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Abstract. The two-dimensional system of nonlinear differential equations

(A) x′′ = p(t)yα, y′′ = q(t)xβ ,

with positive exponents α and β satisfying αβ < 1 is analyzed in the framework of regular
variation. Under the assumption that p(t) and q(t) are nearly regularly varying it is shown
that system (A) may possess three types of positive solutions (x(t), y(t)) which are strongly
monotone in the sense that (i) both components are strongly decreasing, (ii) both compo-
nents are strongly increasing, and (iii) one of the components is strongly decreasing, while
the other is strongly increasing. The solutions in question are sought in the three classes
of nearly regularly varying functions of positive or negative indices. It is also shown that if
we make a stronger assumption that p(t) and q(t) are regularly varying, then the solutions
from the above three classes are fully regularly varying functions, too.
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1 Introduction

This paper is concerned with positive solutions of the two-dimensional system of second
order nonlinear differential equations

(A) x′′ = p(t)yα, y′′ = q(t)xβ ,

where
(a) α and β are positive constants;
(b) p(t) and q(t) are positive continuous functions on [t0,∞), t0 > 0.
By a positive solution of (A) we mean a vector function (x(t), y(t)) on an interval of

the form [T,∞), T ≥ t0, with positive components x(t) and y(t) satisfying system (A)
for t ≥ T . Our aim is to acquire as precise information as possible about the asymptotic
behavior of positive solutions of (A). Let (x(t), y(t)) be a positive solution of (A) existing
on [T,∞). Then, we see from (A) that x′′(t) > 0 and y′′(t) > 0, so that x′(t) and y′(t) are
increasing for t ≥ T and tend to finite or infinite limits as t → ∞. If x′(t) is eventually
positive, then either limt→∞ x′(t) = const > 0 or limt→∞ x′(t) = ∞, in which case x(t)
satisfies

(I) lim
t→∞

x(t)

t
= ∞ or (II) lim

t→∞

x(t)

t
= const > 0
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respectively, while if x′(t) is eventually negative, then limt→∞ x′(t) = 0, in which case x(t)
satisfies

(III) lim
t→∞

x(t) = const > 0 or (IV) lim
t→∞

x(t) = 0,

respectively. Naturally the same is true of the asymptotic behavior of the component y(t).
A function x(t) (or y(t)) is referred to as primitive if it is of type (II) or (III), and as
non-primitive it it is of type (I) or (IV).

Positive solutions of (A) may exhibit a variety of asymptotic behavior at infinity depend-
ing on which of the four cases (I), (II), (III) and (IV) holds for each of their components. In
view of the symmetry of x(t) and y(t) there are ten different types of asymptotic behavior
beginning with type (I,I) and ending with type (IV,IV), of which the three types (II,II),
(II,III) and (III,III) are special in the sense that the existence of solutions of these types
for (A) can be completely characterized without difficulty.

Proposition 1.1. (i) System (A) has solutions (x(t), y(t)) such that

(1.1) lim
t→∞

x(t)

t
= const > 0, lim

t→∞

y(t)

t
= const > 0,

if and only if

(1.2)

∫

∞

t0

tαp(t)dt < ∞,

∫

∞

t0

tβq(t)dt < ∞.

(ii) System (A) has solutions (x(t), y(t)) such that

(1.3) lim
t→∞

x(t)

t
= const > 0, lim

t→∞

y(t) = const > 0,

if and only if

(1.4)

∫

∞

t0

p(t)dt < ∞,

∫

∞

t0

tβ+1q(t)dt < ∞.

(iii) System (A) has solutions (x(t), y(t)) such that

(1.5) lim
t→∞

x(t) = const > 0, lim
t→∞

y(t) = const > 0,

if and only if

(1.6)

∫

∞

t0

tp(t)dt < ∞,

∫

∞

t0

tq(t)dt < ∞.

To prove each of these statements it suffices to construct a suitable system of integral
equations from (A) and solve it routinely by means of the Schauder-Tychonoff fixed point
theorem. The proof may be omitted.

Of the remaining types of solutions of (A) which seem to be difficult to deal with
in the case of general positive continuous p(t) and q(t) we take up the extreme three
types, i.e., (I,I), (IV,IV) and (I,IV) types of solutions and show that, if analyzed in the
framework of regular variation, it is possible to indicate the situation in which system (A)
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possesses solutions of these types having accurate order of growth or decay as t → ∞. More
specifically, the exponents α and β in (A) are restricted to the case αβ < 1, the coefficients
p(t) and q(t) in (A) are assumed to be nearly regularly varying, and the above-mentioned
types of solutions are sought in the classes of nearly regularly varying solutions of suitable
but definite indices, positive or negative.

The present work was motivated by the recent progress of the asymptotic analysis of
positive solutions of nonlinear differential equations by means of regular variation which
was triggered by the publication of Marić’s book [8]; see, for example, the papers [3 - 7]. A
prototype of existence results we are going to prove here is Theorem 8 from [6] concerning
the fourth order sublinear differential equation of the Thomas-Fermi type

(1.7) x(4) = q(t)|x|βsgn x, 0 < β < 1,

(equivalent to a special case of (A) where p(t) ≡ 1 and α = 1) which states that if q(t) is
regularly varying of index σ ∈ (−∞,−4)∪ (−β − 3,−2β − 2)∪ (−3β− 1,∞) and ρ is given
by

ρ =
σ + 4

1 − β
,

then (1.7) possesses solutions x(t) satisfying

(1.8) a

[

t4q(t)

ρ(ρ − 1)(2 − ρ)(3 − ρ)

]
1

1−β

≤ x(t) ≤ A

[

t4q(t)

ρ(ρ − 1)(2 − ρ)(3 − ρ)

]
1

1−β

, t ≥ T,

for some constants T ≥ t0 and a, A > 0. Our purpose here is to generalize the above
result to nonlinear systems of the form (A) with “nearly regularly varying” coefficients p(t)
and q(t) and to show that the solutions of (A) satisfying (1.8) are actually fully regularly
varying if it is assumed that both p(t) and q(t) are regularly varying functions.

2 Regularly varying functions

For the reader’s convenience we recall here the definition of regularly varying functions,
basic terminologies and notations, and Karamata’s integration theorem which will play a
central role in establishing the main results of this paper.

Definition 2.1. A measurable function f : (0,∞) → (0,∞) is said to be regularly

varying of index ρ ∈ R if it satisfies

lim
t→∞

f(λt)

f(t)
= λρ for ∀λ > 0,

or equivalently it is expressed in the form

f(t) = c(t) exp

{

∫ t

t0

δ(s)

s
ds

}

, t ≥ t0,

for some t0 > 0 and some measurable functions c(t) and δ(t) such that

lim
t→∞

c(t) = c0 ∈ (0,∞) and lim
t→∞

δ(t) = ρ.

EJQTDE, 2013 No. 23, p. 3



The totality of regularly varying functions of index ρ is denoted by RV(ρ). We often
use the symbol SV instead of RV(0) and call members of SV slowly varying functions. By
definition any function f(t) ∈ RV(ρ) is written as f(t) = tρg(t) with g(t) ∈ SV. So, the class
SV of slowly varying functions is of fundamental importance in theory of regular variation.
Typical examples of slowly varying functions are: all functions tending to positive constants
as t → ∞,

N
∏

n=1

(logn t)αn , αn ∈ R, and exp

{ N
∏

n=1

(logn t)βn

}

, βn ∈ (0, 1),

where logn t denotes the n-th iteration of the logarithm. It is known that the function

L(t) = exp

{

(log t)
1

3 cos (log t)
1

3

}

is a slowly varying function which is oscillating in the sense that

lim sup
t→∞

L(t) = ∞ and lim inf
t→∞

L(t) = 0.

