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Abstract. In this paper, we obtain a precise estimation of the
hyper order of solutions for a class of higher order linear differen-
tial equation, and also investigate the exponents of convergence of
the fixed points of solutions and their first derivatives for the sec-
ond order case. These results generalize the results of Gundersen-
Steinbart, Wittich and Chen-Shon.
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1. Introduction

In this paper, we will use standard notations from the value dis-
tribution theory of meromorphic functions (see [15] [20]). We suppose
that f(z) is a meromorphic function in whole complex plane C. In
addition, we denote the order of growth of f(z) by σ(f), and also use
the notation σ2(f) to denote the hyper-order of f(z), defined by

σ2(f) = lim sup
r→∞

log logT (r, f)

log r
.

To give the precise estimate of fixed points, we define the exponent of
convergence of fixed points by τ(f)

τ(f) = lim sup
r→∞

logN(r, 1
(f−z)

)

log r
,

and also the hyper-exponent of convergence of (distinct) fixed points
by τ2(f)(τ 2(f))

τ2(f) = lim sup
r→∞

log logN(r, 1
(f−z)

)

log r
,

τ 2(f) = lim sup
r→∞

log logN(r, 1
(f−z)

)

log r
.

Recently, many scholars devoted to investigating the growth of so-
lutions of complex differential equations, see [1-3, 5-9, 11, 12, 16-19, 21].
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Consider the second order homogeneous linear periodic differential
equation

f ′′ + P (ez)f ′ +Q(ez)f = 0, (1.1)

where P (z) and Q(z) are polynomials in z and not both constants. It
is well known that every solution of f is an entire.

Suppose f 6≡ 0 is a solution of (1.1) and if f satisfies the condition

lim sup
r→∞

log T (r, f)

r
= 0, (1.2)

then, we say that f is a nontrivial subnormal solution of (1.1).

Wittich [17] investigated the subnormal solution of (1.1), and obtained
the form of all subnormal solutions in the following theorem.

Theorem A. If f( 6≡ 0) is a subnormal solution of (1.1), then f must
have the form

f(z) = ecz(h0 + h1e
z + · · ·+ hme

mz) (1.3)

where m ≥ 0 is an integer and c, h0, · · · , hm are constants with h0 6= 0
and hm 6= 0.

Gundersen and Steinbart [12] refined Theorem A and got the following
theorem.

Theorem B. Under the assumption of Theorem A, the following state-
ments hold.
(i) if deg P > degQ and Q 6≡ 0, then, any subnormal solution f 6≡ 0 of
(1.1) must have the form

f(z) =

m∑

k=0

hke
−kz,

where m ≥ 1 is an integer and h0, h1, · · · , hm are constants with h0 6= 0
and hm 6= 0.

(ii) if deg P ≥ 1 and Q = 0, then any subnormal solution of equation
(1.1) must be a constant,
(iii) if deg P < degQ, then the subnormal solution of equation (1.1) is
f = 0.

Chen and Shon [6] investigate more general equation than (1.1), and
get the following theorem.
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Set
aj(z) = ajdj

zdj + aj(dj−1)z
dj−1 + · · ·+ aj1z + aj0 (1.4)

bk(z) = bkdk
zdk + bk(dk−1)z

dk−1 + · · ·+ bk1z + bk0 (1.5)

where dj ≥ 0, mk ≥ 0 (j = 1, . . . , n, k = 1, . . . , s) are integers.
ajdj

, . . . , aj0; bkdk
, . . . , bk0 are constants. ajdj

6= 0, bkdk
6= 0.

Theorem C. Let an(z), . . . , a1(z), bs(z), . . . , b1(z) be polynomials and
satisfy (1.4) and (1.5), and an(z)bs(z) 6= 0. Suppose that

P (ez) = an(z)enz + · · ·+ a1(z)e
z , Q(ez) = bs(z)e

sz + · · ·+ b1(z)e
z .

If n 6= s, then every solution f ( 6≡ 0) of equation

f ′′ + P (ez)f ′ +Q(ez)f = 0 (1.6)

satisfies σ2(f) = 1.

For the higher-order linear homogeneous differential equation

f (k) + Pk−1(e
z)f (k−1) + · · · + P0(e

z)f = 0, (1.7)

where Pj(e
z) (j = 0, . . . , k−1) are polynomials in z, many papers were

devoted to investigate the solutions of (1.7) (see [3] [5] [7] [8] [16]).

In [7] Chen and Shon consider the existence of subnormal solution of
(1.7) and obtain the following theorem.

Theorem D. Let Pj(z) (j = 0, . . . , k − 1) be polynomials in z such
that all constant terms of Pj are equal to zero and deg Pj = mj , that
is,

Pj(e
z) = ajmj

emjz + aj(mj−1)e
(mj−1)z + · · · + aj1e

z,

where ajmj
, aj(mj−1), . . . , aj1 are constants and ajmj

6= 0; mj ≥ 1 are
integers. Suppose that there exists ms (s ∈ {0, . . . , k − 1}) satisfying

ms > max{mj : j = 0, . . . , s− 1, s+ 1, . . . , k − 1} = m.

