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Abstract

Stochastic ordinary differential equations (SODE) represent physical phenomena driven by
stochastic processes. Like for deterministic differential equations, various numerical schemes are
proposed for SODE (see references). We will consider several concepts of stability and connection
between them.
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1 Introduction

We consider the stochastic initial value problem (SIVP) for the Itô ordinary differential equations (SODE)
given by

dX(t) = a(t,X(t))dt+
m
∑

j=0

bj(t,X(t))dWj(t), for 0 ≤ t < +∞, X(t) ∈ R, (1)

where
a : [0,+∞) ×R → R, bj : [0,+∞) ×R → R, X(0) = x, (∈ R),

where Wj(t) is one-dimensional Brownian motion, 1 ≤ j ≤ m. Let Ft denote the increasing family
of σ-algebras (filtration) generated by the Brownian motion Wj(s), s ≤ t. Details about this stochastic
object and corresponding calculus can be found in [1, 6].

It is known that in deterministic models we consider parameters which are completely known, though
in the original problem one often has insufficient information on parameter values. These may fluctuate
due to some external or internal ’noise’, which is random- at least appears to be so. In such a way
we move from deterministic problems to stochastic problems (stochastic ordinary differential equations
(SODE)). Explicit solutions are not usually known for equation (1), so they must be solved numerically
so we have to do a qualitative investigation on the boundedness and stability of their solutions. In the
literature there are some works on that topic such as [2, 4, 5, 8].

In this paper, we shall be interested in obtaining stability properties for numerical approximations
of strong solutions of SODE. The concepts of numerical stability in the quadratic mean-square sense,
stochastical numerical stability, asymptotical numerical stability in the quadratic mean-square sense,
asymptotical stochastical numerical stability are introduced. This paper is organized as follows: in
Section 2 we define stability concepts for SODE, though in Section 3 we analyse stability properties for
numerical approximations of SODE, Section 4 is devoted to the asymptotic stability properties for the
same. In Section 5 we illustrate our results for geometric Brownian motion and Ornstein-Uhlenbeck
process.
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2 Stability for SODE

We consider an Itô equation (1) with a steady solution Xt ≡ 0. This means that a(t, 0) = bj(t, 0) = 0, 1 ≤
j ≤ m holds. Xt0,0(t) means that Xt0,0(t0) = 0.

‖ · ‖ denotes an Eucledean norm in Rd, or this is equivalent to absolute value in R.
The following definitions are due to Hasminski:

Definition 2.1 The steady state solution X t0,0(t) ≡ 0 of the equation (1) is said to be stochastically
stable if for any ε > 0 and t0 ≥ 0

lim
x0→0

P (sup
t≥t0

‖ Xt0,x0(t) ‖≥ ε) = 0.

Definition 2.2 The steady state solution X t0,0(t) ≡ 0 of the equation (1) is said to be stochastically
asymptotically stable if, in addition to being stochastically stable,

lim
x0→0

P ( lim
t→+∞

‖ Xt0,x0(t) ‖= 0) = 1.

Notice, that in view of the 0-1 law the above probability is either equal to 1, or to 0.
For the general SODE (1) Kloeden and Platen (cf. [7]) gave the following definition:

Definition 2.3 The steady state solution X t0,0(t) ≡ 0 of the equation (1) is stable in the pth mean if
for

(∀ε > 0) (∀t0 > 0), (∃δ = δ(t0, ε) > 0)

such that
E ‖ Xt0,x0(t) ‖p< ε

for all t ≥ t0 and ‖ x0 ‖< δ.

Definition 2.4 The steady state solution X t0,0(t) ≡ 0 of the equation (1) is asymptotically stable in
the pth mean if in addititon, there exists a δ = δ(t0) such that

lim
t→+∞

E ‖ Xt0,x0(t) ‖p= 0 for all ‖ x0 ‖< δ.

The most frequently used case p = 2 is called the mean-square case and in sequel we focus our
investigation to mean-square stability.

We suppose that the equation (1) has a unique, mean-square bounded strong solution X(t).

3 Numerical Stability

Doing numerics for SODE it means that we have to define discretization.
The most usual deterministic time discretization of a bounded time interval [0, T ], T > 0 is of the

form 0 = t0 < t1 < . . . < tN = T, where N is a natural number. The differences ∆n = tn+1 − tn are
defined as step sizes.