A function f(t) ∈ RV(ρ) is called a trivial regularly varying function of index ρ if it is
expressed in the form f(t) = tρL(t) with L(t) ∈ SV satisfying limt→∞ L(t) = const > 0.
Otherwise f(t) is called a nontrivial regularly varying function of index ρ. The symbol
tr-RV(ρ) (or ntr-RV(ρ)) is used to denote the set of all trivial RV(ρ)-functions (or the set
of all nontrivial RV(ρ)-functions).

The following proposition, known as Karamata’s integration theorem, is particularly
useful in handling slowly and regularly varying functions analytically and is extensively
used throughout the paper.

Proposition 2.1. Let L(t) ∈ SV. Then,

(i) if α > −1,
∫ t

a

sαL(s)ds ∼ 1

α + 1
tα+1L(t), t → ∞;

(ii) if α < −1,
∫

∞

t

sαL(s)ds ∼ − 1

α + 1
tα+1L(t), t → ∞;

(iii) if α = −1,

l(t) =

∫ t

a

L(s)

s
ds ∈ SV and lim

t→∞

L(t)

l(t)
= 0, ,

and

m(t) =

∫

∞

t

L(s)

s
ds ∈ SV and lim

t→∞

L(t)

m(t)
= 0,

provided L(s)/s is integrable near the infinity in the latter case.

A measurable function f : (0,∞) → (0,∞) is called regularly bounded if for any λ0 > 1
there exist positive constants m and M such that

1 < λ < λ0 =⇒ m ≤ f(λt)

f(t)
≤ M for all large t.
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The totality of regularly bounded functions is denoted by RO. It is clear that RV(ρ) ⊂
RO for any ρ ∈ R. Any function which is bounded both from above and from below
by positive constants is regularly bounded. For example, 2 + sin t and 2 + sin(log t) are
regularly bounded. Note that 2 + sin t and 2 + sin(log t) are not slowly varying, whereas
2 + sin(logn t), n ≥ 2, are slowly varying.

We now define the class of nearly regularly varying functions which is a useful subclass
of RO including all regularly varying functions. To this end it is convenient to introduce
the following

Notation 2.1. Let f(t) and g(t) be two positive continuous functions defined in a
neighborhood of infinity, say for t ≥ T . We use the notation f(t) ≍ g(t), t → ∞, to denote
that there exist positive constants m and M such that

mg(t) ≤ f(t) ≤ Mg(t) for t ≥ T.

Clearly, f(t) ∼ g(t), t → ∞, implies f(t) ≍ g(t), t → ∞, but not conversely. It is easy
to see that if f(t) ≍ g(t), t → ∞, and if limt→∞ g(t) = 0, then limt→∞ f(t) = 0.

Definition 2.2. If positive continuous function f(t) satisfies f(t) ≍ g(t), t → ∞, for
some g(t) which is regularly varying of index ρ, then f(t) is called a nearly regularly varying

function of index ρ.
Since 2 + sin t ≍ 2 + sin(logn t), t → ∞, for all n ≥ 2, the function 2 + sin t is nearly

slowly varying, and the same is true of 2 + sin(log t). If g(t) ∈ RV(ρ), then the functions
(2+sin t)g(t) and (2+sin(log t))g(t) are nearly regularly varying of index ρ, but not regularly
varying of index ρ.

The reader is referred to Bingham et al [1] for the most complete exposition of theory
of regular variation and its applications and to Marić [8] for the comprehensive survey of
results up to 2000 on the asymptotic analysis of second order linear and nonlinear ordinary
differential equations in the framework of regular variation.

3 Strongly decreasing solutions of (A)

We begin with the problem of existence of strongly decreasing solutions of system (A),
by which we mean positive solutions of type (IV,IV), that is, those solutions (x(t), y(t))
such that

(3.1) lim
t→∞

x(t) = 0, lim
t→∞

y(t) = 0.

Let (x(t), y(t)) be such a solution of (A) on [T,∞), T > t0. Since x′(t) and y′(t) tend to 0
as t → ∞, integrating two equations in (A) twice from t to ∞, we have

(3.2) x(t) =

∫

∞

t

∫

∞

s

p(r)y(r)αdrds, y(t) =

∫

∞

t

∫

∞

s

q(r)x(r)βdrds, t ≥ T.

Our aim is to obtain strongly decreasing solutions of (A) as solutions of the system of
integral equations (3.2) by means of fixed point techniques. For this purpose essential use
is made of the fact that regularly varying solutions of the system of asymptotic relations

(3.3) x(t) ∼
∫

∞

t

∫

∞

s

p(r)y(r)αdrds, y(t) ∼
∫

∞

t

∫

∞

s

q(r)x(r)βdrds, t → ∞.
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which is regarded as an approximation at infinity of (A), can be completely characterized
provided αβ < 1 and p(t) and q(t) are regularly varying.

Let x(t) = tρξ(t), ξ(t) ∈ SV (resp. y(t) = tση(t), η(t) ∈ SV) satisfy (3.1). Then, it is
clear that either ρ < 0, or ρ = 0 and ξ(t) → 0 as t → ∞ (resp. either σ < 0, or σ = 0 and
η(t) → 0 as t → ∞). In this section we focus only on the case where ρ < 0 and σ < 0,
leaving the remaining two possibilities to our later investigations.

3.1 Integral asymptotic relations

Lemma 3.1. Let αβ < 1 and suppose that p(t) ∈ RV(λ) and q(t) ∈ RV(µ) are expressed

as

(3.4) p(t) = tλl(t), q(t) = tµm(t), l(t), m(t) ∈ SV.

System (3.3) has regularly varying solutions of index (ρ, σ) with ρ < 0 and σ < 0 if and

only if (λ, µ) satisfies the system of inequalities

(3.5) λ + 2 + α(µ + 2) < 0, β(λ + 2) + µ + 2 < 0,

in which case ρ and σ are given by

(3.6) ρ =
λ + 2 + α(µ + 2)

1 − αβ
, σ =

β(λ + 2) + µ + 2

1 − αβ
,

and the asymptotic behavior of any such solution (x(t), y(t)) is governed by the formula

(3.7) x(t) ∼
[t2(α+1)p(t)q(t)α

∆(ρ)∆(σ)α

]
1

1−αβ

, y(t) ∼
[t2(β+1)p(t)βq(t)

∆(ρ)β∆(σ)

]
1

1−αβ

, t → ∞,

where ∆(τ) = −τ(1 − τ) for τ < 0.

PROOF. (The ”only if” part) Suppose that (3.3) has a regularly varying solution
(x(t), y(t)) of negative index (ρ, σ) which is expressed in the form

(3.8) x(t) = tρξ(t), y(t) = tση(t), ξ(t), η(t) ∈ SV, t ≥ T.

Since the functions p(t)y(t)α = tλ+ασl(t)η(t)α and q(t)x(t)β = tµ+βρm(t)ξ(t)β are integrable
twice on [T,∞) we see that λ + ασ ≤ −2 and µ + βρ ≤ −2, in which case we have by
Karamata’s integration theorem ((ii) of Proposition 2.1)

∫

∞

t

p(s)y(s)αds =

∫

∞

t

sλ+ασl(s)η(s)αds ∼ tλ+ασ+1l(t)η(t)α

−(λ + ασ + 1)
, t → ∞,

and hence

(3.9)

∫

∞

t

∫

∞

s

p(r)y(r)αdrds ∼
∫

∞

t

sλ+ασ+1l(s)η(s)α

−(λ + ασ + 1)
ds, t → ∞.

This excludes the possibility λ + ασ = −2. In fact, if this equality would hold, then (3.9)
and the first relation of (3.3) would imply that

x(t) ∼
∫

∞

t

s−1l(s)η(s)α

−(λ + ασ + 1)
ds ∈ SV, t → ∞,
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which shows that the regularity index of x(t) is zero: ρ = 0, an impossibility. Thus, we
must have λ+ασ < −2. In this case, applying (ii) of Proposition 2.1 to (3.9) and combining
the result with the first relation in (3.3), we obtain the asymptotic equivalence

(3.10) x(t) ∼ tλ+ασ+2l(t)η(t)α

[−(λ + ασ + 1)][−(λ + ασ + 2)]
, t → ∞.

