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Polynomial differential equations showing chaotic behavior are inves-
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1 Introduction

There is a considerable interest in whether or not real chemical systems can
exhibit chaos [2, 18, 19], be it understood in any sense usually used.

As the overwhelming majority of chaotic polynomial differential equations
cannot be considered as chemical kinetic models, the question is still open: are
realistic models of chemical reactions able to exhibit chaotic behavior? As a
contribution to the answer to this question Tóth and Hárs [27] investigated
orthogonal transforms of the Lorenz equation and of a model by Rössler. Here
we present a more effective method to obtain similar results which is based on
the use of algebraic invariants.
Let us suppose we have a complex chemical reaction with a finite number (M)
of chemical species X1, X2, ...XM and suppose there are a finite number (R) of
reaction steps. The reaction can be displayed as:

M
∑

m=1

µ(m, r)Xm
kr−→

M
∑

m=1

ν(m, r)Xm (r = 1, 2, . . . , R) (1)

∗This paper is in final form and no version of it will be submitted for publication

elsewhere.—Dedicated to the memory of K. S. Sibirsky.
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The positive real numbers kr are the reaction rate coefficients, and the non-
negative integers µ(m, r) and ν(m, r) are the stoichiometric coefficients. The
usual mass action type deterministic model of the reaction above is a polynomial
differential equation:

ẏm =

R
∑

r=1

(ν(m, r) − µ(m, r))kr

M
∏

p=1

yµ(p,r)
p (m = 1, 2, . . . , M), (2)

where the dependent variables are the concentrations of species (ym := [Xm])
and the independent variable is the time.

Equation (2) is the induced kinetic differential equation of reaction (1). Ki-
netic differential equations are polynomial differential equations. But not every
polynomial differential equation can be considered as being induced by a reac-
tion. Let us consider the Lorenz equation [8]:

ẋ = −σ(x − y)

ẏ = rx − y −xz (σ, b, r ∈ R
+)

ż = xy − bz

This equation is not a kinetic one as it contains the term −xz . Such a term is
said to express negative cross-effect as it expresses that y decreases in a process
in which it does not take part. (A mathematical definition will be presented in
the next section.) This characteristic property of kinetic differential equations
has been used to study kinetic gradient systems [24], to design oscillatory reac-
tions [26], to obtain necessary conditions for oscillation [17], or for the Turing
instability [22, 23] etc.

Another quite well-known nonkinetic, polynomial differential equation is the
Rössler equation [12]:

ẋ = x − xy − y

ẏ = x2 − ay (a, b, c, d ∈ R
+)

ż = bx − cz + d

Tóth and Hárs [27] investigated the question whether there exist orthogonal
transformations to specific nonkinetic models (e.g. the Lorenz and the Rössler
equation) which transform these models into kinetic ones. They had shown by
lengthy calculations with the coefficients that no transformation of the form
MA (where M is an orthogonal and A is a positive definite diagonal trans-
formation) transforms the Lorenz equation into a kinetic one, and there exists
no universal transformation to a similar model by Rössler transforming it to a
kinetic equation at all the values of the parameters. This result can be achieved
much easier by using algebraic invariants.

Many interesting polynomial differential equations showing other types of ex-
otic behavior, like oscillation (the harmonic oscillator, the Van der Pol oscillator)
or pattern formation (Turing’s example, [28, p. 42–43]) are also nonkinetic in
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the sense defined above, and methods have been proposed to eliminate negative
cross-effects.

Why would it be useful to transform chaotic equations into kinetic ones and
which are the methods to achieve this goal? The answers to the first question are
obvious: Having kinetic equations one can construct (at least, formal) chemical
reactions with a given type of exotic behavior. Another advantage would be a
small contribution to the structural characterization of polynomial differential
equations with chaotic behavior. The characterization would reflect behavior
under certain transformations: under linear, nonsingular, orthogonal ones.

