
Electronic Journal of Qualitative Theory of Differential Equations

2013, No. 35, 1-16; http://www.math.u-szeged.hu/ejqtde/

Stabilization and robustness of constrained linear

systems

M. Ouzahra
Department of Mathematics & Informatics, ENS

University of Sidi Mohamed Ben Abdellah
P.O. Box 5206, Fès, Morocco.

m.ouzahra@yahoo.fr.

Abstract: In this paper, we consider the feedback stabilization of linear systems in a Hilbert
state space. The paper proposes a class of nonlinear controls that guarantee exponential sta-
bility for linear systems. Applications to stabilization with saturating controls are provided.
Also the robustness of constrained stabilizing controls is analyzed.

Mathematics Subject Classification: 93D15, 93D21

Keywords: Distributed linear system, exponential stabilization, robustness, bounded con-
trols.

EJQTDE, 2013 No. 35, p. 1



1 Introduction

In this paper, we consider the following linear system :

dz(t)

dt
= Az(t) + Bu(t), z(0) = z0, (1)

where the state space is a Hilbert H with inner product 〈·, ·〉 and corresponding norm
‖.‖, the Hilbert space U with norm ‖ · ‖U is the space of control and u(t) ∈ U is a control
subject to the constraint ‖u(t)‖U ≤ umax, umax > 0. The operator B : U → H is linear
and bounded, and the unbounded operator A : D(A) ⊂ H → H is an infinitesimal of a
semigroup of contractions S(t) on H. The radial projection onto the unit ball enables us to
define the following bounded control :

u1(t) =
−B∗z(t)

sup (1, ‖B∗z(t)‖U )
.

This control guarantees weak and strong stabilization for a class of linear systems under
the approximate controllability assumption : B∗S(t)y = 0, ∀t ≥ 0 ⇒ y = 0 (see [13, 14]).
Furthermore, under the following exact controllability assumption :

∫ T

0
‖B∗S(t)y‖2

Udt ≥ α‖y‖2, ∀y ∈ H, (T, α > 0),

strong and exponential stabilization results have been established by [3], using the feed-
back u1(t) and the following smooth control :

u2(t) = − B∗z(t)

1 + ‖B∗z(t)‖U

·

The purpose of this paper is to give necessary and sufficient conditions for exponential
stabilization of an autonomous nonlinear systems. Then we give applications to problems
of local and global exponential stabilization and robustness for constrained control systems.
The plan of the paper is as follows : in the second section, we give necessary and sufficient
conditions for exponential stability of an autonomous nonlinear system. The third section
is devoted to problems of stabilization of the linear system (1) using bounded controls. The
robustness problem is considered in the fourth section. Finally, an illustrating example is
given in the fifth section.

2 Exponential stability

In this section, we discuss the stabilization question of the following autonomous system :

dz(t)

dt
= Az(t) + Nz(t), z(0) = z0, (2)

where the state space is a Hilbert H with inner product 〈·, ·〉 and corresponding norm ‖.‖,
the dynamic A is an unbounded operator with domain D(A) ⊂ H and generates a semigroup
of contractions S(t) on H , and N is a nonlinear operator from H into H such that N(0) = 0,
so that 0 is an equilibrium for (2).
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2.1 Definitions and notations

Let us give the following definition regarding the stability of system (2).

Definition 1 We say the origin is exponentially stable on a set Y ⊂ H if, for all initial
states z0 in Y, there exist M, σ > 0 (depending on z0) such that the mild solution z(t) starting
at z0 satisfies

‖z(t)‖ ≤ Me−σt‖z0‖, ∀t ≥ 0· (3)

The origin is said to be uniformly exponentially stable on Y if (3) holds for some σ and M ,
which are independent of z0. It is said to be globally exponentially (resp. globally uniformly
exponentially) stable if it is exponentially (resp. uniformly exponentially) stable on Y = H.

To state stabilization results for (2) we consider, for ρ > 0, the assumption :

∫ T

0
| 〈NS(t)y, S(t)y〉 |dt ≥ δρ‖y‖2, ∀y ∈ Bρ, (4)

where T, δρ > 0 and Bρ = {y ∈ H/ ‖y‖ ≤ ρ}. In this case we set

δρ(N) = inf
0<‖y‖≤ρ

〈NS(·)y, S(·)y〉L1(0,T )

‖y‖2
.