We recall the definition of the general time discretization from [7]: for a given maximum step size
δ ∈ (0, δ0) we define a time discretization

(τ)δ = {τn : n = 0, 1, . . .}

as a sequence of time instants {τn : n = 0, 1, . . .} which may be random, satisfying

0 = τ0 < τ1 < . . . < τN < . . . < +∞,

sup
n
{τn+1 − τn} ≤ δ,

nt < +∞

w.p.1 for all t ∈ R+, where τn+1 is Fτn
-measurable for each n = 0, 1, 2, . . . and nt is defined as follows

nt = max{n = 0, 1, . . . : τn ≤ t}.

Here we give the definition of a time discrete approximation as in [7].
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Definition 3.1 We shall say that a right continuous with left hand limits process Y = (Y (t), t ≥ 0) is
a time discrete approximation of the solution of equation (1) with maximum step size δ ∈ (0, δ0) if it is
based on a time discretization (τ)δ such that Y (τn) is Fτn

− measurable and Y (τn+1) can be expressed
as a function of Y (τ0), Y (τ1), . . . , Y (τn), τ0, τ1, . . . , τn, τn+1 and a finite number r of Fτn+1

− measurable
random variables Zn,j for j = 1, . . . , r and each n = 0, 1, . . .

In the sequel Y ∆
n always denotes the approximation of X(tn) using a given numerical scheme with

maximum step size ∆. The most simplest form of the discretization is an equidistant discretization. We
will omit the superscript ∆ if there is no confusion.

The used label Const is independent of ∆ and it may depend on T . In the sequel Const always
denotes constants of this property.

Let the general multi-dimensional one-step scheme for a given time discretization be defined as

Yn+1 = Yn + ψ(τn, Yn+1, Yn,∆, Zn,1, . . . , Zn,r). (2)

Here Zn,1, . . . , Zn,r are stochastic variables depending on ∆ and measurable with respect to Ftn+1
eval-

uated at points of the partition tm,m = n, n+ 1. Function ψ is defined by

ψ = ∆

1
∑

j=0

β1,j f̂n+j,1 + ∆2

1
∑

j=0

β2,j f̂n+j,2 + . . .+ ∆k

1
∑

j=0

βk,j f̂n+j,k +

Zn,1β0,1fn,1 + . . .+ Zn,rβ0,rfn,r,

where f̂n+j,i = f̂i(tn+j , Yn+j), fn+j,i = fi(tn+j , Yn+j), and functions fi, f̂i depend on functions a, bj , j =
1, . . . ,m and derivatives of them.

To this end let
φ(tn, Yn,∆, Zn,1, . . . , Zn,r),

be defined implicitly by

φ(tn, Yn,∆, Zn,1, . . . , Zn,r) = ψ(tn, φ+ Yn, Yn,∆, Zn,1, . . . , Zn,r). (3)

The one-step formula (2) can then be written as

Yn+1 = Yn + φ(tn, Yn,∆n, Zn,1, . . . , Zn,r). (4)

We have several concepts of the stability for numerical approximations of SODE. The concept of
stochastical numerical stability is defined in [7].

Definition 3.2 Let Y∆ denotes a time discrete approximation (i. e. numerical solution) with an maxi-

mum step size ∆ > 0, starting at time 0 at Y ∆
0 , Ŷ∆ denotes the corresponding approximation (constructed

using the same driving Brownian path) starting at time 0 at Ŷ δ
0 . We shall say that a time discrete Y∆ is

stochastically numerically stable for a given stochastic differential equation if for any finite interval
[0, T ] there exists a positive constant ∆0 such that for every ε > 0 and every ∆ ∈ (0,∆0)

lim
‖Y ∆

0
−Ŷ ∆

0
‖→0

sup
0≤t≤T

P (‖ Y ∆
nt

− Ŷ ∆
nt

‖≥ ε) = 0.

In paper [5] there was established the connections, which guarantee numerical stability, namely, the
next theorem was proven.