Then one has the following properties.

(i) If P0 6≡ 0, then (1.7) has no nontrivial subnormal solution and every
solution of (1.7) is of hyper order σ2(f) = 1.

(ii) If P0 ≡ · · · ≡ Pd−1 ≡ 0 and Pd 6≡ 0 (d < s), then any polynomials
with degree ≤ d − 1 are subnormal solutions of (1.7) and all other so-
lutions f of (1.7) satisfy σ2(f) = 1.

It is natural to ask the following question: whether the result of Theo-
rem B can be generalized to the higher order case under the condition
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of Theorem C. In this paper, we first investigate the problem and ob-
tain the following result.

Set

ajmi
(z) = ajmidjmi

zdjmi +ajmi(djmi
−1)z

djmi
−1+· · ·+ajmi1z+ajmi0 (1.8)

where djmi
≥ 0 (j = 1, . . . , n) are integers, ajmidjmi

, . . . , ajmi0 are con-
stants, ajmidjmi

6= 0.

Theorem 1. Let ajmi
(z) be polynomials and satisfy (1.8). Suppose

that

Pj(e
z) = ajmj

(z)emjz + · · ·+ aj1(z)e
z (1.9)

where ajmi
(z) 6≡ 0. If there exists an integer s (s ∈ {0, . . . , k − 1})

satisfying

ms > max{mj : j = 0, . . . , s− 1, s+ 1, . . . , k − 1} = m, (1.10)

then every nonconstant solution f of equation

f (k) + Pk−1(e
z)f (k−1) + · · ·+ P0(e

z)f = 0 (1.11)

satisfies σ2(f) = 1 if one of the following condition holds.

(1) s = 0 or 1.
(2) s ≥ 2 and deg a0j(z) > deg aij(z) (i 6= 0).

For almost four decades, a lot of results have been obtained on the fixed
points of general transcendental meromorphic function. However, there
are few studies on fixed points of differential polynomials generated by
solutions of differential equation. In 2000, Z.X.Chen [4] first pointed
out the relation between the exponent of convergence of distinct fixed
points and the rate of growth of solutions of second-order linear dif-
ferential equations with entire coefficients. In this paper, we continue
to investigate the relation between the hyper-exponent of convergence
of distinct fixed points and the rate of growth of solutions for a higher
order case.

Theorem 2. Under the assumption of Theorem 1, if zP0(e
z)+P1(e

z) 6≡
0, then we have every nonconstant solution f of equation (1.11) satisfies

τ2(f) = τ 2(f) = σ2(f) = 1.

In particular, we investigate the exponents of convergence of the fixed
points of solutions and their first derivatives for a second order equa-
tion (1.6). we will prove the following theorems:
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Theorem 3. Let an(z), . . . , a1(z), bs(z), · · · , b1(z) be polynomials
and satisfy (1.4) and (1.5), and an(z)bs(z) 6≡ 0. Suppose that

P (ez) = an(z)enz + · · ·+ a1(z)e
z , Q(ez) = bs(z)e

sz + · · ·+ b1(z)e
z .

If s 6= n, then every solution f ( 6≡ 0) of equation (1.6) satisfy λ(f−z) =
λ(f ′ − z) = σ(f) = ∞ and λ2(f − z) = λ2(f

′ − z) = σ2(f).

2. Some Lemmas

Lemma 1. ([20]) Let fj(z) (j = 1, . . . , n) (n ≥ 2) be meromorphic
functions, gj(z) (j = 1, · · · , n) be entire functions, and satisfy
(1)

∑n

j=1 e
gj(z) ≡ 0;

(2) when 1 ≤ j < k ≤ n, then gi(z) − gk(z) is not a constant;
(3) when 1 ≤ j ≤ n, 1 ≤ h < k ≤ n, then

T (r, fj) = o{T (r, egh−gk)} (r → ∞, r 6∈ E),

where E ⊂ (1,∞) is of finite linear measure or logarithmic measure.
Then, fj(z) ≡ 0 (j = 1, · · · , n).

Lemma 2 Let Pj(e
z), mj , ms, m and aij(z)satisfy the hypotheses

of Theorem 1. Then equation (1.11) has no nonconstant polynomial
solution.
Proof. Suppose that f0 = bnz

n + · · · + b1z + b0 (n ≥ 1, bn, . . . , b0 are
constants, bn 6= 0) is a nonconstant solution of (1.11).