We also consider the following strong controllability assumption :

∫ T

0
| 〈NS(t)y, S(t)y〉 |dt ≥ δ‖y‖2, ∀y ∈ H, (5)

where T, δ > 0, and let us set : δ(N) = inf
y∈H−{0}

〈NS(·)y, S(·)y〉L1(0,T )

‖y‖2
.

On the other hand if N is Lipschitz on Bρ, then there exists Lρ > 0 such that

‖N(z) − N(y)‖ ≤ Lρ‖z − y‖, ∀(z, y) ∈ B2
ρ.

In this case, we can set : Lρ(N) = sup
(y,z)∈B2

ρ;y 6=z

‖N(z) − N(y)‖
‖z − y‖ so that :

‖N(z) − N(y)‖ ≤ Lρ(N)‖z − y‖, ∀(z, y) ∈ B2
ρ, (6)

and when N is Lipschitz we set L(N) = sup
z 6=y

‖N(z) − N(y)‖
‖z − y‖ .

2.2 Sufficient conditions for exponential stability

Our first result concerns the local exponential stability and is stated as follows :

Theorem 1 Let (i) A generate a semigroup S(t) of contractions on H, (ii) N be dissipative
(i.e., 〈Ny, y〉 ≤ 0, ∀y ∈ H) and Lipschitz on any bounded set, and let (iii) (4) hold. Then

1) for all z0 ∈ Bρ such that L‖z0‖(N) <
1

T
(
δρ(N)

2
)

1

2 we have z(t) → 0, exponentially, as

t → +∞.

2) if Lρ(N) <
1

T
(
δρ(N)

2
)

1

2 , then the system (2) is uniformly exponentially stable on Bρ.
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Proof. 1) Since N is locally Lipschitz, the system (2) has a unique local mild solution
z(t), and since N is dissipative, then z(t) is bounded in time and hence it is defined for all
t ≥ 0. Furthermore, z(t) is given by the variation of constants formula :

z(t) = S(t)z0 +
∫ t

0
S(t − s)Nz(s)ds. (7)

Since S(t) is a semigroup of contractions (so that A is dissipative), then by using approx-
imation techniques and proceeding as in [1], we obtain the following inequality :

‖z(t)‖2 − ‖z(s)‖2 ≤ 2
∫ t

s
〈Nz(τ), z(τ)〉 dτ, ∀t, s ≥ 0; s ≤ t. (8)

It follows that
‖z(t)‖ ≤ ‖z0‖, ∀t ≥ 0. (9)

For all z0 ∈ Bρ and t ≥ 0, we have the relation

〈NS(t)z0, S(t)z0〉 = 〈NS(t)z0 − Nz(t), S(t)z0〉 + 〈Nz(t), y(t)〉 − 〈Nz(t), z(t)〉 ,

where y(t) =
∫ t

0
S(t − s)Nz(s)ds.

Then, using (6) and (9) and the fact that the semigroup S(t) is of contractions, we deduce
that

| 〈NS(t)z0, S(t)z0〉 | ≤ L‖z0‖(N)‖y(t)‖ (‖S(t)z0‖ + ‖z(t)‖) − 〈Nz(t), z(t)〉 , ∀t ∈ [0, T ]·

It follows that

| 〈NS(t)z0, S(t)z0〉 | ≤ 2TL2
‖z0‖‖z0‖2 − 〈Nz(t), z(t)〉 , ∀t ∈ [0, T ]· (10)

By virtue of (9), the inequality (4) also holds for y = z(t). Then, integrating (10), yields

(δρ − 2T 2L2
‖z0‖

)‖z(t)‖2 ≤ −
∫ t+T

t
〈Nz(s), z(s)〉 ds· (11)