As an answer to the second question we mention two methods. Samardzija
et al. [16] proposed the following transformation. First, the stationary point
would be transformed into the first orthant of the state space, and then the jth
right hand side would be multiplied by the jth variable. The equation obtained
in this way will really become a kinetic equation as it will be a polynomial
equation of the Kolmogorov type: ẏj = yjfj ◦ yj (j = 1, 2, . . . , M). Scott [18,
p. 125–126] accepts the transformation proposed by Samardzija et al. as a
chemical model for the harmonic oscillator and for the Lorenz equation. Al-
though the qualitative resemblance of the solutions of the two models to each
other is quite good in this case, the method in general gives a model which
has different eigenvalues of the Jacobian at the equilibrium point. (Contrary to
the expectation of Peng et al. [9] who say that ’the transform does not alter
the qualitative features of a particular model, thus allowing known dynamical
features to be applied to a corresponding chemical system.’) To exclude this, an
additional condition should be met, which has, by the chance, happened in the
special cases investigated in [16]. A criticism from the chemical side has been
expressed by Györgyi and Field [4, p. 48], who say that the resulting models
contain more autocatalytic steps than found in any known chemical system.

Another method has originally been proposed by Korzukhin, improved by
Farkas and Noszticzius [3], and reinvented by Poland [10]. The method re-
lies heavily upon chemical intuition, although the results can be supported by
mathematical proofs based upon singular perturbation [29]. The essence is to
construct a chemical reaction whose quasi steady state approximation is the
given original (nonkinetic) differential equation.

In this paper we apply the theory of algebraic invariants of differential equa-
tions [20] to study the effect of transformations. We are looking for polynomial
invariants which take on values different from that taken on by any kinetic
differential equation. If such an invariant has been found the transformations
corresponding to this invariant cannot transform the given equation into a ki-
netic one. Application of algebraic invariants is an especially powerful method
because as large equations can be treated by this method as we wish. We will
show an example of coupled models with a negative value of such an invariant
which can only be nonnegative for coupled kinetic differential equations.

The structure of our paper is as follows. Sec. 2 presents the fundamental
definitions and statements connected with algebraic invariants of polynomial
differential equations. Sec. 3 applies algebraic invariants to obtain negative
results similar to the ones obtained before. In cases where it is not impossible
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we try to find linear transformations to transform nonkinetic equations into
kinetic ones in Example 7. Finally, we discuss the possible directions of further
investigations.

2 Algebraic Invariants

Let us consider the following differential equation (we use the upper index to
denote the coordinates):

ẏi = ai+
n

∑

j=1

ai
jy

j +
n

∑

j1=1

n
∑

j2=1

ai
j1j2

yj1yj2 +...+
∑

j1,j2,...,jD

ai
j1j2...jD

yj1yj2 ...yjD , (3)

or to use Einstein’s summation convention:

ẏi =
∑

ω∈Ω

ai
j1j2...jω

yj1yj2 ...yjω (i, j1, . . . , jω = 1, 2, . . . , n; ai
j1j2,...,jω

∈ R). (4)

where Ω := {0, 1, . . . , D} with some nonnegative integer D, is the degree of the
right hand side.

Definition 1 (Negative cross-effect) Let us rewrite equation (4) in such a
way that all the summands are different monomials of the variables, and let us
denote the new coefficients by āi

j1...jω
. Then, equation (4) is said to contain a

negative cross-effect if there exists āi
j < 0 such that ¬∃jk : jk = i.

Theorem 1 ([5]) A polynomial differential equation can be considered as the
mass action type deterministic model of a chemical reaction if and only if it does
not contain terms expressing negative cross-effect.

Remark 1 This definition and theorem have been generalized for nonpolyno-
mial equations in [23].

If y = (y1, y2, . . . , yn) is the vector of unknown variables of (4) then ŷ := qy

with q ∈ GL(n, R) obeys the equation

˙̂yr =
∑

ω∈Ω

br
r1,...,rω

ŷr1 . . . ŷrω (r, r1, . . . , rω = 1, . . . , n; br
r1,...,rω

∈ R). (5)

The relation between the coefficient tensors of equation (4) and (5) can be
expressed as

b = B(a, q) (6)

where B denotes the polynomial function to express b using a and q.
Let GL(n, R) := {q ∈ R

n×n; det(q) 6= 0} be the general linear group of
linear, invertible transformations, and let Q ⊂ GL(n, R) be a subgroup with
respect to multiplication of transformations.
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Definition 2 (Polynomial invariant) Let us denote the set of all possible
coefficients by A := R

n ×R
n×n ×· · · ×R

n×···×n (where the last product consists
of D+1 factor). The polynomial I : A → R is said to be a polynomial invariant
of equation (4) under the group Q, if there exists a functional (called multiplier)
λ : Q → R for which I(B(a, q)) = λ(q)I(a) (q ∈ Q, a ∈ A) holds.