The same argument applies to the second relation in (3.3) and leads to the conclusion that
µ + βρ < −2 holds and y(t) satisfies the asymptotic relation

(3.11) y(t) ∼ tµ+βρ+2m(t)ξ(t)β

[−(µ + βρ + 1)][−(µ + βρ + 2)]
, t → ∞.

From (3.10) and (3.11) it follows that

ρ = λ + ασ + 2, σ = µ + βρ + 2,

from which ρ and σ are determined uniquely by the formula (3.6). This clearly implies
(3.5).

As is easily checked, (3.10) and (3.11) can be rewritten as

x(t) ∼ tλ+2l(t)y(t)α

(−ρ)(1 − ρ)
=

t2p(t)y(t)α

∆(ρ)
, y(t) ∼ tµ+2m(t)x(t)β

(−σ)(1 − σ)
=

t2q(t)x(t)β

∆(σ)
,

as t → ∞, which in turn is transformed into

x(t) ∼
[t2(α+1)p(t)q(t)α

∆(ρ)∆(σ)α

]
1

1−αβ

, y(t) ∼
[t2(β+1)p(t)βq(t)

∆(ρ)β∆(σ)

]
1

1−αβ

, t → ∞,

establishing the asymptotic formula (3.7) for (x(t), y(t)).

(The ”if” part) Suppose that (λ, µ) satisfies (3.5) and define (ρ, σ) by (3.6). We define
(X(t), Y (t)) by

(3.12) X(t) =
[t2(α+1)p(t)q(t)α

∆(ρ)∆(σ)α

]
1

1−αβ

, Y (t) =
[t2(β+1)p(t)βq(t)

∆(ρ)β∆(σ)

]
1

1−αβ

, t ≥ t0,

which can be rewritten as

X(t) = tρ
[ l(t)m(t)α

∆(ρ)∆(σ)α

]
1

1−αβ

, Y (t) = tσ
[ l(t)βm(t)

∆(ρ)β∆(σ)

]
1

1−αβ

.

It suffices to prove that

(3.13)

∫

∞

t

∫

∞

s

p(r)Y (r)αdrds ∼ X(t),

∫

∞

t

∫

∞

s

q(r)X(r)βdrds ∼ Y (t), t → ∞.

Using Karamata’s integration theorem, we compute as follows:

∫

∞

t

p(s)Y (s)αds =

∫

∞

t

sλ+ασl(s)
[ l(s)βm(s)

∆(ρ)β∆(σ)

]
α

1−αβ

ds
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=

∫

∞

t

sρ−2l(s)
[ l(s)βm(s)

∆(ρ)β∆(σ)

]
α

1−αβ

ds ∼ tρ−1l(t)

1 − ρ

[ l(t)βm(t)

∆(ρ)β∆(σ)

]
α

1−αβ

, t → ∞,

and hence
∫

∞

t

∫

∞

s

p(r)Y (r)αdrds ∼ tρl(t)

(−ρ)(1 − ρ)

[ l(t)βm(t)

∆(ρ)β∆(σ)

]
α

1−αβ

= X(t), t → ∞.

Similarly we obtain

∫

∞

t

∫

∞

s

q(r)X(r)βdrds ∼ tσm(t)

(−σ)(1 − σ)

[ l(t)m(t)α

∆(ρ)∆(σ)α

]
β

1−αβ

= Y (t), t → ∞.

This ensures the truth of (3.13). This completes the proof of Lemma 3.1.

3.2 Strongly decreasing solutions of (A)

We now consider system (A) with nearly regularly varying p(t) and q(t) and show that
strongly decreasing solutions of (A) can be found in the class of nearly regularly varying
functions of negative indices.

Theorem 3.1. Let αβ < 1 and let p(t) and q(t) be nearly regularly varying of index λ
and µ, respectively, such that

(3.14) p(t) ≍ tλl(t), q(t) ≍ tµm(t), l(t), m(t) ∈ SV.

Suppose that λ and µ satisfy (3.5) and define ρ and σ by (3.6). Then, system (A) possesses

nearly regularly varying solutions (x(t), y(t)) of index (ρ, σ) with the property that

(3.15) x(t) ≍ tρ
[ l(t)m(t)α

∆(ρ)∆(σ)α

]
1

1−αβ

, y(t) ≍ tσ
[ l(t)βm(t)

∆(ρ)β∆(σ)

]
1

1−αβ

, t → ∞,

where ∆(τ) = τ(τ − 1) for τ < 0.

PROOF. Let pλ(t) and qµ(t) denote the functions

(3.16) pλ(t) = tλl(t) ∈ RV(λ), qµ(t) = tµm(t) ∈ RV(µ).

By hypothesis there exist positive constants k, l, K and L such that

(3.17) kpλ(t) ≤ p(t) ≤ Kpλ(t), lqµ(t) ≤ q(t) ≤ Lqµ(t), t ≥ t0.

Define the function (Xλ(t), Yµ(t)) by the formula (3.12) with p(t) and q(t) replaced by pλ(t)
and qµ(t), respectively. Since by Lemma 3.1 (Xλ(t), Yµ(t)) satisfies the asymptotic relation
(3.3), i.e. (3.13), there exists T > t0 such that for t ≥ T

(3.18)
1

2
Xλ(t) ≤

∫

∞

t

∫

∞

s

pλ(r)Yµ(r)
αdrds ≤ 2Xλ(t),

1

2
Yµ(t) ≤

∫

∞

t

∫

∞

s

qµ(r)Xλ(r)
βdrds ≤ 2Yµ(t).
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We may assume that Xλ(t) and Yµ(t) are non-increasing for t ≥ T because it is known ([1,
Theorem 1.5.3]) that any regularly varying function of negative index is asymptotic to a
monotone non-increasing function. Let us now choose (a, b), (A, B) ∈ R2 so that a < A,
b < B and

(3.19) a ≤ 1

2
kbα, b ≤ 1

2
laβ , 2KBα ≤ A, 2LAβ ≤ B.

It is elementary to see that such a choice of (a, b), (A, B) is really possible. For example,
one may choose as follows:

a = (2−(1+α)klα)
1

1−αβ , A = (2(1+α)KLα)
1

1−αβ ,

b = (2−(1+β)kβl)
1

1−αβ , B = (2(1+β)KβL)
1

1−αβ .

We define X to be the subset of C[T,∞)×C[T,∞) consisting of vector functions (x(t), y(t))
satisfying

(3.20) aXλ(t) ≤ x(t) ≤ AXλ(t), bYµ(t) ≤ y(t) ≤ BYµ(t), t ≥ T.

It is clear that X is a closed convex subset of C[T,∞)×C[T,∞). Furthermore, define the
mapping Φ : X → C[T,∞)×C[T,∞) by

(3.21) Φ(x(t), y(t)) = (Fy(t),Gx(t)), t ≥ T,

where F and G denote the integral operators

(3.22) Fy(t) =

∫

∞

t

∫

∞

s

p(r)y(r)αdrds, Gx(t) =

∫

∞

t

∫

∞

s

q(r)x(r)βdrds, t ≥ T.

It can be checked that Φ fulfils the hypotheses of the Schauder-Tychonoff fixed point the-
orem.