It follows from the inequality (8) that for all k ∈ IN , we have

‖z(kT )‖2 − ‖z((k + 1)T )‖2 ≥ −2
∫ (k+1)T

kT
〈Nz(s), z(s)〉 ds·

Then using (11), we get

‖z(kT )‖2 − ‖z((k + 1)T )‖2 ≥ 2(δρ − 2T 2L2
‖z0‖)‖z(kT )‖2·

This implies
‖z((k + 1)T )‖2 ≤ C‖z0‖‖z(kT )‖2, (12)

where C‖z0‖ = 1 − 2(δρ(N) − 2T 2L2
‖z0‖(N)) which is, by virtue of (12), positive and from

the assumption on L2
‖z0‖

(N) we have C‖z0‖ ≤ 1.
Hence
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‖z(kT )‖2 ≤ (C‖z0‖)
k‖z0‖2,

which gives (since ‖z(t)‖ decreases) the following exponential decay ‖z(t)‖ ≤ M‖z0‖e−σt,

where M = (C‖z0‖)
−

1

2 and σ =
− ln(C‖z0‖)

2T
.

2) Under the assumption Lρ(N) <
1

T
(
δρ(N)

2
)

1

2 , we obtain from the above develop-

ment the estimate : ‖z(t)‖ ≤ M‖z0‖e−σt with M = (Cρ)
−

1

2 , σ =
− ln(Cρ)

2T
and Cρ =

1 − 2
(

δρ(N) − 2T 2L2
ρ(N)

)

, so the parameters M and σ are independent of z0, which gives
the uniform stability.

The following result concerns the global stabilization.

Corollary 1 Let (i) A generate a semigroup S(t) of contractions on H, (ii) N be dissipative
and Lipschitz and let (iii) (5) holds.

If L(N) <
1

T
(
δ(N)

2
)

1

2 , then (2) is uniformly globally exponentially stable.

Proof. From the proof of the above theorem, we have the estimate : ‖z(t)‖ ≤ M‖z0‖e−σt, ∀z0 ∈

H, where the positive constants M =
(

1 − 2(δ(N) − 2T 2L2(N))
)−

1

2 and σ =

− ln
(

1 − 2(δ(N) − 2T 2L2(N))
)

2T
are independent of z0, which means that the stability is

global and uniform.

Remark 1 Note that (5) implies that (4) holds for all ρ > 0, but the converse is not true

as we can see taking Az = 0 and Nz =
−z

z2 + 1
, ∀z ∈ H := R.

2.3 Necessary conditions for exponential stability

The next result gives necessary conditions for exponential stability of (2), and will be useful
in the next section. For this end, we define, for ρ > 0, the following sets : Λρ = {y ∈
Bρ/S(t)y → 0, exponentially, as t → +∞} and Λ = {y ∈ H/S(t)y → 0, exponentially, as
t → +∞} =

⋃

ρ>0

Λρ.

Theorem 2 1) If the system (2) is exponentially stable on Bρ, then :

∀y ∈ Bρ, S(t − s)NS(s)y = 0, ∀t ≥ 0, ∀s ∈ [0, t] ⇒ y ∈ Λρ· (13)

2) If the system (2) is globally exponentially stable, then :

∀y ∈ H, S(t − s)NS(s)y = 0, ∀t ≥ 0, ∀s ∈ [0, t] ⇒ y ∈ Λ· (14)
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Proof. 1) Let y ∈ Bρ be such that S(t − s)NS(s)y = 0, ∀t ≥ 0, ∀s ∈ [0, t]. It follows
that z(t) = S(t)y satisfies the variation of constants formula (7), and hence it is the unique
solution of (2), corresponding to the initial state z(0) = y. Then the exponential stability of
(2) implies that z(t) → 0, exponentially, and so y ∈ Λρ.

2) Let y ∈ H such that S(t− s)NS(s)y = 0, ∀t ≥ 0, ∀s ∈ [0, t], and let ρ > ‖y‖. Since (2)
is globally exponentially stable, then it is also exponentially stable on Bρ. Then (13) implies
y ∈ Λρ ⊂ Λ, and hence (14) holds.

