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THE SCHRÖDER EQUATION AND ASYMPTOTIC PROPERTIES

OF LINEAR DELAY DIFFERENTIAL EQUATIONS

Jan Čermák
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We study the asymptotic behaviour of solutions of the differential equa-

tion

ẋ(t) = −p(t)[x(t)− kx(t − τ(t))] + q(t), t ∈ I = [t0,∞),

where k 6= 0 is a scalar, p is a positive function and τ is a positive and unbounded

delay. Our aim is to show that under some asymptotic bounds on q the behaviour

(as t → ∞) of all solutions of this equation can be estimated via a solution of the
Schröder equation

ϕ(t − τ(t)) = λϕ(t), t ∈ I

with a suitable positive parameter λ.

1. Introduction and preliminaries

This paper discusses the asymptotic properties of solutions of the delay differ-
ential equation

(1.1) ẋ(t) = −p(t)[x(t) − kx(t − τ(t))] + q(t), t ∈ I = [t0,∞),

where k 6= 0 is a real constant, p, q ∈ C(I), p > 0 on I, τ ∈ C1(I), τ > 0,
t − τ(t) → ∞ as t → ∞ and 0 < ζ ≤ τ̇ < 1 on I for a real scalar ζ. Throughout
this paper we assume that these assumptions on τ are fulfilled (the remaining
requirements on p and q will be introduced later).

Equation (1.1) with such a delay has been investigated in many particular cases.
The well known pantograph equation

(1.2) ẋ(t) = a x(λt) + b x(t)

may serve as a prototype of (1.1). The name pantograph originated from the work
of Ockendon & Taylor [18] on the collection of current by the pantograph head of an
electric locomotive. Equations of similar forms appear in many applications such
as astrophysics, probability theory on algebraic structures, spectral problem of the
Schrödinger equations or quantum mechanics (see [1], [19] or [20]). Particularly,
the nonhomogeneous pantograph equation

(1.3) ẋ(t) = a x(λt) + b x(t) + q(t)
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was derived in [7] as the mathematical model for a problem in electric locomotion.
Among the works on equations (1.2), (1.3) we can mention especially those by Kato
& McLeod [10] and Lim [15].

The qualitative investigations concerning (1.2) and (1.3) were later extended to
more general cases, e.g., to the vector case and nonautonomous case, to equations
with a variable (unbounded) delay and to neutral equations (see [8], [9], [13], [14]
or [16]). For further related results see also [2], [6], and [11].

Particularly, Makay & Terjéki [17] established conditions under which all solu-
tions of

ẋ(t) = −p(t)[x(t) − x(λt)]

are asymptotically logarithmically periodic. The generalization of this result has
been done in [5], where the asymptotic behaviour of all solutions of

(1.4) ẋ(t) = −p(t)[x(t) − kx(t − τ(t))]

was related to the behaviour of the Schröder functional equation

(1.5) ϕ(t − τ(t)) = λϕ(t), t ∈ I,

where

(1.6) λ = sup{1 − τ̇(t), t ∈ I}.

Our aim is to establish asymptotic conditions on the forcing term q under which
results of this type remain valid also for equation (1.1).

Note that equation (1.1) with a positive coefficient at x(t) has been studied in [3],
where the asymptotics of solutions have been determined by means of the behaviour
of a solution of the auxiliary differential equation

ẋ(t) = p(t)x(t).

Nevertheless, we show that certain similarities in the asymptotics of solutions in
both sign cases can be observed.

By a solution of equation (1.1) (and other delay equations occuring in this paper)
we mean a real valued function x ∈ C([τ(t0),∞)) satisfying the given equation for
all t ∈ [t0,∞). Similarly we introduce the notion of a solution for the Schröder
equation (1.5).

Using the step method we can easily prove the following existence result.

Proposition 1. Consider equation (1.5), where λ is given by (1.6). Let ϕ0 ∈
C1(I0), where I0 = [t0 − τ(t0), t0], be a positive function satisfying ϕ̇0 > 0 on I0

and

(ϕ0 ◦ (id − τ))(j)(t0) = λϕ
(j)
0 (t0), j = 0, 1.

Then there exists a unique positive solution ϕ ∈ C1(I0 ∪ I) of (1.5) such that
ϕ(t) → ∞ as t → ∞, ϕ̇ is positive and bounded on I and ϕ ≡ ϕ0 on I0.
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2. Results and proofs

In this section, we present asymptotic bounds for all solutions x of (1.1). We
recall that all the assumptions imposed on τ in Section 1 are fulfilled and suppose
that ϕ is a solution of the corresponding Schröder equation with the properties
guaranteed by Proposition 1.