If n ≥ s, then f
(s)
0 6≡ 0. Substituting f0 into (1.11) and taking z = r,

we conclude that

|asmsdsms
| rdsms emsr|bnn(n− 1) · · · (n− s+ 1)|rn−s(1 + o(1))

≤ | − Ps(e
z)f

(s)
0 (z)|

≤ |f
(k)
0 (z)| + |Pk−1(e

z)f
(k−1)
0 (z)| + · · · + |Ps+1(e

z)f
(s+1)
0 (z)|

+ |Ps−1(e
z)f

(s−1)
0 (z)| + · · · + |P0(e

z)f0(z)|

≤ Mrdemr(1 + o(1)). (2.1)

Since ms > m we see that (2.1) is a contradiction.
Obviously, when s = 0 or 1, we can get that the equation (1.11) has
no nonconstant polynomial solution from the above process.
If n < s, then

Pn(ez)f
(n)
0 (z) + · · ·+ P0(e

z)f0(z) = 0. (2.2)

Set max{mi : i = 0, · · · , n} = h. If mj < h, then we can rewrite

Pj(e
z) = ajh(z)e

hz + · · ·+ aj(mj+1)(z)e
(mj+1)z

+ ajmj
(z)emjz + · · · + aj1(z)e

z (j = 0, . . . , n), (2.3)
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where ajh(z) = · · · = aj(mj+1)(z) = 0.
Thus we conclude by (2.2) and (2.3) that

(anh(z)f
(n)
0 + a(n−1)h(z)f

(n−1)
0 + · · · + a0hf0)e

hz + · · ·

+ (anj(z)f
(n)
0 + a(n−1)j(z)f

(n−1)
0 + · · ·+ a0jf0)e

jz + · · ·

+ (an1(z)f
(n)
0 + a(n−1)1(z)f

(n−1)
0 + · · ·+ a01f0)e

z = 0.(2.4)

Set

Qj(z) = anj(z)f
(n)
0 + a(n−1)j(z)f

(n−1)
0 + · · ·+ a0jf0 (j = 1, . . . , h).

(2.5)
Since f0 and aij(z) are polynomials, we see that

m(r,Qj) = o{m(r, e(α−β)z)} (1 ≤ β < α ≤ h). (2.6)

By Lemma 1 and (2.4)-(2.6), we conclude that

Q1(z) ≡ Q2(z) ≡ · · · ≡ Qh(z) ≡ 0. (2.7)

Since deg f0 > deg f ′
0 > · · · > deg f

(n)
0 and deg a0j(z) > deg aij(z) (i 6=

0), by (2.5) and (2.7), we get a contradiction.

Lemma 3. [11] Let f(z) be an entire function and suppose that
|f (k)(z)| is unbounded on some ray arg z = θ. Then, there exists an
infinite sequence of points zn = rne

iθ (n = 1, 2, . . .), where rn → ∞,

such that f (k)(zn) → ∞ and

|f (j)(z)|

|f (k)(z)|
≤ |zn|

(k−j)(1 + o(1)) (j = 0, . . . , k − 1). (2.8)

Lemma 4. [10] Let f(z) be a transcendental meromorphic function
with σ(f) = σ < ∞, Let Γ = {(k1, j1), . . . , (km, jm)} be a finite set
of distinct pairs of integers satisfying ki > ji ≥ 0 for i = 1, 2, . . . , m.
Also let ε > 0 be a given constant, then there exists a set E ⊂ [0, 2π)
that has linear measure zero, such that if ψ ∈ [0, 2π) \E, then there is
constant R0 = R0(ψ) > 1 such that for all z satisfying arg z = ψ and
|z| ≥ R0 and for all (k, j) ∈ Γ, we have

|f (k)(z)|

|f (j)(z)|
≤ |z|(k−j)(σ−1+ε). (2.9)

Remark 1 Obviously, in Lemma 4, if ψ ∈ [0, 2π) \ E is replaced by
ψ ∈ [−π

2
, 3π

2
) \ E, then (2.9) still holds.

Lemma 5. [5] Let f(z) be an entire function with σ(f) = σ < ∞.
Suppose that there exists a set E ⊂ [0, 2π) that has linear measure
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zero, such that for any ray arg z = θ0 ∈ [0, 2π) \ E, |f(reiθ0)| ≤ Mrk

(M = M(θ0) > 0 is a constant and k > 0 is a constant independent of
θ0). Then f(z) is a polynomial with deg f ≤ k.

Lemma 6. [8] Let A0, . . . , Ak−1 be entire functions of finite order. If
f(z) is a solution of equation

f (k) + Ak−1f
(k−1) + · · · + A0f = 0,

then σ2(f) ≤ max{σ(Aj) : j = 0, . . . , k − 1}.

Lemma 7. [9] Let g(z) be an entire function of infinite order with the
hyper-order σ2 = σ, and let ν(r) be the central index of g. Then,

lim sup
r→∞

log log ν(r)

log r
= σ2(g) = σ.

