{0}, \lambda\right)-\xi_{0}^{-2 \alpha} g\left(\xi_{0}, \lambda_{0}\right)\right|+\left|L\left(\lambda_{0}\right)-\xi_{0}^{-2 \alpha} g\left(\xi_{0}, \lambda_{0}\right)\right|
$$

Now if we choose for fixed $\xi_{0}>\xi_{1}$ a $\delta>0$ such that

$$
\left|g\left(\xi_{0}, \lambda\right)-g\left(\xi_{0}, \lambda_{0}\right)\right|<\frac{\varepsilon}{2} \xi_{0}^{-2 \alpha},
$$

for any $\left|\lambda-\lambda_{0}\right|<\delta$ we infer

$$
\left|L(\lambda)-L\left(\lambda_{0}\right)\right|<\varepsilon,
$$

if $\left|\lambda-\lambda_{0}\right|<\delta$.
This completes the proof of Theorem 4.2.

Corollary 4.1. For any $L>0$ the problem

$$
\left\{\begin{array}{l}
g^{\prime \prime}+\frac{1}{2} \xi g^{\prime}+q|g|^{q-1} g^{\prime}-\alpha g=0, \quad \text { on }(0,+\infty), \\
g^{\prime}(0)=0, g>0, \quad \xi^{-2 \alpha} g(\xi) \rightarrow L,
\end{array}\right.
$$

has a unique solution.
Corollary 4.2. Let $\alpha>-\frac{1}{2}$. For any $A>0$ the function $f=\frac{A}{L^{\star}} f_{0}$ is the unique solution to

$$
\left\{\begin{array}{l}
f^{\prime \prime}+\frac{1}{2} \xi f^{\prime}-\alpha f=0, \tag{4.12}\\
f^{\prime}(0)=0, \quad \lim _{\xi \rightarrow+\infty} \xi^{2 \alpha} f(\xi)=A,
\end{array}\right.
$$

where f_{0} is the solution to (4.11).

Acknowledgments

The author thanks P. Biler, G. Karch and J. Goncerzewicz for interesting duscussions during his stay in Wroclaw. This work is supported by "Polonium-97074" and DAI-UPJV Amiens, France.

References

[1] A. Abramowitz \& A. Stegun, Eds., Handbook of mathematical functions, National Bureau of Standars, 1964.
[2] G.I. Barenblatt,V.M. Entov \& V.M. Ryzhik, Theory of fluids flows through natural rocks, Kluwer Academic Publishers, 1990.
[3] P. Biler \& G. Karch, A nonlinear Neumann problem on the half-line, (to appear).
[4] G.I. Barenblatt \& G.I. Sivashinski, Self-similar solutions of the second kind in nonlinear filtration, (translated from Russian PMM, pages 861-870), Applied Math. Mech. 33, (1969), pp. 836-845.
[5] H. Brezis, L. A. Peletier \& D. Terman, A very singular solution of the heat equation with absorption, Arch. Rat. Mech. Analysis, 95, (1986), pp. 185-209.
[6] S. Claudi, Asymptotic behavior for a diffusion-convection equation with rapidly decreasing initial data, Adv. Diff. Eqns, 3, (1998), pp. 361-386.
[7] M. Escobedo, J.L. Vazquez \& E. Zuazua, Asymptotic behaviour and source-type solutions for a diffusion-convection equation, Arch. Rational Mech. Anal. 124, (1993), pp.43-65.
[8] A. Gmira \& L. Veron, Large time behavior of a semilinear parabolic equation in \mathbb{R}^{n}, J. Diff. Eqns, 53, (1984), pp. 258-276.
[9] M. Guedda \& R. Kersner, Self-similar solutions to the generalized deterministic KPZ equation, to appear
[10] A. Gmira, M. Guedda \& L. Veron, Source-Type solution for the one dimensional diffusionconvection equation, to appear
[11] S. Kamin, L. A. Peletier \& J. L. Vazquez, On the Barenblat Equation of Elasto- Plastic Filtration, Indiana Univ. Math. Journal, Vol 40, No 4, (1991), pp. 1333-1362.
[12] L. A. Peletier \& H. C. Serafini, A very singular solution and self-similar solutions of the heat equation with convection, Nonlinear Anal. Meth. Appl. Vol. 24, 1, (1995), pp. 29-49.
[13] L. A. Peletier, D. Terman, \& F. B. Weissler, On the equation $\Delta u+\frac{1}{2} x . \nabla u+f(u)=0$, Arch. Rat. Mech. Analysis, 94, (1986), pp. 83-99.
[14] A. A. Samarski, V. A. Galaktionov, S. Kurdyumov \& A.P. Mikhailov, Blow-up in Quasilinear Parabolic Equations, De Gruyter Expositions in Mathematics, 19, 1995.

