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A DELAYED SIR EPIDEMIC MODEL WITH GENERAL

INCIDENCE RATE
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Abstract. A delayed SIR epidemic model with a generalized incidence rate
is studied. The time delay represents the incubation period. The threshold
parameter, R0(τ) is obtained which determines whether the disease is extinct
or not. Throughout the paper, we mainly use the technique of Lyapunov
functional to establish the global stability of both the disease-free and endemic
equilibrium.

1. Introduction

Historically the mathematical modeling of epidemics has started since the time of
Graunt [1]. In fact, Kermack and Mckendric [2] describe some classical deterministic
mathematical models of epidemiology by considering the total population into three
classes namely susceptible (S) individuals, infected (I) individuals and recovered
(R) individuals which is known to us as SIR epidemic model. This SIR epidemic
model is very important in today’s analysis of diseases.

In recent years, epidemiological models have been studied by a number of authors
[3, 4, 5, 6]. The basic and important research subjects for these systems are the
existence of the threshold value which distinguishes whether the infectious disease
will die out, the local and global stability of the disease-free equilibrium and the
endemic equilibrium, the existence of periodic solutions, the persistence and extinc-
tion of the disease, etc. Many models in the literature represent the dynamics of
disease by systems of ordinary differential equations without time delay. In order
to reflect the real dynamical behaviors of models that depend on the past history
of systems, it is reasonable to incorporate time delays into the systems [7]. In fact,
inclusion of delays in epidemic models makes them more realistic by allowing the
description of the effects of disease latency or immunity [8, 9, 12]. Most of the de-
lay differential mathematical models are concerned with local stability of equilibria.
The papers that are concerned with global stability of delayed differential models
are relatively few.

Motivated by the works of Abta et al. [13], in the present paper, we are concerned
with the effect of generalized incidence rate. To this end, we consider the following
delay differential equation model.
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dS

dt
= Λ − µS(t) − f(S(t), I(t))I(t),

dI

dt
= f(S(t− τ), I(t− τ))I(t − τ)e−µτ − (µ+ d+ r)I(t),

dR

dt
= rI(t) − µR(t),

(1.1)

where Λ is the recruitment rate of the population, µ is the natural death rate
of the population, d is the death rate due to disease, r is the recovery rate of the
infective individuals, f(S, I) is the rate of transmission and τ is the incubation
period. The term e−µτ is the probability of surviving from time t − τ to time t.
The goal of this paper is to study the global stability of delayed model (1.1). We
present the construction of Lyapunov functionals for this model. This construction
is based on ideas developed in [10, 11, 12].

As in [14], the incidence function f(S, I) is assumed to be continuously differen-
tiable in the interior of IR2

+ and satisfies the following hypotheses:

f(0, I) = 0, for all I ≥ 0, (H1)

∂f

∂S
(S, I) > 0, for all S > 0 and I ≥ 0, (H2)

∂f

∂I
(S, I) ≤ 0 , for all S ≥ 0 and I ≥ 0. (H3)

The first two equations in system (1.1) do not depend on the third equation, and
therefore this equation can be omitted without loss of generality. System (1.1) can
be rewritten as

dS

dt
= Λ − µS(t) − f(S(t), I(t))I(t),

dI

dt
= f(S(t− τ), I(t− τ))I(t − τ)e−µτ − (µ+ d+ r)I(t).

(1.2)

Let C = C([−τ, 0], IR2) be the Banach space of continuous functions mapping the
interval [−τ, 0] into IR2 with the topology of uniform convergence. By the funda-
mental theory of functional differential equations [15], it is easy to show that there
exists a unique solution (S(t), I(t)) of system (1.2) with initial data (S0, I0) ∈ C.
For ecological reasons, we assume that the initial conditions for system (1.2) satis-
fies:

S0(θ) ≥ 0, I0(θ) ≥ 0, θ ∈ [−τ, 0]. (1.3)

The paper is organized as follows. In the next section, basic mathematical prop-
erties of the model are studied. In Section 3, the basic reproduction number is
derived and the global asymptotic stability of the disease-free equilibrium is estab-
lished. The global asymptotic stability of the endemic equilibrium is obtained in
Section 4. Lastly, we give a brief discussion of our results in Section 5.
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2. Positivity and boundedness of solutions

Since the model (1.2) represent population, it is important to prove that all
solutions with nonnegative initial data will remain non-negative and bounded for
all time.

Proposition 2.1. Each component of the solution of system (1.2), subject to con-
dition (1.3), remains non-negative and bounded for all t ≥ 0.