Remarks 1 1. If the semigroup S(t) is of isometries i.e, ‖S(t)y‖ = ‖y‖, ∀t ≥ 0, y ∈ H,
then for all ρ > 0, we have Λρ = {0}, and hence Λ = {0}, so (13) and (14) become
respectively :

∀y ∈ Bρ, S(t − s)NS(s)y = 0, ∀t ≥ 0, ∀s ∈ [0, t] ⇒ y = 0, (15)

and
∀y ∈ H, S(t − s)NS(s)y = 0, ∀t ≥ 0, ∀s ∈ [0, t] ⇒ y = 0· (16)

2. If the semigroup S(t) is not supposed of isometries, then (15) (resp. (16)) is not a
necessary condition for exponential stability on Bρ (resp. on H), as we can see taking

A =
∂2

∂x2
, D(A) = H2(0, 1) ∩ H1

0 (0, 1) and N = 0. Indeed, it is well known that

A generates an exponentially stable semigroup S(t) given by S(t)y =
∞
∑

n=1

e−n2π2t <

z0, sin(nπx) > sin(nπx). But for N = 0, we have Λρ = H = Λ.

3. Note that (16) ⇒ (15), but the converse is not true. Indeed, for ρ = 1, H = IR, A = 0
and N(y) = y 1{y; |y|≤1}, we have S(t) = I (the identity of H) and hence for all y ∈ B1,
and for all 0 ≤ s ≤ t, we have S(t − s)NS(s)y = Ny = y. Thus the assumption (15)
holds. But for y 6∈ B1 = [−1, 1], we have S(t − s)NS(t)y = Ny = 0, ∀t ≥ 0, so (16)
does not hold.

4. If N is linear, then we have (15) ⇔ (16). Indeed, let (15) hold, and let y ∈ H such

that S(t − s)NS(s)y = 0, ∀0 ≤ s ≤ t. If y 6= 0, then yρ := ρ
y

‖y‖ 6= 0 and we have

S(t − s)NS(s)yρ = 0 with yρ ∈ Bρ, which is in contradiction with (15). We conclude
that (16) holds.

5. The assumption (16) does not guarantee the exponential stability of (2), as we can
see for A = 0 and Nz = −z3, ∀z ∈ H := IR. Indeed, for all 0 ≤ s ≤ t, we have
S(t− s)NS(s)y = Ny = y3 and hence (16) holds. However, for all initial state z0 6= 0,

the solution is given by z(t) =
1

2t + 1
z0

, which does not converge exponentially to 0, as

t → +∞.
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3 Exponential stabilization of linear systems

In this section, we will study the problem of exponential stabilization and robustness of the
system (1). For this end, we consider (for some T, α > 0) the following exact controllability
assumption :

∫ T

0
‖B∗S(t)y‖2

Udt ≥ α‖y‖2, ∀y ∈ H, (17)

and let us set α(B) = inf
‖y‖=1

‖B∗S(·)y‖2
L2(0,T ;U), (so that α ≤ α(B)).

3.1 Nonlinear controls

In order to study various kinds of control saturation, it would be more appropriate to consider
the general feedback :

u(t) = −c
B∗z(t)

r(z(t))
, (18)

where r : H → R∗+ is an appropriate function and c is positive constant.

Remark 2 If r(y) ≥ ν‖B∗y‖U , for all y ∈ H (for some ν > 0), then we have : |u(t)| ≤ c

ν
,

for all t ≥ 0.

The following result gives sufficient conditions for the control (18) to guarantee local and
global stabilization of (1).

Theorem 3 Let (i) A generate a semigroup S(t) of contractions on H, (ii) B ∈ L(U, H)
such that (17) holds and let (iii) r be Lipschitz on any bounded set.

1) Let ρ > 0 be such that : 0 < m(ρ) ≤ r(z) ≤ M(ρ), for all z ∈ Bρ. Then for all c such
that

0 < c <
α(B)m4(ρ)

2T 2M(ρ) (M(ρ) + ρLρ(r))
2 ‖BB∗‖2

, (19)

the control (18) uniformly exponentially stabilizes (1) on Bρ.

2) If r is Lipschitz and 0 < m ≤ r(y) ≤ M, for all y ∈ H, (for some m, M > 0), then
there exists c > 0 for which the control (18) exponentially globally stabilizes the system (1).