(i) Φ(X ) ⊂ X . If (x(t), y(t)) ∈ X , then using (3.18), (3.19) and (3.20), we see that

Fy(t) ≥
∫

∞

t

∫

∞

s

kpλ(r)(bYµ(r))
αdrds ≥ 1

2
kbαXλ(t) ≥ aXλ(t),

Fy(t) ≤
∫

∞

t

∫

∞

s

Kpλ(r)(BYµ(r))
αdrds ≤ 2KBαXλ(t) ≤ AXλ(t),

Gx(t) ≥
∫

∞

t

∫

∞

s

lqµ(r)(aXλ(r))
βdrds ≥ 1

2
laβYµ(t) ≥ bYµ(t),

Gx(t) ≤
∫

∞

t

∫

∞

s

Lqµ(r)(AXλ(r))
βdrds ≤ 2LAβYµ(t) ≤ BYµ(t),

for t ≥ T . This shows that (Fy(t),Gx(t)) ∈ X .
(ii) Φ(X ) is relatively compact. From the inclusion Φ(X ) ⊂ X it follows that Φ(X ) is

uniformly bounded on [T,∞). The inequalities

0 ≥ (Fy)′(t) ≥ −Bα

∫

∞

t

p(s)Yµ(s)
αds, 0 ≥ (Gx)′(t) ≥ −Aβ

∫

∞

t

q(s)Xλ(s)
βds,

EJQTDE, 2013 No. 23, p. 9



holding for all (x(t), y(t)) ∈ X guarantee that Φ(X ) is equicontinuous on [T,∞). The
relative compactness of Φ(X ) then follows from the Arzela-Ascoli lemma.

(iii) Φ is continuous. Let {(xn(t), yn(t))} be a sequence in X converging to (x(t), y(t)) ∈
X uniformly on any compact subinterval of [T,∞). We need to prove that Φ(xn(t), yn(t)) →
Φ(x(t), y(t)), that is,

Fyn(t) → Fy(t), Gxn(t) → Gx(t) as n → ∞

uniformly on compact subintervals of [T,∞). But this follows immediately from the
Lebesgue dominated convergence theorem applied to the integrals in the following inequal-
ities holding for t ≥ T

|Fyn(t) −Fy(t)| ≤
∫

∞

t

sp(s)|yn(s)
α − y(s)α|ds,

|Gxn(t) − Gx(t)| ≤
∫

∞

t

sq(s)|xn(s)β − x(s)β|ds.

Therefore, the Schauder-Tychonoff fixed point theorem ensures the existence of a func-
tion (x(t), y(t)) ∈ X such that Φ(x(t), y(t)) = (x(t), y(t)), t ≥ T , that is,

x(t) = Fy(t) =

∫

∞

t

∫

∞

s

p(r)y(r)αdrds, y(t) = Gx(t) =

∫

∞

t

∫

∞

s

q(r)x(r)βdrds,

for t ≥ T . It follows that (x(t), y(t)) gives a strongly decreasing solution of system (A).
The membership (x(t), y(t)) ∈ X implies that (x(t), y(t)) is a nearly regularly varying of
negative index (ρ, σ). This completes the proof of Theorem 3.1.

As for the solutions constructed in Theorem 3.1, their regularity can be characterized
completely under the stronger assumption that p(t) and q(t) are regularly varying functions.

The generalized L’Hospital’s rule given in the following lemma (see [2]) plays a crucial
role in the proof of this theorem.

Lemma 3.2. Let f(t), g(t) ∈ C1[T,∞) and suppose that

lim
t→∞

f(t) = lim
t→∞

g(t) = ∞ and g′(t) > 0 for all large t,

or

lim
t→∞

f(t) = lim
t→∞

g(t) = 0 and g′(t) < 0 for all large t.

Then,

lim inf
t→∞

f ′(t)

g′(t)
≤ lim inf

t→∞

f(t)

g(t)
, lim sup

t→∞

f(t)

g(t)
≤ lim sup

t→∞

f ′(t)

g′(t)
.

Theorem 3.2. Suppose that p(t) and q(t) are regularly varying of indices λ and µ,

respectively. System (A) possesses regularly varying solutions (x(t), y(t)) such that

x(t) ∈ RV(ρ), y(t) ∈ RV(σ), ρ < 0, σ < 0

if and only if (3.5) holds, in which case ρ and σ are given by (3.6) and the asymptotic

behavior of any such solution (x(t), y(t)) is governed by the formulas
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(3.23) x(t) ∼
[

t2(α+1)p(t)q(t)α

∆(ρ)∆(σ)α

]
1

1−αβ

, y(t) ∼
[

t2(β+1)p(t)βq(t)

∆(ρ)β∆(σ)

]
1

1−αβ

, t → ∞.

PROOF OF THEOREM 3.2.
(The “only if” part) It follows from Lemma 3.1.

(The “if” part) Suppose that (3.5) holds and define the negative constants ρ and σ by
(3.6). By Theorem 3.1 system (A) has a nearly regularly varying solution (x(t), y(t)) on
[T,∞) such that

(3.24) aX(t) ≤ x(t) ≤ AX(t), bY (t) ≤ y(t) ≤ BY (t), t ≥ T,

for some positive constants T, a, A, b and B, where

(3.25) X(t) =
[t2(α+1)p(t)q(t)α

∆(ρ)∆(σ)α

]
1

1−αβ ∈ RV(ρ), Y (t) =
[t2(β+1)p(t)βq(t)

∆(ρ)β∆(σ)

]
1

1−αβ ∈ RV(σ).

It is clear that (x(t), y(t)) satisfies

(3.26) x(t) =

∫

∞

t

∫

∞

s

p(r)y(r)αdrds, y(t) =

∫

∞

t

∫

∞

s

q(r)x(r)βdrds, t ≥ T.

Let U(t) and V (t) denote the functions defined by

(3.27) U(t) =

∫

∞

t

∫

∞

s

p(r)Y (r)αdrds, V (t) =

∫

∞

t

∫

∞

s

q(r)X(r)βdrds, t ≥ t0.

Note that U(t) and V (t) satisfy the asymptotic relations

(3.28) U(t) ∼ X(t), V (t) ∼ Y (t), t → ∞.

Put

(3.29) k = lim inf
t→∞

x(t)

U(t)
, K = lim sup

t→∞

x(t)

U(t)
, l = lim inf

t→∞

y(t)

V (t)
, L = lim sup

t→∞

y(t)

V (t)
.

From (3.24) and (3.26) we see that 0 < k ≤ K < ∞ and 0 < l ≤ L < ∞. Applying the
generalized L’Hospital rule twice, we obtain

k = lim inf
t→∞

x(t)

U(t)
≥ lim inf

t→∞

x′′(t)

U ′′(t)
= lim inf

t→∞

p(t)y(t)α

p(t)Y (t)α

= lim inf
t→∞

(

y(t)

Y (t)

)α

= lim inf
t→∞

(

y(t)

V (t)

)α

=

(

lim inf
t→∞

y(t)

V (t)

)α

= lα,

and

l = lim inf
t→∞

y(t)

V (t)
≥ lim inf

t→∞

y′′(t)

V ′′(t)
= lim inf

t→∞

q(t)x(t)β

q(t)X(t)β

= lim inf
t→∞

(

x(t)

X(t)

)β

= lim inf
t→∞

(

x(t)

U(t)

)β

=

(

lim inf
t→∞

x(t)

U(t)

)β

= kβ,

EJQTDE, 2013 No. 23, p. 11



where (3.28) has been used in the final step of each of the above computations. Since
αβ < 1, the inequalities k ≥ lα and l ≥ kβ thus obtained imply

(3.30) 1 ≤ k < ∞, 1 ≤ l < ∞.

Similarly, we obtain K ≤ Lα and L ≤ Kβ, from which it follows that

(3.31) 0 < K ≤ 1, 0 < L ≤ 1.

From (3.30) and (3.31) we conclude that k = K = 1 and l = L = 1, that is,

lim
t→∞

x(t)

U(t)
= 1, lim

t→∞

y(t)

V (t)
= 1,

which combined with (3.28) shows that

x(t) ∼ U(t) ∼ X(t), y(t) ∼ V (t) ∼ Y (t), t → ∞.

This completes the proof.

Example 3.1. Consider the system (A) with

(3.32) p(t) ≍ 2t2α−3(log t)−(α+1), q(t) ≍ 6tβ−4(log t)β+1, t → ∞.