Theorem 3.3 (Stochastical numerical stability) Suppose that the time discretization is equidistant
with step size ∆ and the increment function φ a one-step approximation

Yn+1 = Yn + φ(tn, Yn,∆, Zn,1, . . . , Zn,r) (5)

of the SODE (1) satisfies

(E ‖ E(φ(tn, Yn,∆, Zn,1, . . . , Zn,r) − φ(tn, Ŷn,∆, Zn,1, . . . , Zn,r)|Ftn
) ‖2)

1
2

≤ Const · (E(‖ Yn − Ŷn‖
2)

1
2 ∆, (6)
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(E ‖ φ(tn, Yn,∆, Zn,1, . . . , Zn,r) − φ(tn, Ŷn,∆, Zn,1, . . . , Zn,r) − (7)

− E(φ(tn, Yn,∆, Zn,1, . . . , Zn,r)|Ftn
) +E(φ(tn, Ŷn,∆, Zn,1, . . . , Zn,r)|Ftn

) ‖2)
1
2

≤ Const · (E ‖ Yn − Ŷn‖
2
)

1
2 ∆

1
2 ,

where Yn and Ŷn be two numerical approximation of the equation (1) of the form (8) and having initial
values Y0 and Ŷ0, respectively.

Then a one-step approximation (Y) is stochastically numerically stable.

Namely, it means that the conditions (9) and (10) imply continuous dependence of initial values in
probability.

The next Definition is given in [2].

Definition 3.4 Let Y∆ denotes a time discrete approximation (i. e. numerical solution) with a maxi-

mum step size ∆ > 0, starting at time 0 at Y ∆
0 , Ŷ∆ denotes the corresponding approximation (constructed

using the same driving Brownian path) starting at time 0 at Ŷ ∆
0 . We shall say that a time discrete Y∆ is

numerically stable in the quadratic mean-square sense for a given stochastic differential equation
if for any finite interval [0, T ] there exists a positive constant ∆0 such that for every ε > 0 there is a
δ = δ(ε,∆0) and every ∆ ∈ (0,∆0)

E ‖ Y ∆
0 − Ŷ ∆

0 ‖2≤ δ

then
E ‖ Y ∆

nt
− Ŷ ∆

nt
‖2≤ ε

holds for every positive integers nt ≤ N.

This means that numerical approximations continuously depend on initial values in mean-square sense.

Remark 3.5 If we examine our proof of the Theorem 3.6 given in paper [5], we notice that (using the
same notions as there) there was proven the next estimation

D(t) = sup
0≤s≤t

E(‖ Y ∆
ns

− Ŷ ∆
ns

‖2) ≤ ConstE ‖ Y ∆
0 − Ŷ ∆

0 ‖2, ∀t, 0 ≤ t ≤ T.

Now, using the definition above we notice that we actually prove the numerical stability in the quadratic
mean-square sense.

Theorem 3.6 (Numerical stability in mean-square sense) Suppose that the time discretization is
equidistant with step size ∆ and the increment function φ a one-step approximation

Yn+1 = Yn + φ(tn, Yn,∆, Zn,1, . . . , Zn,r) (8)

of the SODE (1) satisfies

(E ‖ E(φ(tn, Yn,∆, Zn,1, . . . , Zn,r) − φ(tn, Ŷn,∆, Zn,1, . . . , Zn,r)|Ftn
) ‖2)

1
2

≤ Const · (E(‖ Yn − Ŷn‖
2
)

1
2 ∆, (9)

(E ‖ φ(tn, Yn,∆, Zn,1, . . . , Zn,r) − φ(tn, Ŷn,∆, Zn,1, . . . , Zn,r) − (10)

− E(φ(tn, Yn,∆, Zn,1, . . . , Zn,r)|Ftn
) +E(φ(tn, Ŷn,∆, Zn,1, . . . , Zn,r)|Ftn

) ‖2)
1
2

≤ Const · (E ‖ Yn − Ŷn‖
2
)

1
2 ∆

1
2 ,

where Yn and Ŷn be two numerical approximations of the equation (1) of the form (8) and having initial
values Y0 and Ŷ0, respectively.

Then a one-step approximation (Y) is numerically stable in the quadratic mean-square sense.
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4 Asymptotical Numerical Stability

As in deterministic case, the numerical stability in the quadratic mean-square sense for one-step numerical
approximations does not tell us how to pick an appropriate step size ∆. We will investigate some other
concepts because of that.