Proof. The solution S(t) is positive for all t ≥ 0. In fact, assuming the contrary,
and letting t1 > 0 be the first time such that S(t1) = 0, then by the first equation

of system (1.2) we have Ṡ(t1) = Λ > 0, and hence S(t) < 0 for t ∈]t1 − ǫ, t1[, where
ǫ > 0 is sufficiently small. This contradicts S(t) > 0 for t ∈ [0, t1[. It follows that
S(t) > 0 for t > 0. Now, we prove the positivity of solution I(t). From (1.2), we
get

I(t) = I(0)e−at + e−µτ

∫ t

0

f
(

S(θ − τ), I(θ − τ)
)

I(θ − τ)ea(θ−t)dθ, (2.1)

with a = µ+ d+ r.
Let t ∈ [0, τ ], we have θ − τ ∈ [−τ, 0] for all θ ∈ [0, τ ]. Using (1.3) and (2.1),
we deduce that S(t) ≥ 0 for t ∈ [0, τ ]. This method can now be repeated to
deduce non-negativity of S on the interval [τ, 2τ ] and then on successive intervals
[nτ, (n + 1)τ ], n ≥ 2, to include all positive times. This proves the positivity of
solutions.

For boundedness of the solution, we define

T (t) = S(t) + eµτ I(t+ τ).

By non-negativity of the solution, it follows that

dT (t)

dt
= Λ − µS(t) − aeµτI(t+ τ)

≤ Λ − µT (t).

This implies that T (t) is bounded, and so are S(t) and I(t). This completes the
proof of this proposition.

3. Reproductive number and stability analysis

The system (1.2) always has a disease-free steady state of the form Ef (
Λ

µ
, 0).

Therefore, we define the basic reproduction number R0(τ) of our model by

R0 =
f(Λ

µ
, 0)e−µτ

µ+ d+ r
, (3.1)

where
1

µ+ d+ r
represents the average life expectancy of infectious individuals,

Λ

µ
represents the number of susceptible individuals at the beginning of the infectious
process and f(Λ

µ
, 0) represents the value of the function f when all individuals are

susceptible. Hence, our R0 is biologically well defined.
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It is easy to see that if R0 ≤ 1, the disease-free steady state Ef (
Λ

µ
, 0) is the

unique steady state, corresponding to the extinction of disease. The following
theorem presents the existence and uniqueness of endemic equilibrium if R0 > 1.

Theorem 3.1.

(1) The disease-free equilibrium point of the system (1.2) is given by Ef (Λ
µ
, 0),

which exists for all parameter values.
(2) If R0 > 1, then the system (1.2) has a unique endemic equilibrium of the

form E∗(S∗, I∗) with S∗ ∈]0, Λ
µ
[ and I∗ > 0.

Proof. The steady state of the system (1.2) satisfy the following system of equa-
tions

Λ − µS − f(S, I)I = 0, (3.2)

f(S, I)Ie−µτ − (µ+ d+ r)I = 0. (3.3)

From (3.3) we get I = 0 or f(S, I) = (µ+ d+ r)eµτ .
If I = 0, we obtain the disease-free equilibrium point Ef (Λ

µ
, 0).

If I 6= 0, then using (3.2) and (3.3) we get the following equation

f(S,
Λ − µS

(µ+ d+ r)eµτ
) = (µ+ d+ r)eµτ . (3.4)

We have I =
Λ − µS

(µ+ d+ r)eµτ
≥ 0 implies that S ≤

Λ

µ
. Hence, there is no positive

equilibrium point if S >
Λ

µ
.

Now, we consider the following function g defined on the interval [0, Λ
µ
]

g(S) = f(S,
Λ − µS

(µ+ d+ r)eµτ
) − (µ+ d+ r)eµτ .

Since, g(0) = −(µ+d+ r)eµτ < 0 and g(
Λ

µ
)=(µ+d+ r)eµτ (R0−1) > 0 for R0 > 1.

Further, g′(S) = ∂f
∂S

− µ
(µ+d+r)eµτ

∂f
∂I

> 0. Hence, there exists a unique endemic

equilibrium E∗(S∗, I∗) with S∗ ∈]0, Λ
µ
[ and I∗ > 0.

3.1. Global stability of the disease-free equilibrium.

The following theorem discusses the global stability of the disease-free equilib-
rium.

Theorem 3.2. The disease-free equilibrium Ef of the system (1.2) is globally
asymptotically stable whenever R0 ≤ 1, and unstable otherwise.