Lemma 8. [6] Let f(z) be an entire function of infinite order with σ2 =
α (0 ≤ α <∞), and a set E ⊂ [1,∞) have a finite logarithmic measure.
Then, there exists {zk = rke

iθk}, such that |f(zk)| = M(rk, f), θk ∈
[−π

2
, 3π

2
), limk→∞ θk = θ0 ∈ [−π

2
, 3π

2
), rk 6∈ E, and rk → ∞, such that

(1) if σ2(f) = α (0 < α <∞), then for any given ε1 (0 < ε1 < α),

exp{rα−ε1
k } < ν(rk) < exp{rα+ε1

k }. (2.10)

(2) if σ(f) = ∞ and σ2(f) = 0, then for any given ε2 (0 < ε2 <
1
2
), and

any large M (> 0), we have, as rk sufficiently large,

rM
k < ν(rk) < exp{rε2

k }. (2.11)

Lemma 9. [10] Let f be a transcendental meromorphic function,
and α > 1 be a given constant. Then there exists a set E ⊂ (1,∞)
with finite logarithmic measure and a constant B > 0 that depends
only on α and i, j (i < j(i, j ∈ N)), such that for all z satisfying
|z| = r 6∈ E ∪ [0, 1],

|
f (j)(z)

f (i)(z)
| ≤ B(

T (αr, f)

r
(logα r) logT (αr, f))j−i. (2.12)

Remark 2 From the proof of Lemma 9, we can see that the exceptional
set E satisfics that if an and bm (n,m = 1, 2, . . .) denote all zeros
and poles of f , respectively, O(an) and O(bm) denote sufficiently small
neighborhoods of an and bm, respectively, then

E = {|z| : z ∈ (∪+∞
n=1O(an)) ∪ (∪+∞

m=1O(bm))}.

Hence, if f(z) is a transcendental entire function, and z is a point that
satisfies |f(z)| to be sufficiently large, then (2.12) holds. For details see
[7] Remark 2.10.
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Lemma 10.(See [14] and Satz 21.2 of [13]) Let g be a non-constant
entire function, and let 0 < δ < 1. There exists a set E ⊂ [1,∞)
of finite logarithmic measure with the following property. For r ∈
[1,∞) \ E, the central index ν(r) of g satisfies

ν(r) ≤ (logM(r, g))1+δ.

Lemma 11. [3] Let A0, . . . , Ak−1, F 6≡ 0 be finite order meromorphic
functions. If f is a meromorphic solution the equation

f (k) + Ak−1f
(k−1) + · · ·+ A0f = F, (2.13)

with ρ(f) = +∞ and ρ2(f) = ρ, then f satisfies λ(f) = λ(f) = ρ(f) =
+∞ and λ2(f) = λ2(f) = ρ2(f) = ρ.

3. Proof of Theorem 1

Suppose that f 6≡ 0 is a solution of (1.11), then, f is an entire function.
By Lemma 2, we see that f is transcendental.
First step.we prove that σ(f) = ∞.
Assume that f is transcendental with σ(f) < ∞. By Lemma 4, we
know that for any given ε > 0, there exists a set E ⊂ [−π

2
, 3π

2
) having

linear measure zero, such that if ψ ∈ [−π
2
, 3π

2
) \ E, then there is a

constant R0 = R0(ψ) > 1 such that for all z satisfying argz = ψ and
|z| = r > R0, we have

|
f (j)(z)

f (s)(z)
| ≤ r(σ−1+ε)(j−s) j = s+ 1, . . . , k. (3.1)

Case 1 Now we take a ray arg z = θ ∈ (−π
2
, π

2
) \ E. Then we have

cos θ > 0. We assert that |f (s)(reiθ)| is bounded on the ray arg z = θ.
If |f (s)(reiθ)| is unbounded on the ray arg z = θ, then by Lemma 3,
there exists a sequence {zt = rte

iθ} such that as rt → ∞, f (s)(zt) → ∞
and

|
f (i)(zt)

f (s)(zt)
| ≤ rs−i

t (1 + o(1)) i = 0, . . . , s− 1. (3.2)

By (1.11), we get that

−Ps(e
zt) =

f (k)(zt)

f (s)(zt)
+

k−1∑

j=0,j 6=s

[Pj(e
zt)]

f (j)(zt)

f (s)(zt)
. (3.3)
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|Ps(e
zt)| = |asms

(zt)e
mszt + · · · + a1(zt)e

zt|

≥ |asms
(zt)e

mszt| − [|as(ms−1)(zt)e
(ms−1)zt | + · · · + |as1(zt)e

zt|]

= |asmsdsms
|rdsms(1 + o(1))emsrt cos θ

− [|as(ms−1)ds(ms−1)
|rds(ms−1)e(ms−1)rt cos θ(1 + o(1)) + · · ·

+ |as1ds1 |r
ds1ert cos θ(1 + o(1))]

≥
1

2
|asmsdsms

|rdsmsemsrt cos θ(1 + o(1)) (3.4)

and

|Pj(e
zt)| ≤ 2|ajmjdjmj

|r
djmj

t emrt cos θ(1 + o(1)) j 6= s. (3.5)

By substituting (3.1) (3.2) (3.4) and (3.5) into (3.3), we obtain that

1

2
|asmsdsms

|rdsmsemsrt cos θ(1+o(1)) ≤ 2|ajmjdjmj
|r

djmj
+kσ

t emrt cos θ(1+o(1))