Definition 3 (Absolute/relative invariant) If λ(q) = 1 for all q ∈ Q then
I is an absolute invariant, otherwise I is a relative invariant.

Definition 4 We will also use the following groups:

Orthogonal group O(n, R) = {q ∈ R
n×n, qqT = I}

Special orthogonal group SO(n, R) = {q ∈ R
n×n, qqT = I, det(q) = 1}.

Remark 2 In reference to GL, O and SO we can state the following relation-
ship SO ⊂ O ⊂ GL.

Definition 5 (Reducible polynomial invariant) A polynomial invariant is
said to be reducible if it is a polynomial of polynomial invariants of lower degree.

Definition 6 (Generating system) The set of polynomial invariants B is
said to be a generating system if all the polynomial invariants of equation (4)
under Q can be obtained as a polynomial of the elements of the set B.

Example 1 Let us consider the following (linear) system

ẏi = ai
jy

j (Ω = {1}; i, j = 1, 2; ai
j ∈ R).

A generating system of invariants of the system above under Q = GL is

I1(a) = a1
1 + a2

2 = tr(a)

I2(a) = tr(a2)

I3(a) = tr(a3)

(I3 is reducible as tr(a3) = tr(a2)tr(a) −
1

2
tr(a)(tr2(a) − tr(a2)))

and thus I3 = I2I1 −
1

2
I1(I

2
1 − I2)

I4(a) = ... (reducible)

...

Consequently {I1, I2} is a generating system. [20, Thm. 2.6]
A possibly more familiar generating system is formed from {tr(a), det(a)} used
to determine the qualitative behavior of the origin.

Definition 7 (Minimal generating system) The generating system B is said
to be minimal, if no elements of it can be discarded without destroying the gen-
erating property.
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As no elements of the set {I1, I2} can be discarded without destroying the
generating property, it is a minimal generating system.

Definition 8 (Signature) The components of the signature tensor ε is defined
in the following way:

εp1p2...pn =











1 if (p1, p2, . . . pn) is an even permutation of (1, 2, . . . n);

−1 if (p1, p2, . . . pn) is an odd permutation of (1, 2, . . . n);

0 if there are i, j ∈ (1, 2, . . . n) such that i 6= j but pi = pj .

(7)
εp1p2...pn is not defined if p1, p2, . . . pn are not from the first n positive integers.

Definition 9 (Alternation, generalized alternation) Let us start from the
tensor (ai1i2...ik

j1j2...jl
) and let us multiply it with a signature tensor (εj2j3...jn+1) (n+

1 ≤ l) and let us apply Einstein’s convention of summing for identical indices
to obtain the tensor (bi1i2...il

j1jn+1jn+3jl
) in the following way:

bi1i2...il

j1jn+1jn+3jl
:= ai1i2...ik

j1j2...jl
εj2j3...jn+1 .

Then, tensor b is obtained by alternation from the tensor a with respect to the
lower indices. One can do the same with upper indices. If lower and upper
indices are taken as well, then b is obtained by generalized alternation from the
tensor a.

Example 2 By alternation we get ai
jε

j = a1
1 (here n = 1), whereas generalized

alternation gives us ai
jε

ij = a1
2 − a2

1 (here n = 2).

Definition 10 ((Generalized) complete contraction) If a tensor has the
same number of upper and lower indices, then one can form pairs from upper
and lower indices and making them equal, afterwards one can apply Einstein’s
summation convention for identical indices. This process is said to be a complete
contraction. If pairs are formed from indices no matter where the indices are,
the process is said to be a generalized complete contraction.

Example 3 The trace is obtained by complete contraction, as tr(ai
j) = ai

i.