Since
λ + 2 + α(µ + 2) = αβ − 1, β(λ + 2) + µ + 2 = 2(αβ − 1),

(3.6) gives ρ = −1 and σ = −2, which implies that ∆(−1) = 2 and ∆(−2) = 6. Using these
constants and (3.27) in (3.15), we conclude from Theorem 3.1 that the system (A) under
consideration possesses a strongly decreasing solution (x(t), y(t)) which is nearly regularly
varying of index (−1,−2) such that

x(t) ≍ (t log t)−1, y(t) ≍ t−2 log t, t → ∞.

In case condition (3.32) is strengthened to

p(t) ∼ 2t2α−3(log t)−(α+1), q(t) ∼ 6tβ−4(log t)β+1, t → ∞,

then Theorem 3.2 guarantees the existence of a strongly decreasing regularly varying solu-
tion (x(t), y(t)) of index (-1,-2) such that

x(t) ∼ (t log t)−1, y(t) ∼ t−2 log t, t → ∞.

If in particular

p(t) = 2t2α−3(log t)−(α+1)
(

1 +
3

2 log t
+

1

(log t)2

)

, q(t) = 6tβ−4(log t)β+1
(

1 − 5

6 log t

)

,

then this system has an exact regularly varying solution ((t log t)−1, t−2 log t).
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4 Strongly increasing solutions of (A)

We turn our attention to strongly increasing solutions of system (A), by which we mean
positive solutions of type (I,I), that is, those solutions (x(t), y(t)) such that

(4.1) lim
t→∞

x(t)

t
= ∞, lim

t→∞

y(t)

t
= ∞.

Let (x(t), y(t)) be one such solution of (A) on [T,∞). Note that x′(t) and y′(t) tend to
infinity as t → ∞. Integrating (A) twice on [T, t] gives
(4.2)

x(t) = x0 +x1(t−T )+

∫ t

T

∫ s

T

p(r)y(r)αdrds, y(t) = y0 +y1(t−T )+

∫ t

T

∫ s

T

q(r)x(r)βdrds,

for t ≥ T , where x0 = x(T ), x1 = x′(T ), y0 = y(T ) and y1 = y′(T ). The wanted strongly
increasing solutions of (A) are obtained by solving the system of integral equations (4.2)
with the help of the Schauder-Tychonoff fixed point theorem. For this purpose an essential
role is played by some of the basic properties of regularly varying solutions satisfying (4.1)
and the system of integral asymptotic relations

(4.3) x(t) ∼
∫ t

T

∫ s

T

p(r)y(r)αdrds, y(t) ∼
∫ t

T

∫ s

T

q(r)x(r)βdrds, t → ∞,

in which αβ < 1 and p(t) and q(t) are regularly varying. Let (x(t), y(t)) be a regularly
varying solution of (4.3) which is expressed as

(4.4) x(t) = tρξ(t), y(t) = tση(t), ξ(t), η(t) ∈ SV.

Then, it is easy to see that (4.1) holds for (x(t), y(t)) if ρ > 1, or if ρ = 1 and ξ(t) → ∞ as
t → ∞ on the one hand, and if σ > 1, or if σ = 1 and η(t) → ∞ as t → ∞ on the other. In
this section we consider only the case where ρ > 1 and σ > 1, leaving the other possibilities
to a later occasion because of computational difficulty.

4.1 Integral asymptotic relations

This subsection is concerned with the asymptotic system (4.3) which is regarded as
an approximation of the system of integral equations (4.2). As a result of the analysis of
(4.3) by means of regular variation full knowledge can be acquired of its regularly varying
solutions satisfying (4.1) as the following lemma shows.

Lemma 4.1. Let αβ < 1 and suppose that p(t) ∈ RV(λ) and q(t) ∈ RV(µ) are expressed

in the form (4.4). System (4.3) has regularly varying solutions of index (ρ, σ) with ρ > 1
and σ > 1 if and only if (λ, µ) satisfies the system of inequalities

(4.5) λ + 1 + α(β + µ + 2) > 0, β(α + λ + 2) + µ + 1 > 0,

in which case ρ and σ are given by (3.6), and the asymptotic behavior of any such solution

(x(t), y(t)) is governed by the formula

(4.6) x(t) ∼
[t2(1+α)p(t)q(t)α

∆(ρ)∆(σ)α

]
1

1−αβ

, y(t) ∼
[t2(1+β)p(t)βq(t)

∆(ρ)β∆(σ)

]
1

1−αβ

, t → ∞,
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where ∆(τ) = τ(τ − 1) for τ > 1.

PROOF. (The ”only if” part) Suppose that (4.3) has a regularly varying solution
(x(t), y(t)) on [T,∞) which is expressed in the form (4.4) with ρ > 1 and σ > 1. Then,

(4.7) x(t) ∼
∫ t

T

∫ s

T

rλ+ασl(r)η(r)αdrds, y(t) ∼
∫ t

T

∫ s

T

rµ+βρm(r)ξ(r)βdrds,

from which we have for t → ∞

(4.8)
x(t)

t
∼

∫ t

T

sλ+ασl(s)η(s)αds,
y(t)

t
∼

∫ t

T

sµ+βρm(s)ξ(s)βds.

Since both integrals in (4.8) diverge as t → ∞, it holds that λ+ασ ≥ −1 and µ+βρ ≥ −1.
But the cases λ + αρ = −1 and µ + βσ = −1 are impossible, because if these equalities
would hold, then Karamata’s integration theorem would imply that

x(t) ∼ t

∫ t

T

s−1l(s)η(s)αds ∈ RV(1), y(t) ∼ t

∫ t

T

s−1m(s)ξ(s)βds ∈ RV(1), t → ∞,

(cf. (iii) of Proposition 2.1). Consequently, we must have λ + αρ > −1 and µ + βσ > −1,
in which case, applying Karamata’s integration theorem to (4.7), we find that

∫ t

T

sλ+ασl(s)η(s)αds ∼ tλ+ασ+1l(t)η(t)α

λ + ασ + 1
,

∫ t

T

sµ+βρm(s)ξ(s)βds ∼ tµ+βρ+1m(t)ξ(t)β

µ + βρ + 1
,

and

(4.9) x(t) ∼ tλ+ασ+2l(t)η(t)α

(λ + ασ + 1)(λ + ασ + 2)
, y(t) ∼ tµ+βρ+2m(t)ξ(t)β

(µ + βρ + 1)(µ + βρ + 2)
, t → ∞.

This shows that x(t) and y(t) are regularly varying of indices λ+ασ+2 > 1 and µ+βρ+2 >
1, respectively, and so we must have

ρ = λ + ασ + 2, σ = µ + βρ + 2,

from which it readily follows that ρ and σ are given by (3.6). Since ρ > 1 and σ > 1, (3.6)
determines the range of (λ, µ) to be the subset of R2 defined by the inequalities

λ + 1 + α(β + µ + 2) > 0, β(α + λ + 2) + µ + 1 > 0.

Noting that (4.9) can be rewritten as

x(t) ∼ tλ+2l(t)y(t)α

∆(ρ)
=

t2p(t)y(t)α

∆(ρ)
, y(t) ∼ tµ+2m(t)x(t)β

∆(σ)
=

t2q(t)x(t)β

∆(σ)
,

we easily conclude that x(t) and y(t) satisfy

x(t) ∼ t2(α+1)p(t)q(t)αx(t)αβ

∆(ρ)∆(σ)α
, y(t) ∼ t2(β+1)p(t)βq(t)y(t)αβ

∆(ρ)β∆(σ)
, t → ∞,
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from which the asymptotic formula (4.6) immediately follows.

(The ”if” part) Suppose that (λ, µ) satisfies (4.5) and define (ρ, σ) by (3.6). We define
(X(t), Y (t)) by

(4.10) X(t) =
[t2(α+1)p(t)q(t)α

∆(ρ)∆(σ)α

]
1

1−αβ

, Y (t) =
[t2(β+1)p(t)βq(t)

∆(ρ)β∆(σ)

]
1

1−αβ

,

which can also be expressed as

(4.11) X(t) = tρ
[ l(t)m(t)α

∆(ρ)∆(σ)α

]
1

1−αβ

, Y (t) = tσ
[ l(t)βm(t)

∆(ρ)β∆(σ)

]
1

1−αβ

.