(3.6)
Since ms > m and cos θ > 0, we know that when rt → ∞, (3.6) is a
contradiction.
Hence when arg z = θ ∈ (−π

2
, π

2
) \ E, we have |f (s)(reiθ)| ≤ M , so, on

the ray arg z = θ ∈ (−π
2
, π

2
) \ E,

|f(reiθ)| ≤ Mrs. (3.7)

Case 2 Now we take a ray arg z = θ ∈ (π
2
, 3π

2
) \ E. Then we have

cos θ < 0. We assert that |f (k)(reiθ)| is bounded on the ray arg z = θ.
If |f (k)(reiθ)| is unbounded on the ray arg z = θ, then by Lemma 3,
there exists a sequence {zt = rte

iθ} such that as rt → ∞, f (k)(zt) → ∞
and

|
f (i)(zt)

f (k)(zt)
| ≤ rk−i

t (1 + o(1)) i = 0, . . . , k − 1. (3.8)

By (1.11), we get that

−1 = Pk−1(e
zt)
f (k−1)(zt)

f (k)(zt)
+ · · · + P0(e

zt)
f(zt)

f (k)(zt)
. (3.9)

Since when rt → ∞,

|Pj(e
zt)| = |ajmj

(zt)e
mjzt + ajmj−1(zt)e

(mj−1)zt + · · ·+ aj1(zt)e
z|

≤ |ajmjdjmj
|r

djmj

t emjrt cos θ(1 + o(1)) + · · ·

+ |aj1dj1
|rdj1ert cos θ(1 + o(1)). (3.10)
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By substituting (3.8) and (3.10) into (3.9), we obtain that

1 ≤ rt[|ak−1mk−1dk−1mk−1
|r

dk−1mk−1

t emk−1rt cos θt(1 + o(1)) + · · ·

+ |ak−11dk−11
|rdk−11ert cos θt(1 + o(1))] + · · ·

+ rk
t [|a0m0d0m0

|r
d0m0
t em0rt cos θt(1 + o(1))

+ · · ·+ |a01d01 |r
d01
t ert cos θt(1 + o(1))]. (3.11)

Since cos θt < 0, when rt → ∞, by (3.11), we get 1 ≤ 0. This is a
contradiction. Hence |f (k)(reiθ)| ≤M on the ray arg z = θ ∈ (π

2
, 3π

2
)\E.

So, on the ray arg z = θ ∈ (π
2
, 3π

2
) \ E, we have

|f(reiθ)| ≤ Mrk. (3.12)

Since the linear measure of E ∪ {−π
2
, π

2
} is zero, by Lemma 5, (3.7)

and (3.12), we know that f(z) is a polynomial. This contradicts our
assumption that f(z) is transcendental. Therefore σ(f) = ∞.

Second step. We prove that σ2(f) = 1.

By Lemma 6 and σ(Pi(e
z)) = 1 (j = 0, . . . , k − 1), we see that

σ2(f) ≤ max{σ(Pi(e
z))} = 1. (3.13)

Now we suppose that there exists a solution f0 satisfies σ2(f0) = α < 1.
Then we have

lim sup
r→∞

logT (r, f0)

r
= 0. (3.14)

By Lemma 9, we see that there exists a subset E1 ⊂ (1,∞) having finite
logarithmic measure such that for all z satisfying |z| = r 6∈ E1 ∪ [0, 1],

|
f

(j)
0 (z)

f0(z)
| ≤M0[T (2r, f0)]

k+1, j = 1, . . . , k, (3.15)

where M(> 0) is some constant.

From the Wiman-Valiron theory, there is a set E2 ⊂ (1,∞) having
logarithmic measure lmE2 <∞, such that we can choose a z satisfying
|z| = r 6∈ [0, 1] ∪ E2 and |f0(z)| = M(r, f0), then we get

f
(j)
0 (z)

f0(z)
= (

ν(r)

z
)j(1 + o(1)), j = 0, . . . , k − 1. (3.16)

where ν(r) is the central index of f0(z).
By Lemma 8, we see that there exists a sequence {zt = rte

iθt} such
that |f0(zt)| = M(rt, f0), θt ∈ [−π

2
, 3π

2
), lim θt = θ0 ∈ [−π

2
, 3π

2
), rt 6∈
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[0, 1]∪E1 ∪E2, rt → ∞, and if α > 0, then for any given ε1 (0 < ε1 <

min{α, 1 − α}) and for sufficiently large rk, we get by (2.10) that

exp{rα−ε1
t } < ν(rt) < exp{rα+ε1

t }; (3.17)

if α = 0, then by σ(f0) = ∞ and (2.11), we see that for any ε2 (0 <
ε2 <

1
2
), and any large M (> 0), we have, as rt sufficiently large,

rM
t < ν(rt) < exp{rε2

t }. (3.18)

Since θ0 may belong to (−π
2
, π

2
), or (π

2
, 3π

2
), or {−π

2
, π

2
}, we devide this

proof into three cases.