First we state the following auxiliary result.

Proposition 2. Let ϕ be a solution of (1.5) from Proposition 1. Let x be a solution
of the equation

(2.1) ẋ(t) = −a(t)x(t) + b(t)x(t − τ(t)) + f(t), t ∈ I,

where a, b, f ∈ C(I), a(t) ≥ L/(ϕ(t))α, 0 < |b(t)| ≤ Ka(t) for all t ∈ I and suitable
reals L, K > 0, α < 1. If f(t) = O((ϕ(t))β) as t → ∞ for a real β, then

x(t) = O((ϕ(t))γ) as t → ∞, γ > max (α + β, log K/ logλ−1).

Proof. This result has been proved in particular cases a(t) ≡ a = const > 0 ([4,
Lemma 3.3]) and f ≡ 0 ([5, Theorem 3.1]). The generalization of both proofs to
our case is quite simple and is therefore omitted. �

Proposition 3. Let ϕ be a solution of (1.5) from Proposition 1. Let x be a solution
of (1.1), where k 6= 0, p, q ∈ C1(I), p(t) ≥ L/(ϕ(t))α, ṗ(t) ≤ Mp(t)/(ϕ(t))θ

for suitable reals L, M > 0 and α < θ ≤ 1. If q(t) = O((ϕ(t))β) as t → ∞,

q̇(t) = O((ϕ(t))β−θ̃) as t → ∞ for suitable reals β and α < θ̃ < θ, then

(2.2) x(t) = O((ϕ(t))δ) as t → ∞

and

(2.3) ẋ(t) = O((ϕ(t))δ−θ̃) as t → ∞,

where δ > max (α + β, log |k|/ logλ−1).

Proof. The asymptotic relation (2.2) follows immediately from Proposition 2. We
prove the validity of (2.3).

If we introduce the function y = ẋ, then y defines a solution of the delay equation

ẏ(t) = −[p(t) −
ṗ(t)

p(t)
]y(t) + k(1 − τ̇(t))p(t)y(t− τ(t)) + q̇(t) −

ṗ(t)

p(t)
q(t), t ∈ I,

which is equation (2.1) with coefficients a(t) = p(t)−ṗ(t)/p(t), b(t) = k(1−τ̇(t))p(t)
and f(t) = q̇(t) − q(t)ṗ(t)/p(t), t ∈ I. To apply Proposition 2 to this transformed
equation we verify its assumptions. First,

a(t) = p(t) −
ṗ(t)

p(t)
≥ p(t) −

M

(ϕ(t))θ
≥

L

(ϕ(t))α
−

M

(ϕ(t))θ
≥

L∗

(ϕ(t))α

for a suitable L∗ > 0. Further, let N = |k|λθ̃. Then

0 < |b(t)| = |k|(1 − τ̇(t))p(t) ≤ |k|λp(t) ≤ N(p(t) −
ṗ(t)

p(t)
) = Na(t)
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for all t large enough. Finally,

f(t) = q̇(t) −
ṗ(t)

p(t)
q(t) = O((ϕ(t))β−θ̃) as t → ∞.

Since
log N

log λ−1
=

log |k|λθ̃

log λ−1
=

log |k|

log λ−1
− θ̃,

a repeated application of Proposition 2 yields

y(t) = ẋ(t) = O((ϕ(t))δ−θ̃) as t → ∞. �

Now we formulate the main result which is a refinement of the previous asymp-
totic estimates.

Theorem. Let ϕ be a solution of (1.5) from Proposition 1. Let x be a solution of
(1.1) and assume that all the assumptions of Proposition 3 are fulfilled. If we put
ω := log |k|/ logλ−1, then

x(t) = O((ϕ(t))ω) as t → ∞ if α + β < ω,

x(t) = O((ϕ(t))ω log ϕ(t)) as t → ∞ if α + β = ω,

x(t) = O((ϕ(t))α+β) as t → ∞ if α + β > ω.

First we recall the following auxiliary asymptotic result on a special difference
equation. This result will be utilized in the proof of Theorem.

Proposition 4 ([15, Lemma 1]). Let z be a solution of the difference equation

z(s) = lz(s − c) + g(s), s ∈ J = [s0,∞),

where c > 0 is a real constant, l is a complex constant such that |l| = exp{−ρc}
for a suitable ρ > 0 and g is a continuous function fulfilling the property q(s) =
O(exp{−κs}) as s → ∞ for a suitable κ > 0. Then

z(s) = O(exp{−ρs}) as s → ∞ if ρ < κ,

z(s) = O(s exp{−ρs}) as s → ∞ if ρ = κ,

z(s) = O(exp{−κs}) as s → ∞ if ρ > κ.