Proof. 1) To study the stabilizability of (1) using the control (18), we introduce the

operator Nz = −c
BB∗z

r(z)
, which is clearly dissipative. Moreover, since S(t) is of contractions,

then for all z ∈ Bρ, we have ‖S(t)z‖ ≤ ‖z‖ ≤ ρ and so

〈NS(t)z, S(t)z〉 = c
‖B∗S(t)z‖2

U

r(S(t)z)
≥ c

‖B∗S(t)z‖2
U

M(ρ)
·
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Then for all z ∈ Bρ, we have
∫ T

0
〈NS(t)z, S(t)z〉 dt ≥ δρ‖z‖2 with δρ =

cα(B)

M(ρ)
. In other

words, N verifies (4) with δρ(N) ≥ cα(B)

M(ρ)
. Furthermore, the operator N is locally Lipschitz.

Indeed, let x ∈ H and let R, LR,x(r) > 0 such that for all z, y ∈ H ; ‖x − y‖, ‖x − z‖ ≤ R,
we have ‖r(y)− r(z)‖ ≤ LR,x(r)‖y − z‖. Then, letting R

x
= R + ‖x‖, we obtain

‖Nz − Ny‖ =
‖cr(y)BB∗z − cr(z)BB∗y‖

r(z)r(y)

≤ c

m2(R
x
)
‖r(y)BB∗z − r(z)BB∗y‖

≤ c

m2(R
x
)
‖r(y)BB∗(z − y) + (r(y) − r(z))BB∗y‖

≤ c‖BB∗‖(M(R
x
) + R

x
LR,x(r))

m2(R
x
)

‖z − y‖.

This shows that N is locally Lipschitz.
Now, taking x = 0, R = ρ, and letting Lρ,0(N) = Lρ(N) in the last inequality, we get

Lρ(N) ≤ c‖BB∗‖(M(ρ) + ρLρ(r))

m2(ρ)
. (20)

We have δρ(N) ≥ δρ =
cα(B)

M(ρ)
. Then

(19) ⇒ c2 <
m4(ρ)δρ(N)

2T 2‖BB∗‖2(M(ρ) + ρLρ(r))2

⇒ 2T 2 c2‖BB∗‖2(M(ρ) + ρLρ(r))
2

m4(ρ)
< δρ(N)

This, together with (20), implies that

(19) ⇒ Lρ(N) <
1

T
(
δρ(N)

2
)

1

2 .

The result of Theorem 1 implies the uniform exponential stabilizability of the system (1)
on Bρ with the control (18).

2) Let ρ > ‖z0‖ and let c be such that :

0 < c <
α(B)m4

2T 2M (M + ρL(r))2 ‖BB∗‖2
. (21)

It follows from the first point that the control (18) exponentially stabilizes the system (1)
on Bρ. The choice of ρ implies that z0 ∈ Bρ, and hence the solution of system (1) with z0

as initial state exponentially converges to 0, as t → +∞. This achieves the proof.
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3.2 Constrained controls

Let us consider the two bounded controls

u1(t) =
−c

1 + ‖B∗z(t)‖U

B∗z(t), (22)

and

u2(t) =
−c

sup (1, ‖B∗z(t)‖U)
B∗z(t), (23)

where c > 0 is the gain control.
As applications to constrained stabilization of the system (1), we have the following result

Theorem 4 Let A generate a semigroup S(t) of contractions on H and let B ∈ L(U, H)
such that (17) holds. Then

1) for all ρ > 0, there exists c > such that both the controls (22) and (23) uniformly
exponentially stabilizes (1) on Bρ.

2) both the controls (22) and (23) globally exponentially stabilizes (1) for some c > 0.

Proof. 1) First, let us note that the controls (22) and (23) have respectively the form of
(18) with

r(z) = 1 + ‖B∗z‖
U

and r(z) = sup(1, ‖B∗z‖
U
).

Here, the map r is Lipschitz with Lρ(r) = ‖B∗‖ = ‖B‖. (This is clear for (22) and for
(23), one can remark that : 2 sup (1, ‖B∗z‖

U
) = |1 − ‖B∗z‖

U
| + 1 + ‖B∗z‖

U
).