Case 1. Suppose θ0 ∈ (−π
2
, π

2
). Then cos θ0 > 0. We take δ =

1
4
(π

2
− |θ0|). Thus [θ0 − δ, θ0 + δ] ⊂ (−π

2
, π

2
). By θt → θ0, we see that

there is a constant N(> 0), such that as t > N , θt ∈ [θ0 − δ, θ0 + δ],
and 0 < cos(|θ0| + δ) ≤ cos θt. By (3.14), we see that for any given
ε3 (0 < ε3 <

1
4(k+1)

cos(|θ0| + δ)),

[T (2rt, f0)]
k+1 ≤ eε3(k+1)2rt ≤ e

1
2

cos(|θ0|+δ)rt ≤ e
1
2

cos θtrt (3.19)

holds for n > N .
By (3.15) (3.16) and (3.19), we see that

(
ν(rt)

rt

)k−s(1 + o(1)) = |
f

(k−s)
0 (zt)

f0(zt)
| ≤M0[T (2rt, f0)]

k+1 ≤M0e
1
2

cos θtrt .

(3.20)
By (1.11), we get

−
f

(s)
0 (zt)

f0(zt)
Ps(e

zt) =
f

(k)
0 (zt)

f0(zt)
+

k−1∑

j=0,j 6=s

Pj(e
zt)
f

(j)
0 (zt)

f0(zt)
. (3.21)

Because cos θt > 0 and (1.9), we get that

|Ps(e
zt)| = |asmsdsms

|rdsmsemsrt cos θt(1 + o(1)) (3.22)

and

|Pj(e
zt)| ≤M1r

djmj

t emrt cos θt(1+o(1)) (j = 0, . . . , s−1, s+1, . . . , k−1).
(3.23)

Substituting (3.16) (3.22) and (3.23) into (3.21), we get for sufficiently
large rt,

(
ν(rt)

rt

)s|asmsdsms
|rdsmsemsrt cos θt(1 + o(1)) ≤ (

ν(rt)

rt

)k(1 + o(1))

+M1e
mrt cos θt

k−1∑

j=0,j 6=s

r
djmj

t (
ν(rt)

rt

)j(1 + o(1)).(3.24)
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By (3.17) or (3.18),

ν(rt) > rM
t > rt. (3.25)

By (3.20) (3.24) and (3.25), we get

|asmsdsms
|rdsmse(ms−m)rt cos θt(1 + o(1)) ≤ kM1(

ν(rt)

rt

)k−srd
t (1 + o(1))

≤ M2r
d
t e

1
2
rt cos θt . (3.26)

Since ms −m ≥ 1 > 1
2

and cos θt > 0, we see that (3.26) is a contra-
diction.

Case 2.Suppose θ0 ∈ (π
2
, 3π

2
). By cos θ0 < 0 and θt → θ0, we see

that for sufficiently large t, we have cos θt < 0. By (1.11) (3.16) and
cos θt < 0, we get for sufficiently large rt,

e−mszt
f (k)(zt)

f(zt)
= e−msztPk−1(e

zt)
f (k−1)(zt)

f(zt)
+ · · ·+e−msztP0(e

z). (3.27)

From (1.9) and cos θt < 0, we get

|e−msztPj(e
zt)| = |ajmj

(zt)e
−(ms−mj)zt + · · · + aj1(zt)e

−(ms−1)zt|

≤ Br
dj1

t e−(ms−1)rt cos θt(1 + o(1)). (3.28)

Substituting (3.16) (3.28) into (3.27), from (3.25) we have

e−msrt cos θtν(rt) ≤M3r
d
t e

−(ms−1)rt cos θt(1 + o(1)). (3.29)

If α > 0, from (3.17) we have

exp{rα−ε3
t }e−msrt cos θt ≤M3r

d
t e

−(ms−1)rt cos θt(1 + o(1)). (3.30)

Since cos θt < 0 and α < 1, we see (3.30) is a contradiction.
If α = 0, from (3.18) we have

rM
t e

−msrt cos θt ≤M3r
d
t e

−(ms−1)rt cos θt(1 + o(1)). (3.31)

Since cos θt < 0 , we see (3.31) is also a contradiction.

Case 3. Suppose that θ0 = π
2

or θ0 = −π
2
. Since the proof for θ0 = −π

2
is the same as the proof for θ0 = π

2
, we only prove the case that θ0 = π

2
.

Since θt → θ0, for any given ε4 (0 < ε4 <
1
10

), we see that there is an
integer K (> 0), as t > K, θt ∈ [π

2
− ε4,

π
2

+ ε4] , and

zt = rte
iθt ∈ Ω = {z :

π

2
− ε4 ≤ arg ≤

π

2
+ ε4}. (3.32)

By Lemma 9, we see that there exist a subset E3 ⊂ (1,∞) having
logarithmic measure lmE3 < ∞, and a constant B > 0 such that for
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all z satisfying |z| = r 6∈ [0, 1] ∪E3, we have

|
f

(i)
0 (z)

f
(s)
0 (z)

| ≤ B[T (2r, f
(s)
0 )]k−s+1 (i = s+ 1, . . . , k). (3.33)

Now we consider the property of f0(re
iθ) on a ray arg z = θ ∈ Ω \ {π

2
}.