We notice the propagated error of a numerically stable scheme which is theoretically still under control,
may in fact, become so unrealistically large as to make approximation useless for some practical purposes.

As an example in the case of the simulation of the first exit times we do not know the appropriate
time interval in advance. Because of that we need to control the error propagation for an arbitrarily
large interval, namely, for an interval [t0,+∞). The concept of asymptotic stochastic numerical stability
is defined in [7].

Definition 4.1 We shall say that a time discrete approximation Y∆ is asymptotically stochastically
numerically stable for a given stochastic ordinary differential equation if it is stochastically numerically
stable and there exists a positive constant ∆a such that for each ε > 0 and ∆ ∈ (0,∆a)

lim
‖Y ∆

0
−Ŷ ∆

0
‖→0

lim
T→+∞

P ( sup
0≤t≤T

‖ Y ∆
nt

− Ŷ ∆
nt

‖≥ ε) = 0,

where we have used the same notation as in Definition (3.2).

Definition 4.2 We shall say that a time discrete approximation Y∆ is asymptotically numerically
stable in the quadratic mean-square sense for a given stochastic ordinary differential equation if
it is numerically stable in the quadratic mean-square sense and there exists a positive constant ∆a such
that for each ε > 0 and ∆ ∈ (0,∆a)

lim
E‖Y ∆

0
−Ŷ ∆

0
‖2→0

lim
T→+∞

E( sup
0≤t≤T

‖ Y ∆
nt

− Ŷ ∆
nt

‖2) = 0,

where we have used the same notation as in Definition (3.2).

Theorem 4.3 A time discrete approximation Y∆ which is asymptotically numerically stable in the
quadratic mean-square sense is asymptotically stochastically numerically stable.

Proof of Theorem Using Chebysev inequality we get

P ( sup
0≤t≤T

‖ Y ∆
nt

− Ŷ ∆
nt

‖≥ ε) ≤
E(sup0≤t≤T ‖ Y ∆

nt
− Ŷ ∆

nt
‖2)

ε2
.

and using the definition for asymptotical numerical stability in quadratic mean-square sense we will easily
prove asymptotical stochastical numerical stability property. 2

Here we give a fundamental theorem on the asymptotic numerical stability in the quadratic mean-
square sense:

Theorem 4.4 (Asymptotic numerical stability in the quadratic mean-square sense) Suppose
that the time discretization is equidistant with step size ∆ and the increment function φ of a one-step
approximation

Yn+1 = Yn + φ(tn, Yn,∆, Zn,1, . . . , Zn,r) (11)

of the SODE (1) satisfies

E(φ(tn, x,∆, Zn,1, . . . , Zn,r) − φ(tn, y,∆, Zn,1, . . . , Zn,r)|Ftn
)

= C1(∆) · (x− y), (12)

E ‖ φ(tn, x,∆, Zn,1, . . . , Zn,r) − φ(tn, y,∆, Zn,1, . . . , Zn,r) ‖
2 (13)

≤ C2(∆)· ‖ x− y‖
2
,

where x and y are real numbers from R and C1(∆) and C2(∆) real continuous functions depending on
∆, and it may depend on x and y. If there exists ∆a > 0 such that for all ∆ ∈ (0,∆a) the next inequality

0 < 1 + 2C1(∆) + C2(∆) < 1,

is valid, then a one-step approximation (Y) is asymptotically numerically stable in the quadratic mean-
square sense.
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Proof of Theorem In the proof of the theorem we use the next theorem with an(∆) = (1 + 2C1(∆) +
C2(∆))n. 2

Remark 4.5 We notice that C2(∆) must be positive constant but for the validity of the condition above
we need that C1(∆) be negative constant.

Theorem 4.6 Suppose that the time discretization is equidistant with step size ∆. Let Y denotes a time
discrete approximation (i. e. numerical solution) starting at time 0 at Y0, Ŷ denotes the corresponding
approximation (constructed using the same driving Brownian path) starting at time 0 at Ŷ0. If there exists
∆0 such that for every ∆ ∈ (0,∆0)

E ‖ Yn − Ŷn ‖2≤ an(∆)E ‖ Y0 − Ŷ0 ‖2,

for every n = 0, 1, 2, . . . , where an(∆) is continuous and positive function of ∆ such that
∑+∞

n=0 an(∆) =
b(∆) converges and {an(∆) : n = 0, 1, 2, . . . ; ∆ ∈ (0,∆0)} is bounded then a time discrete approximation
Y is asymptotically numerically stable in the quadratic mean-square sense.