Proof. Consider the following Lyapunov functional

V (t) = S(t) − S0 −

∫ S(t)

S0

f(S0, 0)

f(X, 0)
dX + eµτ I(t) +

∫ t

t−τ

f
(

S(θ), I(θ)
)

I(θ)dθ,
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where S0 =
Λ

µ
. To simplify the presentation, we shall use the following notation:

X = X(t) and Xτ = X(t− τ) for any X ∈ {S, I}. Calculating the time derivative
of V along the positive solution of system (1.2), we get

V̇ (t)|(1.2) = (1 −
f(S0, 0)

f(S, 0)
)Ṡ + eµτ İ + f

(

S, I
)

I − f
(

Sτ , Iτ
)

Iτ

= (1 −
f(S0, 0)

f(S, 0)
)(Λ − µS) +

f(S0, 0)

f(S, 0)
f(S, I)I − aIeµτ

= µS0

(

1 −
S

S0

)(

1 −
f(S0, 0)

f(S, 0)

)

+ aeµτI(
f(S, I)

f(S, 0)
R0 − 1)

≤ µS0(1 −
S

S0
)(1 −

f(S0, 0)

f(S, 0)
) + aeµτI(R0 − 1).

Using the following trivial inequalities

1 −
f(S0, 0)

f(S, 0)
≥ 0 for S ≥ S0,

1 −
f(S0, 0)

f(S, 0)
< 0 for S < S0.

Thus, we have

(1 −
S

S0
)(1 −

f(S0, 0)

f(S, 0)
) ≤ 0.

Since R0 ≤ 1, we have V̇ |(1.2) ≤ 0. Thus, the disease-free equilibrium Ef is stable,

and V̇ |(1.2) = 0 if and only if S = S0 and I(R0 − 1) = 0. We discuss two cases:

• If R0 < 1, then I = 0.
• If R0 = 1. From S = S0 and the first equation of (1.2), we have

dS

dt
=
dS0

dt
= Λ − µS0 − f(S0, I)I = 0.

Then, f(S0, I)I = 0. Since S0 > 0, then f(S0, I) > f(0, I) = 0 (use (H1)
and (H2)). Hence, I = 0.

By the above discussion, we deduce that the largest compact invariant set in Γ =
{(S, I)|V̇ = 0} is just the singleton Ef . From LaSalle invariance principle [16], we
conclude that Ef is globally asymptotically stable.

On the other hand, the characteristic equation at the disease-free equilibrium
Ef is given by

(ξ + µ)[ξ + a(1 −R0e
−ξτ )] = 0. (3.5)

Obviously, ξ = −µ is eigenvalue for (3.5), and hence, the stability of Ef is deter-
mined by the distribution of the roots of equation

ξ + a(1 −R0e
−ξτ ) = 0. (3.6)

It is easy to show that (3.6) has a real positive root when R0 > 1. Indeed, we
put

ϕ(ξ) = ξ + a(1 −R0e
−ξτ ).
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We have that ϕ(0) = a(1 − R0) < 0, limξ→+∞ ϕ(ξ) = +∞ and the function ϕ is
continuous on interval [0,+∞[ . Consequently, ϕ has a positive real root and the
disease-free equilibrium is unstable when R0 > 1. This proves the theorem.

4. Global stability of the endemic equilibrium

Note that the disease-free equilibrium Ef is unstable when R0 > 1. Now, we
establish a set of conditions which are sufficient for the global stability of the en-
demic equilibrium E∗.
For the global stability of E∗, we assume that R0 > 1 and the function f satisfies
the following condition:

(1 −
f(S, I)

f(S, I∗)
)(
f(S, I∗)

f(S, I)
−

I

I∗
) ≤ 0, for all S, I > 0. (4.1)

Theorem 4.1. Assume R0 > 1 and (4.1) hold. Then the endemic equilibrium E∗

of the system (1.2) is globally asymptotically stable.

Proof. Consider the following Lyapunov functional

W (t) = S(t) − S∗ −

∫ S(t)

S∗

f(S∗, I∗)

f(X, I∗)
dX + eµτ I∗φ(

I(t)

I∗
)

+f(S∗, I∗)I∗
∫ t

t−τ

φ
(f

(

S(θ), I(θ)
)

I(θ)

f(S∗, I∗)I∗
)

dθ,

where φ(x) = x − 1 − lnx, x ∈ IR+. Obviously, φ : IR+ → IR+ attains its global
minimum at x = 1 and φ(1) = 0.

The function ψ : x 7→ x − x∗ −
∫ x

x∗
f(S∗,I∗)
f(X,I∗) dX has the global minimum at x = x∗

and ψ(x∗) = 0. Then, ψ(x) ≥ 0 for any x > 0.

Hence, W (t) ≥ 0 with equality holding if and only if S(t)
S∗

= I(t)
I∗

= 1 for all t ≥ 0.
Finding the time derivative of W (t) along the positive solution of system (1.2)

gives

Ẇ (t)|(1.2) = (1 −
f(S∗, I∗)

f(S, I∗)
)Ṡ + eµτ (1 −

I∗

I
)İ

+f(S∗, I∗)I∗
(

φ
( f

(

S, I
)

I

f(S∗, I∗)I∗
)

− φ
(f

(

Sτ , Iτ
)

Iτ

f(S∗, I∗)I∗
))

.