If θ ∈ [π
2
− ε3,

π
2
), then cos θ > 0.

Since σ2(f0) < 1, we get that f0 satisfy (3.14). From T (r, f
(s)
0 ) ≤

(s + 1)T (r, f0), we get that f
(s)
0 also satisfies (3.14). So for any given

ε5 (0 < ε5 <
1

4(k−s+1)
cos θ), we have

[T (2r, f
(s)
0 )]k−s+1 ≤ eε5(k−s+1)2r ≤ e

1
2
r cos θ. (3.34)

We assert that |f
(s)
0 (reiθ)| is bounded on the ray arg z = θ ∈ [π

2
−ε3,

π
2
).

If |f
(s)
0 (reiθ)| is unbounded on the ray arg z = θ, then by Lemma 3, there

exists a sequence {yj = Rje
iθ} such that as Rj → ∞, f

(s)
0 (yj) → ∞

and

|
f

(i)
0 (yj)

f
(s)
0 (yj)

| ≤ Rs−i
j (1 + o(1)) i = 0, . . . , s− 1. (3.35)

By Remark 2 and f
(s)
0 (yj) → ∞, we know that |yj| = Rj 6∈ E3. By

(3.33) and (3.34), we have for sufficiently large j,

|
f

(j)
0 (yj)

f
(s)
0 (yj)

| ≤ [T (2Rj, f
(s)
0 )]k−s+1 ≤ Be

1
2
Rj cos θ j = s+ 1, . . . , k. (3.36)

Substituting (3.35) and (3.36) into (1.11), we get

|asmsdsms
|R

dsms

j emsRj cos θ(1 + o(1)) = | − Ps(e
yj)|

≤ sM4R
d2
j e

mRj cos θ(1 + o(1))

+(k − s)M5e
1
2
Rj cos θRd1

j e
mRj cos θ(1 + o(1)). (3.37)

Since ms > m+ 1
2

and cos θ > 0, we get (3.37) is a contradiction.

Hence |f
(s)
0 (reiθ)| is bounded on the ray arg z = θ ∈ [π

2
− ε4,

π
2
). Set

|f
(s)
0 (reiθ)| ≤M6, then on the ray arg z = θ ∈ [π

2
− ε4,

π
2
),

|f0(re
iθ)| ≤M7r

s. (3.38)

On the other hand, since rt 6∈ [0, 1]∪E1 ∪E2 ∪E3, by Lemma 10, and
(3.17) or (3.18), we see that for sufficiently large r

logM(rt, f0) ≥ (ν(rt))
1
2 ≥ r

M
2

t ,

whereM(> 1) is some constant. Since {zt} satisfies |f0(zt)| = M(rt, f0),

|f0(zt)| ≥ exp{r
M
2

t }. (3.39)
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By (3.38) and (3.39), we see that for sufficiently large t, θt 6∈ [π
2
−ε3,

π
2
),

i.e.,

θt ∈ [
π

2
,
π

2
+ ε3]. (3.40)

Thus there are two subcases: Subcase (i) there are infinitely many θt

in (π
2
, π

2
+ ε3]; Subcase (ii) there are only finitely many θt in (π

2
, π

2
+ ε3].

Now consider Subcase (i), all θt ∈ (π
2
, π

2
+ε3] form a subsequence θtj of θt

and a corresponding subsequence ztj = rtje
iθtj of zt. For a subsequence

{ztj} ⊂ {z : π
2
< arg z = θ ≤ π

2
+ ε3}, using a similar method to that

in the proof of Case 2, we can get a contradiction.
Consider Subcase (ii), we see that for sufficiently large t,

θt =
π

2
.

Thus, for sufficiently large t, cos θt = 0 and

|Pj(e
zt)| = |ajmj

(zt)e
mjzt + · · · + aj1(zt)e

zt|

≤ |ajmj
(zt)| + · · ·+ |aj1(zt)| ≤M8r

d, (3.41)

where j = 0, . . . , k − 1 and M8 is a constant.
By (1.11) (3.16) (3.17) (or (3.18) ) and (3.41), we get that

| − (
ν(rt)

zt

)k(1 + o(1))| = | −
f

(k)
0 (zt)

f0(zt)
| ≤ kM9r

d3
t (
ν(rt)

rt

)k−1(1 + o(1)),

i.e.,
ν(rt)(1 + o(1)) ≤ kM9r

d3+1
t (1 + o(1)).

By (3.17) (or (3.18) ), this is also a contradiction.

So we have σ2(f) = α = 1.

4. Proof of Theorem 2

From Theorem 1, we get σ2(f) = 1.
Let g = f − z, then f = g + z. Substituting it into (1.11), we have

g(k) + Pk−1(e
z)g(k−1) + · · ·+ P0(e

z)g = −zP0(e
z) − P1(e

z). (4.1)

Since zP0(e
z)−P1(e

z) 6≡ 0, from Lemma 11 and σ2(g) = 1 we conclude
λ2(g) = λ2(g) = σ2(g) = 1. So we have τ 2(f) = τ2(f) = σ2(f) = 1.