Proof of Theorem We notice the validity of the next relation:

E( sup
0≤t≤T

‖ Ynt
− Ŷnt

‖2) ≤

nT
∑

n=0

E(‖ Yn − Ŷn ‖2)

Now, we take limit as T → +∞, so

lim
E‖Y0−Ŷ0‖2→0

lim
T→+∞

E( sup
0≤t≤T

‖ Ynt
− Ŷnt

‖2) ≤

≤ lim
E‖Y0−Ŷ0‖2→0

+∞
∑

n=0

E(‖ Yn − Ŷn ‖)2)

≤ lim
E‖Y0−Ŷ0‖2→0

+∞
∑

n=0

an(∆)E(‖ Y0 − Ŷ0 ‖)2.

Using the conditions of the Theorem we get

lim
E‖Y0−Ŷ0‖2→0

E(‖ Y0 − Ŷ0 ‖)2

(

+∞
∑

n=0

an(∆)

)

= 0.

We need to prove the numerical stability in the quadratic mean-square sense of the time discrete approx-
imation (Y) under this condition.

Using the well-known relations from the convergence of the
∑+∞

n=0 an(∆) we get that limn→+∞ an(∆) =
0 and the existence of the constant K > 0 such that |an(∆)| < K for all n = 0, 1, 2, . . .. We estimate

sup
0≤t≤T

E(‖ Ynt
− Ŷnt

‖2) ≤ E(‖ Y0 − Ŷ0 ‖)2{ sup
0≤t≤T

ant
(∆)}

≤ K ·E(‖ Y0 − Ŷ0 ‖)2.

For every ε > 0 there is a δ = δ(ε,∆0) and every ∆ ∈ (0,∆0)

E ‖ Y0 − Ŷ0 ‖2≤ δ

then
E ‖ Ynt

− Ŷnt
‖2≤ ε

holds for every positive integers nt ≤ N.

Now the numerical stability in the quadratic mean-square sense for (Y) is proved. 2
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5 Examples

Example 5.1 As an example (cf. eg. [9]), let us consider the one-dimensional stochastic equation

dX(t) = νX(t)dt+ µX(t)dW (t), X(0) = x0, t ≥ 0, (14)

where ν and µ are complex numbers.

The exact solution of (14) is

X(t) = exp

(

(ν −
µ2

2
)t+ µW (t)

)

x0,

which is sometimes called geometric Brownian motion. It has the second moment

E|X(t)|2 = exp((2Re(ν) + |µ|2)t)|x0|
2.

Schurz [9] and Saito and Mitsui [8] showed that the zero solution of the equation (14) is asymptotically
mean-square stable if and only if

2Re(ν) + |µ|2 < 0,

as we can see the form of the second moment of X(t).
Generally, in the vector case, when we apply a numerical scheme (Yn) to the equation (14) and take

the mean-square norm, we obtain a one-step difference equation of the form

E ‖ Yn+1 ‖2= R(∆, k)E ‖ Yn ‖2, (15)

where ∆ = ∆ν and k = −µ2

ν
.

Y. Saito and T. Mitsui in their work [8] called the function R(∆, k) as the stability function of the
scheme. In this case E ‖ Yn ‖2→ 0 as n→ +∞ iff

|R(∆, k)| < 1.

They gave the next definition in their work [8]:

Definition 5.2 The scheme is said to be MS-stable for those values of ∆ and k satisfying

|R(∆, k)| < 1. (16)

The set R given by
R = {(∆, k) : |R(∆, k)| < 1}

is analogously called the domain of MS-stability of the scheme.

Consider the recursive form of one-step schemes given in [8]

Yn+1 = Yn + φ(tn, Yn,∆, Zn,1, . . . , Zn,r).

We notice that in that case the increment function is linear, so

φ(tn, Yn,∆, Zn,1, . . . , Zn,r) − φ(tn, Ŷn,∆, Zn,1, . . . , Zn,r) = φ(tn, Yn − Ŷn,∆, Zn,1, . . . , Zn,r).