Theorem 2 ([20]) A base of polynomial invariants of equation (4) under the
group GL(n, R) (under O(n, R)) can be obtained by alternation followed by com-
plete contraction (by generalized alternation followed by generalized complete
contraction) of the indices of the products of the coefficient tensors.

Let us consider the equation

ẏj = aj
αyα + a

j
αβyαyβ (j, α, β = 1, 2, . . . , n). (8)

This equation is a special case of (4) with the conditions:

Ω = {1, 2}, (i, j1, j2, . . . , jω = 1, 2, . . . , n).
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A minimal generating system of polynomial invariants of not more than the
second degree of this equation is:

I∗1 = aα
α GL ≥ 1

I∗2 = ap
qε

pq SO = 2

I∗3 = aα
αpε

p GL = 1

I∗4 = aα
βaβ

α GL ≥ 2

I∗5 = aα
βaα

β O ≥ 3

I∗6 = ap
qa

r
sε

pqrs SO = 4

I∗7 = ap
qa

α
αrε

pqr SO = 3

I∗8 = aα
q ap

αrε
pqr SO = 3

I∗9 = ap
ra

q
ααεpqr SO = 3

I∗10 = aα
αβaβ

γγ O ≥ 3

I∗11 = aα
αγa

β
βγ O ≥ 2

I∗12 = aα
ββaα

γγ O ≥ 2

I∗13 = aα
βγaα

βγ O ≥ 2

I∗14 = aα
βγaβ

αγ O ≥ 2

I∗15 = aα
αpa

q
ββεpq SO = 2

I∗16 = ap
αqa

r
αsε

pqrs SO = 4

The first column contains the sign of the invariant and the invariant itself, where
ε is the signature tensor defined above. The second column shows the sign of
the group under which the given invariant is really invariant. The third column
contains the dimension of the equation which the invariant is related to.

Example 4 If the dimension of the equation is not suitable, I∗
n is not invariant.

We will examine part of a concrete model (Boissonade, De Kepper [1]) and I∗
5 .

The original model is:

ẋ = µx −ky − λ − x3

ẏ = τx − τy

As I∗5 only depends on the coefficients of first degree we examine only the fol-
lowing modified equation:

ẋ = µx −ky (9)

ẏ = τx − τy

Let us choose a linear orthogonal transformation q ∈ O. If q =

(

1 −1
1
2

1
2

)

, q−1

is its inverse matrix and A is the coefficient matrix of the equation (9), then

EJQTDE, Proc. 7th Coll. QTDE, 2004 No. 14, p. 7



the new transformed equation is:

(

x̂

ŷ

)·

= q · A · q−1 ·

(

x̂

ŷ

)

.

As I∗5orig = µ2 + k2 + 2τ2 and I∗5tr = 1.5625k2 − 1.875kµ+ 1.5625µ2 − 0.75kτ −

0.75µτ + 1.25τ2 and ¬∃λ ∈ R constant such that I∗
5tr = λ · I∗5orig , I∗5 is not

invariant. (I∗
5orig and I∗5tr are respectively I∗

5 in case of the equation (9) and of
the transformed equation.)

3 Application of Algebraic Invariants

In this section we test in the case of several concrete nonkinetic models with at
least two variables whether the negative cross-effect can be transformed out of
them. First of all we offer some remarks.

1. Let us start with model (8), and its (orthogonal or nonsingular) transform

˙̂yj = bj
αŷα + b

j
αβ ŷαŷβ (j, α, β = 1, 2, . . . , n). (10)

2. Orthogonal or regular invariants are looked for which take on different
values when calculated from the coefficients of (8) and from those of (10).
One can only know the sign of the invariants as we know only the general
form of the transformation hence the exact numerical value of the invari-
ants are unknown. Therefore, those invariants are looked for which take
on values of different sign when calculated from the coefficients of (8) and
from those of (10). In this case we can tell that there are no (orthogonal
or nonsingular) transformations which transform the negative cross-effect
out of the nonkinetic differential equation.

3. In this paper we examine second degree, at most 4 variable equations
and investigate the polynomial invariants of not more than second degree.
(Should the model contain terms of the degree higher than two, it causes
no problem as the coefficients of the ith degree terms in the transformed
equation only depend on the ith degree terms in the original one. There-
fore, these invariants are invariants of equations containing higher degree
terms too.)