Using Karamata’s integration theorem, we see that for any b ≥ t0

∫ t

b

p(s)Y (s)αds =

∫ t

b

sλ+ασl(s)
[ l(s)βm(s)

∆(ρ)β∆(σ)

]
α

1−αβ

ds

=

∫ t

b

sρ−2l(s)
[ l(s)βm(s)

∆(ρ)β∆(σ)

]
α

1−αβ

ds ∼ tρ−1l(t)

ρ − 1

[ l(t)βm(t)

∆(ρ)β∆(σ)

]
α

1−αβ

,

and
∫ t

b

∫ s

b

p(r)Y (r)αdrds ∼
∫ t

b

sρ−1l(s)

ρ − 1

[ l(s)βm(s)

∆(ρ)β∆(σ)

]
α

1−αβ

ds

∼ tρl(t)

ρ(ρ − 1)

[ l(t)βm(t)

∆(ρ)β∆(σ)

]
α

1−αβ

= X(t), t → ∞.

Similarly, we obtain for any b ≥ t0

∫ t

b

∫ s

b

q(r)X(r)βdrds ∼ tσm(t)

σ(σ − 1)

[ l(t)m(t)α

∆(ρ)∆(σ)

α
]

β

1−αβ

= Y (t), t → ∞,

Thus, it follows that

(4.12)

∫ t

b

∫ s

b

p(r)Y (r)αdrds ∼ X(t),

∫ t

b

∫ s

b

q(r)X(r)βdrds ∼ Y (t), t → ∞,

for any b ≥ t0, which shows that (X(t), Y (t)) is a solution of (4.3). This completes the
proof of Lemma 4.1.

4.2 Strongly increasing solutions of (A)

It is shown that if p(t) and q(t) are nearly regularly varying, then strongly increasing
solutions of system (A) can be found in the class of nearly regularly varying functions of
indices greater than 1.

Theorem 4.1. Let αβ < 1 and let p(t) and q(t) be nearly regularly varying of index λ
and µ, respectively, which are expressed in the form

p(t) ≍ tλl(t), q(t) ≍ tµm(t), l(t), m(t) ∈ SV, t → ∞.
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Suppose that λ and µ satisfy (4.5) and define ρ > 1 and σ > 1 by (3.6). Then, system (A)
possesses nearly regularly varying solutions (x(t), y(t)) of index (ρ, σ) with the property that

(4.13) x(t) ≍ tρ
[ l(t)m(t)α

∆(ρ)∆(σ)α

]
1

1−αβ

, y(t) ≍ tσ
[ l(t)βm(t)

∆(ρ)β∆(σ)

]
1

1−αβ

, t → ∞,

where ∆(τ) = τ(τ − 1) for τ > 1 .

PROOF. Put pλ(t) = tλl(t) and qµ(t) = tµm(t). There exist positive constants k, K, l
and L such that

kpλ(t) ≤ p(t) ≤ Kpλ(t), lqµ(t) ≤ q(t) ≤ Lqµ(t), t ≥ t0.

Define the vector function (Xλ(t), Yµ(t)) by (4.10) with p(t) and q(t) replaced by pλ(t) and
qµ(t), respectively. Since (Xλ(t), Yµ(t)) satisfies (4.12), there exists T0 > t0 such that

(4.14)

∫ t

T0

∫ s

T0

pλ(r)Yµ(r)
αdrds ≤ 2Xλ(t),

∫ t

T0

∫ s

T0

qµ(r)Xλ(r)
βdrds ≤ 2Yµ(t), t ≥ T0.

We may assume that Xλ(t) and Yµ(t) are non-decreasing for t ≥ T0 because any regularly
varying function of positive index is asymptotic to a monotone non-decreasing function (cf
[1, Theorem 1.5.3]). Noting that

∫ t

T0

∫ s

T0

pλ(r)Yµ(r)
αdrds ∼ Xλ(t),

∫ t

T0

∫ s

T0

qµ(r)Xλ(r)
βdrds ∼ Yµ(t), t → ∞,

one can choose T1 > T0 such that

(4.15)

∫ t

T0

∫ s

T0

pλ(r)Yµ(r)
αdrds ≥ 1

2
Xλ(t),

∫ t

T0

∫ s

T0

qµ(r)Xλ(r)
βdrds ≥ 1

2
Yµ(t), t ≥ T1.

Let us choose (a, b), (A, B) ∈ R2 so that a < A, b < B and the following inequalities
hold:

(4.16) a ≤ 1

2
kbα, b ≤ 1

2
laβ , 4KBα ≤ A, 4LAβ ≤ B,

(4.17) 2aXλ(T1) ≤ AXλ(T0), 2bYµ(T1) ≤ BYµ(T0).

It is easy to check that such choice of (a, b) and (A, B) is possible by taking, if necessary,
k and l sufficiently small and K and L sufficiently large. Let X denote the closed convex
subset of C[T0,∞)×C[T0,∞) consisting of the vector functions (x(t), y(t)) such that

(4.18) aXλ(t) ≤ x(t) ≤ AXλ(t), bYµ(t) ≤ y(t) ≤ BYµ(t), t ≥ T0,

and consider the mapping Φ : X → C[T0,∞)×C[T0,∞) defined by

(4.19) Φ(x(t), y(t)) = (Fy(t),Gx(t)), t ≥ T0,

where

(4.20) Fy(t) = x0 +

∫ t

T0

∫ s

T0

p(r)y(r)αdrds, Gx(t) = y0 +

∫ t

T0

∫ s

T0

q(r)x(r)βdrds,
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for t ≥ T0, and x0 and y0 are positive constants satisfying

(4.21) aXλ(T1) ≤ x0 ≤
1

2
AXλ(T0), bYµ(T1) ≤ y0 ≤

1

2
BYµ(T0).

We prove that Φ is a continuous self-map of X and sends X into a relatively compact
subset of C[T0,∞)×C[T0,∞).

(i) Φ(X ) ⊂ X . Let (x(t), y(t)) ∈ X . Using (4.14) - (4.21), we compute as follows:

Fy(t) ≥ x0 ≥ aXλ(T1) ≥ aXλ(t), T0 ≤ t ≤ T1,

Fy(t) ≥
∫ t

T0

∫ s

T0

p(r)y(r)αdrds ≥
∫ t

T0

∫ s

T0

kpλ(r)(bYµ(r))
αdrds

≥ 1

2
kbαXλ(t) ≥ aXλ(t), t ≥ T1,

and

Fy(t) ≤ 1

2
AXλ(T0) +

∫ t

T0

∫ s

T0

Kpλ(r)(BYµ(r))
αdrds

≤ 1

2
AXλ(t) + 2KBαXλ(t) ≤

1

2
AXλ(t) +

1

2
AXλ(t) = AXλ(t), t ≥ T0.

This shows that aXλ(t) ≤ Fy(t) ≤ AXλ(t) for t ≥ T0. Likewise, it can be shown that
bYµ(t) ≤ Gx(t) ≤ BYµ(t) for t ≥ T0.