5. Proof of Theorem 3

From Theorem 1, we get σ(f) = ∞.
(i)Let g = f − z, then f = g + z. Substituting it into (1.6), we have

g′′ + P (ez)g′ +Q(ez)g = −P (ez) −Q(ez)z. (5.1)

Since n 6= s, we get that −P (ez) − Q(ez)z 6≡ 0. From Lemma 11, we
get λ(g) = σ(g) = σ(f) = ∞ and λ2(g) = σ2(g) = σ2(f) = σ. i.e.,
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λ(f − z) = ∞ and λ2(f − z) = σ.

(ii) Differentiating both sides of (1.6), we get that

f ′′′ + P (ez)f ′′ + (P ′(ez) +Q(ez))f ′ +Q′(ez)f = 0. (5.2)

By (1.6), we get that

f = −
f ′′ + P (ez)f ′

Q(ez)
. (5.3)

Substituting (5.3) into (5.2), we get

f ′′′ +[P (ez)−
Q′(ez)

Q(ez)
]f ′′ +[P ′(ez)+Q(ez)−

Q′(ez)

Q(ez)
P (ez)]f ′ = 0. (5.4)

Let g = f ′ − z, then f ′ = g + z, f ′′ = g′ + 1, f ′′′ = g′′. Substituting
these into (5.4), we get that

g′′ + [P (ez) −
Q′(ez)

Q(ez)
]g′ + [P ′(ez) +Q(ez) −

Q′(ez)

Q(ez)
P (ez)]g

=
Q′(ez)

Q(ez)
− P (ez) − [P ′(ez) +Q(ez) −

Q′(ez)

Q(ez)
P (ez)]z = h(z).(5.5)

Next we prove that h(z) 6≡ 0.

If h(z) ≡ 0, then Q′(ez)
Q(ez)

− P (ez) ≡ [P ′(ez) +Q(ez) − Q′(ez)
Q(ez)

P (ez)]z.

Since Q(z) 6≡ 0, we have

Q′(ez) − P (ez)Q(ez) ≡ [P ′(ez)Q(ez) +Q2(ez) −Q′(ez)P (ez)]z. (5.6)

If n < s, taking z = r, we have

e2sr(1 + o(1)) ≤ e(n+s)r(1 + o(1)).

This is a contradiction.
So we have h(z) 6≡ 0.
From Lemma 11, we get λ(g) = σ(g) = σ(f ′ − z) = σ(f) = ∞ and
λ2(g) = σ2(g) = σ2(f

′ − z) = σ2(f) = σ. i.e., λ(f ′ − z) = ∞ and
λ2(f

′ − z) = σ.

If n > s, taking z = r, we have

P (er) = an(r)enr + · · ·+ a1(r)e
r, Q(er) = bs(r)e

sr + · · · + b1(r)e
r.

We get

P ′(er) = (a′n(r) + nan(r))enr + (a′n−1(r) + (n− 1)an−1(r))e
(n−1)r + · · ·

and

Q′(er) = (b′s(r) + sbs(r))e
sr + (b′s−1(r) + (s− 1)bs−1(r))e

(s−1)r + · · · .
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So we have

|P (er)Q(er) + P ′(er)Q(er)r − P (er)Q′(er)r| = |(n− s)ran(r)bs(r)

+[an(r)bs(r) + (a′n(r)bs(r) − b′s(r)an(r))r]|e(n+s)r(1 + o(1)).(5.7)

Since an(r), bs(r) are polynomials and n > s, we get

deg((n− s)ran(r)bs(r)) > deg[an(r)bs(r) + (a′n(r)bs(r) − b′s(r)an(r))r].

So we have

|(n− s)ran(r)bs(r) + [an(r)bs(r) + (a′n(r)bs(r) − b′s(r)an(r))r]|

= Mrd1(1 + o(1)) 6≡ 0.

From (5.6), we have

Mrd1e(n+s)r(1 + o(1)) = |P (er)Q(er) + P ′(er)Q(er)r − P (er)Q′(er)r|

= |Q′(er) −Q2(er)r| ≤ Brd2e2sr(1 + o(1)).(5.8)

Since n > s, we get a contradiction.
So we also have h(z) 6≡ 0.
From Lemma 11, we get λ(g) = σ(g) = σ(f ′ − z) = σ(f) = ∞ and
λ2(g) = σ2(g) = σ2(f

′ − z) = σ2(f) = σ. i.e., λ(f ′ − z) = ∞ and
λ2(f

′ − z) = σ.

Acknowledgements

The authors would like to thank the referee for his/her valuable sug-
gestions. This work was supported by the NSF of Shandong Province,
No.ZR2010AM030, P. R. China and the NNSF of China (No. 11171013
& No.11041005).

References
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