4. The invariants I∗
2 , I∗3 , I∗6 , I∗15 and I∗16 are not related to 3 variable equations,

so they cannot be used for equations in 3 variables. If we are interested
in 4 variable equations, we might try to use I∗

6 or I∗16. I∗6 only contains
nonnegative coefficients in the case of kinetic differential equations, its
sign, however, can be negative or positive as well. I∗

16 can also be positive
or negative.

5. I∗1 and I∗11 are polynomials of coefficients irrelevant from the point of view
of negative cross-effect (see Definition 1), they cannot be used either.
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6. The invariants I∗
5 , I∗12, I

∗
13 are sums of squares, therefore they are nonneg-

ative for all possible coefficients.

7. The sign of the invariants I∗
7 , I∗8 , I∗9 , I∗10, I

∗
14 is not unambiguously defined

(even it is known that they are calculated from the coefficients of a kinetic
differential equation), that is why they generally cannot be used either.

8. The sign of the absolute invariant I∗
4 is always nonnegative when calculated

from the coefficients of a kinetic differential equation as

I∗4 =

n
∑

i=1

(ai
i)

2 +

n
∑

j,k=1j 6=k

ak
j a

j
k,

thus I∗4 might be appropriate. But only such equations should be consid-
ered in which negative cross-effects are manifested in first degree terms,
as I∗4 is a polynomial of linear terms. (Therefore e.g. the Lorenz equation
cannot be investigated by this invariant.) Nonnegativity of I∗

4 however
does not imply the absence of negative cross-effect, see e.g. Example 6
and Example 7 below.

Let us consider the following four variable model.

Example 5 ([14])

ẋ = −y − z

ẏ = x +
1

4
y + w (11)

ż = 3 + xz

ẇ = −
1

2
z +

1

20
w

I∗4 = −
387

200

I∗4 being negative, the equation cannot be transformed into a kinetic differential
equation.

The table below contains the value of I∗
4 for a series of models. As it can be

seen for some values of the parameters, it can have a negative sign, therefore
for these values of the parameters (which form an open set in the parameter
space) the models cannot be transformed into kinetic differential equations.
(The boxed term(s) here and below show(s) the negative cross-effect.) Nothing
can be said about other parts of the parameters space.
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No. Equations I∗
4 Reference

ẋ = −y − z

1 ẏ = x + ay a2 + c2 − 2 [18, p. 94],[11, 13]
ż = b − cz + xz

ẋ = x −z − xy

2 ẏ = x2 − ay 1 + a2 + c2 − 2b [6]
ż = bx − cz + d

ẋ = ax −y − bz

3 ẏ = x + 1.1 a2 + (c − 1)2 − 2 − 2bc [6]
ż = c(1 − z2)(x + y) − z

ẋ = −y − z

4 ẏ = x + ay a2 + c2 − 2 − 2b [6]
ż = b − cz + xz

ẋ = −ax −z − xy

5 ẏ = −x + by + cz a2 + b2 − 2f [6]

ż = b + exz + fx

ẋ = −y − z

6 ẏ = x b2 − 2 [6]

ż = a(y −y2 ) − bz

ẋ = (z − β)x −ωy

7 ẏ = ωx + (z − β)y 2β2 + α2 − 2ω2 [7],[18, p. 244]
ż = λ + αz + εzx3

− z3

3 −(x2 + y2)(1 + %z)

ẋ = µx −ky − λ − x3

8 ẏ = τx − τy µ2 + τ2 − 2kτ [1]

Let us remark, that models 6 and 7 contain negative cross-effects in second
degree terms, too, but the negative cross-effect manifested in the first degree
terms are used only.
Finally, let us consider a model obtained by (linear) diffusional coupling from
two smaller models.

Example 6 Adding ẇ = 0 to the model 6 from the table above and then coupling
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this equation and the four variable model of Example 5 gives

ẋ1 = −y1 − z1 + D1
12(x2 − x1)

ẏ1 = x1 + D2
12(y2 − y1)

ż1 = a(y1 − y2
1) − bz1 + D3

12(z2 − z1)

ẇ1 = 0 + D4
12(w2 − w1)

ẋ2 = −y2 − z2 + D1
21(x1 − x2)

ẏ2 = x2 +
1

4
y2 + w2 + D2

21(y1 − y2)

ż2 = 3 + x2z2 + D3
21(z1 − z2)

ẇ2 = −
1

2
z2 +

1

20
w2 + D4

21(w1 − w2).