Note that Λ = µS∗ + aI∗eµτ and f(S∗, I∗) = aeµτ I∗.

Hence,

Ẇ (t)|(1.2) =

= µS∗(1 −
S

S∗
)(1 −

f(S∗, I∗)

f(S, I∗)
) + aeµτ I∗

(

1 −
f(S∗, I∗)

f(S, I∗)
+

I

I∗
f(S, I)

f(S, I∗)

)

+aeµτI∗
(

1 −
I∗

I
−
f
(

Sτ , Iτ
)

Iτ

f(S∗, I∗)I

)

+ f(S∗, I∗)I∗ ln
(f

(

Sτ , Iτ
)

Iτ

f(S, I)I

)

= µS∗(1 −
S

S∗
)(1 −

f(S∗, I∗)

f(S, I∗)
) + aeµτ I∗

(

3 −
f(S∗, I∗)

f(S, I∗)
−

f(S, I)

f(S∗, I∗)
−
f(S, I∗)

f(S, I)

)
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+aeµτI∗
(

− 1 −
I

I∗
+
f(S, I∗)

f(S, I)
+

I

I∗
f(S, I)

f(S, I∗)

)

+aeµτI∗
( f(S, I)

f(S∗, I∗)
−
f
(

Sτ , Iτ
)

Iτ

f(S∗, I∗)I
+ ln

(f
(

Sτ , Iτ
)

Iτ

f(S, I)I

))

= µS∗(1 −
S

S∗
)(1 −

f(S∗, I∗)

f(S, I∗)
) + aeµτ I∗

(

− 1 −
I

I∗
+
f(S, I∗)

f(S, I)
+

I

I∗
f(S, I)

f(S, I∗)

)

−aeµτI∗
[f(S∗, I∗)

f(S, I∗)
+

f(S, I)

f(S∗, I∗)
+
f(S, I∗)

f(S, I)
− 3 −

f(S, I)

f(S∗, I∗)

+
f
(

Sτ , Iτ
)

Iτ

f(S∗, I∗)I
− ln

(f
(

Sτ , Iτ
)

Iτ

f(S, I)I

)]

= µS∗(1 −
S

S∗
)(1 −

f(S∗, I∗)

f(S, I∗)
) + aeµτ I∗

(

− 1 −
I

I∗
+
f(S, I∗)

f(S, I)
+

I

I∗
f(S, I)

f(S, I∗)

)

−aeµτI∗
[

φ
(f(S∗, I∗)

f(S, I∗)

)

+ φ
(f(S, I∗)

f(S, I)

)

+ φ
(f(Sτ , Iτ )Iτ
f(S∗, I∗)I

)]

.

Using the following trivial inequalities

1 −
f(S∗, I∗)

f(S, I∗)
≥ 0 for S ≥ S∗,

1 −
f(S∗, I∗)

f(S, I∗)
< 0 for S < S∗.

Thus, we have

(1 −
S

S∗
)(1 −

f(S∗, I∗)

f(S, I∗)
) ≤ 0.

From (4.1) we have

−1 −
I

I∗
+
f(S, I∗)

f(S, I)
+

I

I∗
f(S, I)

f(S, I∗)
= (1 −

f(S, I)

f(S, I∗)
)(
f(S, I∗)

f(S, I)
−

I

I∗
) ≤ 0.

Since φ(x) ≥ 0 for x > 0, we have Ẇ |(1.2) ≤ 0. Thus, E∗ is stable, and Ẇ |(1.1) = 0
if and only if S = S∗ and I = I∗. So, the largest compact invariant set in Γ =
{(S, I)|Ẇ = 0} is the singleton E∗. From LaSalle invariance principle [16], we
conclude that E∗ is globally asymptotically stable.

5. Conclusion

We have analytically studied a delayed model with a generalized incidence rate.
By constructing two suitable Lyapunov functionals, we found the sufficient con-
ditions of the global stability for the endemic and disease-free equilibrium of the
model. When R0(τ) ≤ 1, the disease-free steady state is globally asymptotically
stable, and no other equilibria exist. When R0(τ) > 1, the disease free steady state
loses its stability, and a unique endemic equilibrium E∗ appears. Using Lyapunov
functional technique, we have been able to show that under certain restrictions on
the parameter values, the endemic equilibrium is globally asymptotically stable.
Our results show that, the time delay can affect the global stability if it becomes
large enough to change the sign of (R0(τ) − 1).
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On the other hand, the basic reproduction number R0(τ) is a decreasing function
of the delay. Hence, the delay prevents the disease by reducing the value of R0(τ)
to a level lower than one. Moreover, ignoring the delay in an epidemiological model
will overestimate R0(τ).
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