(ii) Φ(X ) is relatively compact. The local uniform boundedness of Φ(X ) on [T0,∞)
follows from the inclusion Φ(X ) ⊂ X . The local equicontinuity of Φ(X ) on [T0,∞) is a
consequence of the inequalities

0 ≤ (Fy)′(t) ≤ Bα

∫ t

T0

p(s)Yµ(s)
αds, 0 ≤ (Gx)′(t) ≤ Aβ

∫ t

T0

q(s)Xλ(s)
βds,

holding for t ≥ T0 and for all (x(t), y(t)) ∈ X .
(iii) Φ is continuous. Let (xn(t), yn(t)) be a sequence in X converging to (x(t), y(t)) ∈ X

as n → ∞ uniformly on any compact subinterval of [T0,∞). Noting that

|Fyn(t) − Fy(t)| ≤ t

∫ t

T0

p(s)|yn(s)
α − y(s)α|ds,

|Gxn(t) − Gx(t)| ≤ t

∫ t

T0

q(s)|xn(s)
β − x(s)β |ds,

and applying the Lebesgue dominated convergence theorem to the right-hand sides of the
above inequalities, it follows that

Fyn(t) → Fy(t), Gxn(t) → Gx(t), n → ∞,

uniformly on compact subintervals of [T0,∞). This implies the continuity of Φ.
Therefore, the Schauder-Tychonoff fixed point theorem guarantees the existence of an

element (x(t), y(t)) ∈ X such that (x(t), y(t)) = Φ(x(t), y(t)), t ≥ T0, that is,

x(t) = Fy(t) = x0 +

∫ t

T0

∫ s

T0

p(r)y(r)αdrds, y(t) = Gx(t) = y0 +

∫ t

T0

∫ s

T0

q(r)x(r)βdrds
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for t ≥ T0, which is a special case of the system of integral equations (4.2). Thus, (x(t), y(t))
is a solution of the system of differential equations (A) on [T0,∞). Since (x(t), y(t)) is a
member of X , it is a nearly regularly varying solution of index (ρ, σ) with ρ > 1 and σ > 1,
which clearly provides a strongly increasing solution of (A). This completes the proof of
Theorem 4.1.

As the next theorem demonstrates, the full regularity of the strongly increasing solutions
obtained in Theorem 4.1 can be proved with the help of the generalized L’Hospital rule
(Lemma 3.2), if we make a stronger assumption that the coefficients p(t) and q(t) are
regularly varying functions. Thus, the existence of regularly varying solutions with indices
greater than one is characterized completely in this particular case. The proof is similar to
that of Theorem 3.2 and we omit it.

Theorem 4.2. Suppose that p(t) and q(t) are regularly varying of indices λ and µ,

respectively. System (A) possesses regularly varying solutions (x(t), y(t)) such that

x(t) ∈ RV(ρ), y(t) ∈ RV(σ), ρ > 1, σ > 1,

if and only if (4.5) holds, in which case ρ and σ are given by (3.6) and the asymptotic

behavior of any such solution is governed by the formulas

(4.22) x(t) ∼
[

t2(α+1)p(t)q(t)α

∆(ρ)∆(σ)α

]
1

1−αβ

, y(t) ∼
[

t2(β+1)p(t)βq(t)

∆(ρ)β∆(σ)

]
1

1−αβ

, t → ∞,

where ∆(τ) = τ(τ − 1) for τ > 1.

Example 4.1. Consider the system (A) with

(4.23) p(t) ∼ 2t−3α exp
(

(α + 1)
√

log t
)

, q(t) ∼ 6t1−2β exp
(

−(β + 1)
√

log t
)

, t → ∞.

Here λ = −3α and µ = 1 − 2β, and hence

λ + 1 + α(β + µ + 2) = 1 − αβ > 0, β(α + λ + 2) + µ + 1 = 2(1 − αβ) > 0,

which implies that condition (4.5) holds. It is easy to see that (3.6) defines ρ = 2 and σ = 3,
so that ∆(σ) = 2 and ∆(σ) = 6. On the other hand, since l(t) = 2 exp

(

(α + 1)
√

log t
)

and
m(t) = 6 exp

(

−(β + 1)
√

log t
)

, we obtain

l(t)m(t)α

∆(ρ)∆(σ)α
= exp

(

(1 − αβ)
√

log t
)

,
l(t)βm(t)

∆(ρ)β∆(σ)
= exp

(

(αβ − 1)
√

log t
)

.

Combining the above calculations, we conclude from Theorem 4.2 that the system (A)
under consideration possesses a strongly increasing solution (x(t), y(t)) such that

x(t) ∼ t2 exp(
√

log t), y(t) ∼ t3 exp(−
√

log t), t → ∞.

As is easily checked, if

p(t) = 2t−3α exp
(

(α + 1)
√

log t
)

(

1 +
3

4
√

log t
+

1

8 log t
− 1

8 log t
√

log t

)

,

q(t) = 6t1−2β exp
(

−(β + 1)
√

log t
)

(

1 − 5

12
√

log t
+

1

24 log t
+

1

24 log t
√

log t

)

,

then system (A) has an exact strongly increasing solution (t2 exp(
√

log t), t3 exp(−
√

log t)),
components of which are regularly varying of indices 2 and 3, respectively.
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5 Mixed strongly monotone solutions of (A)

The purpose of the final section is to indicate the situation in which the system (A)
possesses a positive solution (x(t), y(t)) such that

(5.1) lim
t→∞

x(t) = 0, lim
t→∞

y(t)

t
= ∞.

Such a solution is referred to as a mixed strongly monotone solution of (A). As in the
preceding sections it is assumed that αβ < 1 and that p(t) and q(t) are nearly regularly
varying functions. Mixed strongly monotone solutions of (A) are sought as solutions of the
system of integral equations of the form

(5.2) x(t) =

∫

∞

t

∫

∞

s

p(r)y(r)αdrds, y(t) = y0 +

∫ t

T

∫ s

T

q(r)x(r)βdrds, t ≥ T,

for some constants T > t0 and y0 > 0, belonging to the class of nearly regularly varying
vector functions of indices ρ < 0 and σ > 1. The construction of such solutions of (A) is
based on the accurate asymptotic behavior of regularly varying solutions of the system of
asymptotic relations

(5.3) x(t) ∼
∫

∞

t

∫

∞

s

p(r)y(r)αdrds, y(t) ∼
∫ t

T

∫ s

T

q(r)x(r)βdrds, t → ∞,

with regularly varying coefficients p(t) and q(t).

5.1 Integral asymptotic relations

Lemma 5.1. Let αβ < 1 and suppose that p(t) and q(t) are regularly varying functions

of indices λ and µ, respectively. System of relations (5.3) has regularly varying solutions of

index (ρ, σ) with ρ < 0 and σ > 1 if and only if

(5.4) λ + 2 + α(µ + 2) < 0, β(α + λ + 2) + µ + 1 > 0,

in which case (ρ, σ) is given by (3.6) and the asymptotic behavior of any such solution

(x(t), y(t)) is governed by the formula

(5.5) x(t) ∼
[t2(1+α)p(t)q(t)α

∆(ρ)∆(σ)α

]
1

1−αβ

, y(t) ∼
[t2(1+β)p(t)βq(t)

∆(ρ)β∆(σ)

]
1

1−αβ

, t → ∞,

where ∆(τ) = τ(τ − 1) for τ ∈ (−∞, 0) ∪ (1,∞).

SKETCH OF PROOF. Since the right asymptotic relation (resp. the left asymptotic
relation) in (5.3) can be analyzed exactly as in Lemma 3.1 (resp. Lemma 4.1), we need
only to give a brief sketch of the proof, in which use is made of the expressions (3.4) and
(3.8) for p(t), q(t), x(t) and y(t).

(The ”only if” part) Suppose that (5.3) has a regularly varying solution (x(t), y(t)) on
[T,∞) of index (ρ, σ) with ρ < 0 and σ > 1. Analysis of the relation

x(t) ∼
∫

∞

t

∫

∞

s

rλ+ασl(r)η(r)αdrds, t → ∞,
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shows that λ + ασ < −2 and

(5.6) x(t) ∼ tλ+ασ+2l(t)η(t)α

[−(λ + ασ + 1)][−(λ + ασ + 2)]
∈ RV(λ + ασ + 2), t → ∞,

while analysis of the relation

y(t) ∼
∫ t

T

∫ s

T

rµ+βρm(r)ξ(r)βdrds, t → ∞,

shows that µ + βρ > −1 and

(5.7) y(t) ∼ tµ+βρ+2m(t)ξ(t)β

(µ + βρ + 1)(µ + βρ + 2)
∈ RV(µ + βρ + 2), t → ∞.