As I∗4 = −4 + 2
∑4

i=1 Di
12D

i
21 +

∑4
i=1(D

i
12)

2 +
∑4

i=1(D
i
21)

2 + 2bD3
12 + b2 +

1
2D2

21+ 1
16 +D4

21+ 1
4 , therefore depending on the value of the diffusion coefficients

this expression can be made nonnegative, without affecting terms which express
negative cross-effects.

Remark 3 Obviously models with a nonnegative value of I∗
4 coupled with linear

diffusion result in a model with a nonnegative value of I∗
4 . As I∗4 only depends

on the coefficients of linear terms, nonlinear diffusion could also be allowed.

Let us consider the following hypothetical model.

Example 7 (2 variable predator-prey system.)

ẋ = −ax −by + cxy (12)

ẏ = dy −ex − fxy

Here we find that I∗
4 = a2 + d2 + 2be which is always nonnegative. This means

that the value of I∗
4 does not exclude the possibility that (12) can be transformed

into a kinetic differential equation. Calculating the eigenvalues of the coefficient
matrix of the linear part it turns out that they are both real (one negative, one
positive). Therefore, turning to the Jordan-form of the linear part we receive
a linear part without negative cross-effects. This argument holds for all such
linear parts whose eigenvalues are real. (This is not the case if we treat e.g. the
model of the harmonic oscillator.) But in each single case we should study the
effect of this transformation on the nonlinear terms. In the present case let us

introduce the new variables by the definition:

(

ξ

η

)

:= U−1

(

x

y

)

, where U is the

matrix of the eigenvectors of

(

−a −b

−e d

)

. A straightforward calculation shows

that negative cross-effects do appear in the second degree terms.
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4 Discussion and perspectives

As a part of a possible structural approach to chaotic and kinetic differential
equations we investigated if it was possible to transform out negative cross-
effects from chaotic nonkinetic equations. It turned out that the investigations
can greatly be simplified by the use of some algebraic invariants. By this more
powerful method we have found a new series of nonkinetic models which cannot
be transformed into kinetic ones, at least not for an open set in the parameter
space. We also think that the use of other invariants may provide similar results
for other models, and for other qualitative properties [17], as well.

Another approach to extend the results and methods of [27] would be to
automatize the calculations, i.e. to carry out the transformations and the proof
of insolvability of the emerging inequalities by a mathematical program package.
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[13] Rössler, O. E.: An equation for continouous chaos, Phys. Lett. 57a (1976),
397–398.
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5 Notation

a, b, c, d, e, f, k, α, β, ε, µ, ω, %, τ coefficients in differential equations
D1

12, D
2
12, D

3
12, D

4
12 diffusion coefficients in the first coupled system

D1
21, D

2
21, D

3
21, D

4
21 diffusion coefficients in the second coupled system

σ, r coefficients of the Lorenz-equation
µ(m, r) the stoichiometric coefficient of the m-th chemical species

of the reactants in the r-th reaction
ν(m, r) the stoichiometric coefficient of the m-th chemical species

of the products in the r-th reaction
Xm the m-th chemical species
ym the concentration of the m-th chemical species
yi the i-th variable of a differential equation
ai

j1,j2,...,jω
the coefficient of yj1yj2 . . . yjω in the i-th equation in a model

GL, O, SO the general linear, orthogonal, special orthogonal group
Q a subgroup of GL, O or SO

q a linear transformation
a, b coefficient tensors

ai1i2...ik

j1j2...jl
, bi1i2...il

j1jn+1jn+3jl
element of coefficient tensors

tr(a) trace of the tensor a

εp1p2...pn signature tensor
B generating system
I1, I2, . . . invariants of an equation

I∗1 , I∗2 , . . . invariants of the equation ẏj = aj
αyα + a

j
αβyαyβ

(j, α, β = 1, 2, . . . , n)
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