Also we have 1 ≤ r(z) ≤ 1 + ρ‖B‖, ∀z ∈ Bρ. Hence we can take M(ρ) = 1 +
ρ‖B‖ and m(ρ) = 1·

Now remarking that the inequality (19) is equivalent to the following one

0 < c <
α(B)

2T 2(1 + ρ‖B∗‖)(1 + 2ρ‖B∗‖)2‖BB∗‖2
, (24)

we deduce from Theorem 3 that (22) and (23) uniformly exponentially stabilize (1) on Bρ

for all c satisfying (24).
2) It follows from the same techniques as in 1) by taking ρ > ‖z0‖.

Remark 3 Taking 0 < c <
ǫ

(1 + ρ‖B∗‖)(1 + 2ρ‖B∗‖)2
with 0 < ǫ <

α(B)

2T‖BB∗‖ we have

|ui(t)| ≤ ǫ ≤ α(B)

2T‖BB∗‖ . In other words, the controls (22) and (23) are uniformly bounded

with respect to the initial states.
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3.3 Necessary conditions for exponential stabilization

In the case of the system (1), the results of Theorem 2 can be reformulated as follows :

Theorem 5 1) The condition

∀y ∈ H, S(t − s)BB∗S(s)y = 0, ∀t ≥ 0, ∀s ∈ [0, t] implies y ∈ Λ,

is necessary for the exponential stability of (1) with the control (18).

2) If A generates a semigroup S(t) of isometries on H, then the condition

∀y ∈ H, S(t − s)BB∗S(s)y = 0, ∀t ≥ 0, s ∈ [0, t] implies y = 0,

is necessary for the exponential stability of (1) with the control (18).

Proof. It follows from Theorem 2 by taking N =
−cBB∗

r
.

Remark 4 1. The results of Theorem 5 can be applied to avoid the ”bad” actuators, i.e,
the ones that do not guarantee the exponential stability.

We recall that an actuator can be defined as a couple (ω, a(·)) of a function f , which
indicates the spatial distribution of the action on the support ω which is a part of the
closure Ω of the domain Ω (see [5, 6, 7, 10]).

2. As a consequence of the above theorem, a necessary condition for exponential sta-
bilization of the system (1) with the control (18) is that all the modes of A corre-
sponding to eigenvalues λ such that Re(λ) ≥ 0 are actives. In other words, for all
λ ∈ Sp(A); Re(λ) ≥ 0 and for all corresponding eigenfunction ϕ ∈ ker (A − λI) − (0),

we have BB∗ϕ 6= 0. As an example; for H = L2(0, 1) and A =
∂2

∂x2
, ∀z ∈ D(A) =

{z ∈ H2(0, 1)/ z′(0) = z′(1) = 0}, a necessary condition for exponential stability is
BB∗(1) 6= 0. In term of actuators, if we take B : u ∈ U = IR 7→ (a(·)χω)u ∈ L2(0, 1),
i.e, the action applies in the subregion ω of Ω with the spatial repartition a(x), then

we have B∗y =
∫

ω
a(x)y(x)dx. Thus, an actuator (ω, a(·)) such that

∫

ω
a(x)dx = 0 is

a ”bad” one.

4 Robustness of constrained controls

Let us now proceed to robustness question of the controls (22) and (23) to small perturbations
of the parameters system. Consider the following perturbed system :

dz(t)

dt
= Az(t) + az + Bu(t), z(0) = z0, (25)

where A and B are as in (1) and the perturbation a is a nonlinear operator from H to
itself.
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Consider the nominal system :

dz(t)

dt
= Az(t) + Niz(t), z(0) = z0, (i = 1, 2), (26)

where Niz =
−BB∗z

ri(z)
, r1(z) = 1 + ‖B∗z‖

U
and r2(z) = sup(1, ‖B∗z‖

U
), for all z ∈ H.