It means
Yn+1 − Ŷn+1 = Yn − Ŷn + φ(tn, Yn − Ŷn,∆, Zn,1, . . . , Zn,r).

Then the next equation
E ‖ Yn+1 − Ŷn+1 ‖2= R(∆, k)E ‖ Yn − Ŷn ‖2

is valid, where the function R(∆, k) is the same as in the case of MS-stability. The condition |R(∆, k)| < 1
for MS-stability using theorem 4.6 guarantees the asymptotical numerical stability in quadratic mean-
square sense. It means that any MS-stable one-step approximation is asymptotical numerical stable in
quadratic mean-square sense, which implies asymptotical stochastical numerical stability.
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Example 5.3 As we know from the theory of ODE, the numerical stability conditions of one-step methods
for deterministic differential equations does not tell us how to pick an appropriate step size ∆. Because
of that we consider a class of test equations. These are the complex-valued linear differential equations

dx

dt
= λx,

with λ = λr + iλi.

Usually, the one-step numerical approximations with Re(λ) < 0 in the recursive form

Yn+1 = G(λ∆)Yn

is given.
We shall call the set of complex number λ∆ with Re(λ) < 0 and |G(λ∆)| < 1 the region of absolute

stability of the scheme.

Definition 5.4 We shall say that a numerical method is A-stable if its region of absolute stability contains
all of the left half of the complex plane, that is all λ∆ with Re(λ) < 0 and ∆ > 0.

In stochastic case, we will consider the same complex-valued linear differential equations with an
additive noise

dX(t) = λX(t)dt+ dW (t), (17)

where the parameter λ is complex number with real part Re(λ) < 0 and W is a real-valued standard
Wiener process.

We have almost the same recursive form as in the above case

Yn+1 = G(λ∆)Yn + Zn, (18)

for n = 0, 1, 2, . . . where G is a mapping of the complex plane C into itself and Z0, Z1, . . . are random
variable which do not depend on λ or Y0, Y1, . . .

We have the same definition of A-stability as in deterministic case, namely

Definition 5.5 We shall call the set of complex numbers λ∆ with Re(λ) < 0 and |G(λ∆)| < 1 the region
of absolute stability of the scheme (18).

If this region coincides with the left half of the complex plane, we say the scheme is A-stable.

The general recursive one-step approximation for a stochastic differential equation

dX(t) = λX(t)dt+ dW (t)

with a real constant λ, λ < 0 has an increment function

φ(tn, Yn,∆, Zn) = G(λ∆)Yn − Yn + Zn,

with E(Zn) = 0 and E(Z2
n) = ∆.

Now we estimate the conditions

E(φ(tn, Yn,∆, Zn) − φ(tn, Ŷn,∆, Zn)|Ftn
) = (G(λ∆) − 1)(Yn − Ŷn),

E ‖ φ(tn, Yn,∆, Zn) − φ(tn, Ŷn,∆, Zn) ‖2= (G(λ∆) − 1)2 · E ‖ Yn − Ŷn‖
2
.

Using this conditions we get

E ‖ Yn+1 − Ŷn+1 ‖2= (1 + 2(G(λ∆) − 1) + (G(λ∆) − 1)2)(E ‖ Yn − Ŷn ‖2),

and now we get the condition

1 + 2(G(λ∆) − 1) + (G(λ∆) − 1)2 < 1,

which implies |G(λ∆)|2 < 1, and it means that |G(λ∆)| < 1. This condition is the same as in the case
of A-stability. Our conclusion is that we have the condition which guarantees A-stability and implies
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asymptotical numerical stability in quadratic mean-square sense and asymptotical stochastical numerical
stability.

In the simpliest case, for the Euler-Maruyama scheme for the test stochastic ordinary differential
equation

dXt = aXtdt+ dW (t),

we get the condition
0 < (1 + 2a∆ + a2∆2) < 1,

which gives us two condition, namely a < 0 and ∆ < −2
a
. It means that for an asymptotical numerical

stability in quadratic mean-square sense we have the same bounds on step size as for A-stability for Euler-
scheme and A-stability for Euler-Maruyama scheme.
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