Proof of Theorem. Let δ > max (α + β, ω). We set

s = log ϕ(t), z(s) = (ϕ(t))−δx(t)

in (1.1) and obtain the differential-difference equation

(2.4)

z′(s) = − [p(h(exp{s}))h′(exp{s}) exp{s} + δ]z(s)

+ kλδp(h(exp{s}))h′(exp{s}) exp{s}z(s − c)

+ exp{−δs}q(h(exp{s}))h′(exp{s}) exp{s}, s ∈ ϕ(I),
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where c = log λ−1 and h ≡ ϕ−1 on ϕ(I). By Proposition 3, z(s) = O(1) as s → ∞.
To estimate z′ we write

z′(s) =
d

ds
[x(t)(ϕ(t))−δ] = O(h′(exp{s}) exp{(1 − θ̃)s}) as s → ∞.

Then we consider equation (2.4) in the form
(2.5)

z(s) = kλδz(s − c) +
z′(s) + δz(s) − q(h(exp{s}))h′(exp{s}) exp{s} exp{−δs}

−p(h(exp{s}))h′(exp{s}) exp{s}
.

Using the asymptotic properties

q(h(exp{s})) = O(exp{βs}),
1

p(h(exp{s}))
= O(exp{αs}) as s → ∞

and the above derived estimates on z and z′ we can rewrite (2.5) into the asymptotic
form

z(s) = kλδz(s − c) + O(exp{−σs}) as s → ∞,

where σ = min (θ̃−α, δ−α−β) > 0. To prove the required asymptotic bounds we
utilize the previous Proposition 4.

First let ω > α+β. If ω < β + θ̃, then σ = δ−α−β for a suitable δ ∈ (ω, β + θ̃),

z(s) = O(exp{(ω−δ)s}) as s → ∞, hence x(t) = O((ϕ(t))ω) as t → ∞. If ω ≥ β+θ̃,

then σ = θ̃−α for a suitable δ ∈ (ω, ω+ θ̃−α), z(s) = O(exp{(ω−δ)s}) as s → ∞,
hence x(t) = O((ϕ(t))ω) as t → ∞.

Now let ω = α + β. If we take any δ ∈ (ω, ω + θ̃ − α), then σ = δ − α − β,
z(s) = O(s exp{(ω − δ)s}) as s → ∞, hence x(t) = O((ϕ(t))ω log ϕ(t)) as t → ∞.

Finally let ω < α+β. If we take a suitable δ ∈ (α+β, θ̃+β), then σ = δ−α−β,
z(s) = O(exp{(α + β − δ)s}) as s → ∞, hence x(t) = O((ϕ(t))α+β) as t → ∞. �

Remark. As we have already mentioned in Section 1, equation (1.1) with a positive
coefficient at x(t) was the subject of asymptotic investigations in [3]. It is natural
to expect that the behaviour of the solutions at infinity described in [3] is quite
different from that described in the previous Theorem. Indeed, if p is nondecreasing
and q fulfils some asymptotic bounds, then for any solution x of (1.1) (with the
positive sign at x(t)) there exists a (possibly zero) constant L ∈ R such that

(2.6) exp

{

−

∫

∞

t0

p(s)ds

}

x(t) → L as t → ∞

(see [3, Lemma 1]). Of course, the exponential behaviour (if L 6= 0) of solutions
cannot be estimated via terms occuring in the previous Theorem. However, if
relation (2.6) holds with L = 0, then using our notation we have x(t) = O((ϕ(t)ω)
as t → ∞ for any such solution (see [3, Lemma 2]).

3. Examples

In this section, we illustrate the presented asymptotic estimates in some partic-
ular cases of equation (1.1). First note that equation (1.1) involves the nonhomo-
geneous linear delay equation with constant coefficients

(3.1) ẋ(t) = ax(t − τ(t)) + bx(t) + q(t), t ∈ I,
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where a 6= 0, b < 0 are real scalars. Applying the previous Theorem to equation
(3.1) (i.e., with p ≡ −b and k = a/(−b)) we obtain the estimates derived in [4,
Theorem 2.3]. Hence, we have generalized these estimates to the nonautonomous
equation (1.1) (moreover, some assumptions considered in [4] have been weakened).

Another particular case of (1.1) is the corresponding homogeneous equation, i.e.
equation of the form (1.4) investigated in [5]. In the cited paper the asymptotics of
all solutions of (1.4) are related to the behaviour of the function (ϕ(t))ω occuring in
the previous Theorem. Here we have posed conditions on q and its derivative under
which a similar asymptotic formula holds for the solutions of the nonhomogeneous
equation (1.1).