Therefore, we have ρ = λ + ασ + 2 and σ = µ + βρ + 2, from which we see that (ρ, σ) must
be given by (3.6). The inequalities ρ < 0 and σ > 1 require that the range of (λ, µ) be
given by (5.4). The asymptotic formula (5.5) is an immediate consequence of the fact that
(5.6) and (5.7) are rewritten as

x(t) ∼ t2p(t)y(t)α

∆(ρ)
, y(t) ∼ t2q(t)x(t)β

∆(σ)
, t → ∞.

(The ”if” part) Suppose that (λ, µ) satisfies (5.4) and define ρ < 0 and σ > 1 by (3.6).
Then, it can be shown that the regularly varying function (X(t), Y (t)) of index (ρ, σ) given
by

X(t) =
[t2(1+α)p(t)q(t)α

∆(ρ)∆(σ)α

]
1

1−αβ

, Y (t) =
[t2(1+β)p(t)βq(t)

∆(ρ)β∆(σ)

]
1

1−αβ

,

satisfies the system of asymptotic relations (5.3).

5.2 Mixed strongly monotone solutions of (A)

It is shown that system (A) with nearly regularly varying coefficients may have strongly
monotone solutions of the mixed type which are nearly regularly varying vector functions
of indices ρ < 0 and σ > 1.

Theorem 5.1. Let αβ < 1 and let p(t) and q(t) be nearly regularly varying of index

λ and µ, respectively. Suppose that λ and µ satisfy (5.4) and define ρ < 0 and σ > 1 by

(3.6). Then, system (A) possesses nearly regularly varying solutions (x(t), y(t)) of index

(ρ, σ) with the property that

(5.8) x(t) ≍ tρ
[ l(t)m(t)α

∆(ρ)∆(σ)α

]
1

1−αβ

, y(t) ≍ tσ
[ l(t)βm(t)

∆(ρ)β∆(σ)

]
1

1−αβ

, t → ∞,

where ∆(τ) = τ(τ − 1) for τ ∈ (−∞, 0) ∪ (1,∞).

SKETCH OF PROOF. By hypothesis there exist regularly varying functions

pλ(t) = tλl(t) ∈ RV(λ), qµ(t) = tµm(t) ∈ RV(µ),
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such that p(t) ≍ pλ(t) and q(t) ≍ qµ(t) as t → ∞. Define the regularly varying functions
Xλ(t) and Yµ(t) by

Xλ(t) = tρ
[ l(t)m(t)α

∆(ρ)∆(σ)α

]
1

1−αβ

, Yµ(t) = tσ
[ l(t)βm(t)

∆(ρ)β∆(σ)

]
1

1−αβ

, t ≥ t0,

which satisfy the asymptotic relations

(5.9)

∫

∞

t

∫

∞

s

pλ(r)Yµ(r)
αdrds ∼ Xλ(t),

∫ t

b

∫ s

b

qµ(r)Xλ(r)
βdrds ∼ Yµ(t), t → ∞,

for any fixed b ≥ t0.
Using (5.9), one can choose first T > t0 so that

(5.10)
1

2
Xλ(t) ≤

∫

∞

t

∫

∞

s

pλ(r)Yµ(r)
αdrds ≤ 2Xλ(t),

∫ t

T

∫ s

T

qµ(r)Xλ(r)
βdrds ≤ 2Yµ(t),

for t ≥ T , and then T1 > T so that

(5.11)

∫ t

T

∫ s

T

qµ(r)Xλ(r)
βdrds ≥ 1

2
Yµ(t) for t ≥ T1.

We may assume that Xλ(t) is decreasing and Yµ(t) is increasing for t ≥ T . Using the
positive constants k, l, K and L such that

kpλ(t) ≤ p(t) ≤ Kpλ(t), lqµ(t) ≤ q(t) ≤ Lqµ(t), t ≥ t0,

choose (a, b), (A, B) ∈ R2 so that a < A, b < B, and

a ≤ 1

2
kbα, b ≤ 1

2
laβ , 2KBα ≤ A, 4LAβ ≤ B, 2bYµ(T1) ≤ BYµ(T ).

Let us now define the mapping Φ(x(t), y(t)) = (Fy(t),Gx(t)), where

(5.12) Fy(t) =

∫

∞

t

∫

∞

s

p(r)y(r)αdrds, Gx(t) = y0 +

∫ t

T

∫ s

T

q(r)x(r)βdrds, t ≥ T,

with a constant y0 satisfying bYµ(T1) ≤ y0 ≤ 1
2
BYµ(T ), and let Φ act on the set X comprised

of vector functions (x(t), y(t)) ∈ C[T,∞)×C[T,∞) satisfying

aXλ(t) ≤ x(t) ≤ AXλ(t), bYµ(t) ≤ y(t) ≤ BYµ(t), t ≥ T.

It is clear that X which is a closed convex subset of C[T,∞)×C[T,∞) and it can be verified
in a routine manner that Φ is a continuous self-map of X and sends X into a relatively
compact subset of C[T,∞)×C[T,∞). Consequently, Φ has a fixed point (x(t), y(t)) ∈ X
which satisfies the integral equation

x(t) =

∫

∞

t

∫

∞

s

p(r)y(r)αdrds, y(t) = y0 +

∫ t

T

∫ s

T

q(r)x(r)βdrds, t ≥ T.

This implies that (x(t), y(t)) is a positive solution of system (A) belonging to the class of
nearly regularly varying functions of index (ρ, σ). Since ρ < 0 and σ > 1, this solution
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provides a mixed strongly monotone solution of (A). This sketches the proof of Theorem
5.1.

As in the preceding sections, under a stronger assumption that both coefficients in (A)
are regularly varying functions, the following theorem characterizing the existence of fully
regularly varying mixed strongly monotone solutions can be proved. The proof is similar
to that of Theorem 3.2 and we omit it.

Theorem 5.2. Suppose that p(t) and q(t) are regularly varying of indices λ and µ,

respectively. System (A) possesses regularly varying solutions (x(t), y(t)) such that

x(t) ∈ RV(ρ), y(t) ∈ RV(σ), ρ < 0, σ > 1,

if and only if (5.4) holds, in which case ρ and σ are given by (3.6) and the asymptotic

behavior of any such solution is governed by the formulas

(5.13) x(t) ∼
[

t2(α+1)p(t)q(t)α

∆(ρ)∆(σ)α

]
1

1−αβ

, y(t) ∼
[

t2(β+1)p(t)βq(t)

∆(ρ)β∆(σ)

]
1

1−αβ

, t → ∞,

where ∆(τ) = τ(τ − 1) for τ ∈ (−∞, 0) ∪ (1,∞).

Example 5.1. Consider system (A) with

(5.14) p(t) ∼ 2t−(2α+3)(log t)α+1, q(t) ∼ 2tβ(log t)−(β+1), t → ∞.

Condition (5.4) is satisfied since

λ + 2 + α(µ + 2) = αβ − 1 < 0, β(α + λ + 2) + µ + 1 = 1 − αβ > 0,

and (3.6) gives ρ = −1 and σ = 2, which implies ∆(ρ) = ∆(σ) = 2. Since

l(t)m(t)α

∆(ρ)∆(σ)α
= (log t)1−αβ ,

l(t)βm(t)

∆(ρ)β∆(σ)
= (log t)αβ−1,

from Theorem 5.2 it follows that our system (A) possesses mixed strongly monotone solu-
tions belonging to class of regularly varying functions of index (−1, 2) and that the asymp-
totic behavior of any such solution (x(t), y(t)) is governed by the formula

x(t) ∼ t−1(log t), y(t) ∼ t2(log t)−1, t → ∞.

If in particular

p(t) = 2t−(2α+3)(log t)α+1
(

1 − 3

2 log t

)

, q(t) = 2tβ(log t)−(β+1)
(

1 − 3

2 log t
+

1

(log t)2

)

,

then system (A) has an exact mixed strongly monotone solution (t−1 log t, t2(log t)−1) which
is regularly varying of index (−1, 2).
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