Now we pay our attention to equation (1.1) with a specified form of a lag. To
apply the conclusions of Theorem we should be able to solve the corresponding
Schröder equation. As an illustration we consider equation (1.1) with a linearly
transformed argument (i.e., t − τ(t) = λt + µ) and equation (1.1) with a power
argument (i.e., t − τ(t) = tξ). In both cases we can find the required solution of
(1.5), (1.6) as follows:

ϕ(λt + µ) = λϕ(t) → ϕ(t) = t − µ/(1 − λ),

ϕ(tξ) = ξϕ(t) → ϕ(t) = log t.

In the general case (if we cannot find the explicit form of a solution of the Schröder
equation) we can either use some asymptotic treatment on this equation (see [12])
or replace this functional equation by the corresponding functional inequality.

Corollary 1. Let x be a solution of

(3.2) ẋ(t) = −p(t)[x(t) − kx(λt + µ)] + q(t), t ∈ I = [µ/(1 − λ),∞),

where k 6= 0, 0 < λ < 1, µ ∈ R, p, q ∈ C1(I), p(t) ≥ L/tα, ṗ(t) ≤ Mp(t)/tθ for

suitable reals L, M > 0 and α < θ ≤ 1. If q(t) = O(tβ) as t → ∞, q̇(t) = O(tβ−θ̃)

as t → ∞ for suitable reals β, α < θ̃ < θ and if ω := log |k|/ logλ−1, then

(3.3)

x(t) = O(tω) as t → ∞ if α + β < ω,

x(t) = O(tω log t) as t → ∞ if α + β = ω,

x(t) = O(tα+β) as t → ∞ if α + β > ω.

Proof. The assertion follows from Theorem applied to equation (3.2). �

Example 1. Consider the equation

(3.4) ẋ(t) = −t−α[x(t) − kx(λt + µ)] + tβ, t ∈ I = [µ/(1 − λ),∞),

where k 6= 0, 0 < λ < 1, α < 1 and β, µ are reals. If ω := log |k|/ logλ−1, then
estimates (3.3) hold for any solution x of (3.4).

Quite similarly as Corollary 1 we can derive
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Corollary 2. Let x be a solution of

(3.5) ẋ(t) = −p(t)[x(t) − kx(tξ)] + q(t), t ∈ I = [1,∞),

where k 6= 0, 0 < ξ < 1, p, q ∈ C1(I), p(t) ≥ L/(log t)α, ṗ(t) ≤ Mp(t)/(log t)θ

for suitable reals L, M > 0 and α < θ ≤ 1. If q(t) = O((log t)β) as t → ∞,

q̇(t) = O((log t)β−θ̃) as t → ∞ for reals β, α < θ̃ < θ and if ω := log |k|/ log ξ−1,
then

(3.6)

x(t) = O((log t)ω) as t → ∞ if α + β < ω,

x(t) = O((log t)ω log log t) as t → ∞ if α + β = ω,

x(t) = O((log t)α+β) as t → ∞ if α + β > ω.

Example 2. Consider the equation

(3.7) ẋ(t) = −(log t)−α[x(t) − kx(tξ)] + (log t)β, t ∈ I = [1,∞),

where k 6= 0, 0 < ξ < 1, α < 1 and β are reals. If ω := log |k|/ log ξ−1, then
estimates (3.6) hold for any solution x of (3.7).
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3. J. Čermák, Asymptotic behaviour of solutions of some differential equations with an un-

bounded delay, Electron. J. Qual. Theory Differ. Equ. 2 (2000), 1–8.
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5. J. Čermák, The asymptotic of solutions for a class of delay differential equations, (to appear).
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17. G. Makay, J. Terjéki, On the asymptotic behavior of the pantograph equations, Electron. J.

Qual. Theory Differ. Equ. 2 (1998), 1–12.
18. J. R. Ockendon, A. B. Taylor, The dynamics of a current collection system for an electric

locomotive, Proc. Roy. Soc. London, Ser. A 322 (1971), 447–468.

19. A. Shabat, The infinite dimensional dressing dynamical system, Inverse Problems 8 (1992),
303–308.

20. V. Spiridonov, Universal superpositions of coherent states and self-similar potentials, Physical

Review A 52 (1995), 1909–1935.

Technical University of Brno, Brno, Czech Republic
E-mail address: cermakh@um.fme.vutbr.cz

(Received September 30, 2003)

EJQTDE Proc. 7th Coll. QTDE, 2004 No. 6, p. 8