Let us define the set of admissible perturbations : ΩA = {a : H → H/ a is dissipative,

locally Lipschitz such that a(0) = 0 and Lρ(a) <

√

δρ(Ni)

T
√

2
−Lρ(Ni), i = 1, 2}. Note that the

assumption a(0) = 0 implies that 0 remains an equilibrium for (25).

We have the following result

Theorem 6 Let assumptions of Theorem 4 hold. Then for any perturbation a ∈ ΩA, the
controls (22) and (23) uniformly exponentially stabilize the system (25) on Bρ.

If a is Lipschitz, then the controls (22) and (23) globally exponentially stabilize (25).

Proof. First let us note that from Theorem 4, one deduce that ΩA 6= ∅. Let a ∈ ΩA and
let Ñi = a − Ni. We have

| < ÑiS(t)y, S(t)y > | ≥ | < NiS(t)y, S(t)y > |·
It follows that

∫ T

0
| < ÑiS(t)y, S(t)y > |dt ≥ δρ(Ni)‖y‖2,

so that Ñi satisfies (4) with δρ(Ñi) ≥ δρ(Ni) =
cα(B)

1 + ρ‖B‖ , i = 1, 2.

Clearly the operator Ñi is dissipative, locally Lipschitz and verifies :

Lρ(Ñi) ≤ Lρ(Ni) + Lρ(a) <

√

δρ(Ñi)

T
√

2
, for all a ∈ ΩA.

Then from Theorem 1, there exists c > 0 for which the controls (22) and (23) uniformly
exponentially stabilize (25) on Bρ.

Now if a is Lipschitz, then L‖z0‖(Ñi) <

√

δ‖z0‖(Ñi)

T
√

2
provided that

2T 2c(1 + ‖z0‖2‖B∗‖)2‖BB∗‖2 + L(a) <
α(B)

1 + ‖z0‖‖B‖ ,

which holds for c small enough. The global stability follows then from Theorem 1.

The system (25) may be seen as a perturbation of (1) in its dynamic A. Next, we consider
the problem of robustness of controls (22) and (23) with respect to perturbations of B. Let
us consider the linear system

dz(t)

dt
= Az(t) + (B + b)u(t), z(0) = z0, (27)

where b ∈ L(U, H). We have the following result.
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Theorem 7 Let A generate a semigroup S(t) of contractions on H and let B ∈ L(U, H)
such that (17) holds. Then the controls (22) and (23) are globally exponentially robust to

any perturbation b ∈ L(U, H) of B such that ‖b∗‖ <
α(B)

2T‖B∗‖ . Furthermore, the robustness

is uniform on Bρ.

Proof.

We have
‖(B∗ + b∗)S(t)y‖

U
≥ |‖B∗S(t)y‖

U
− ‖b∗S(t)y‖|·

Then

‖(B∗ + b∗)S(t)y‖2
U
≥ ‖B∗S(t)y‖2

U
− 2‖B∗S(t)y‖‖b∗S(t)y‖ + ‖b∗S(t)y‖2

≥ ‖B∗S(t)y‖2
U
− 2‖B∗‖‖b∗‖‖y‖2

Integrating this inequality and using (17), we get

∫ T

0
‖(B∗ + b∗)S(t)y‖2

U
dt ≥ (α(B) − 2T‖B∗‖‖b∗‖)‖y‖2, ∀y ∈ H,

which implies that B + b verifies (17) with α = α(B) − 2T‖B∗‖‖b∗‖·
From Theorem 4, we deduce that the controls :

ub1(t) =
−c

1 + ‖(B∗ + b∗)z(t)‖
U

(B∗ + b∗)z(t)

and

ub2(t) =
−c

sup (1, ‖(B∗ + b∗)z(t)‖
U
)
(B∗ + b∗)z(t)

globally exponentially stabilize the perturbed system (27) for some c > 0; uniformly on Bρ.

Now let us see the problem of robustness associated to linear perturbations acting, jointly,
on the dynamic and the operator of control.

Consider the perturbed system :

dz(t)

dt
= (A + a)z(t) + (B + b)u(t), z(0) = z0, (28)

where a ∈ L(H) and b ∈ L(U, H). We have the following result.

Theorem 8 Let A generate a semigroup S(t) of contractions on H and let B ∈ L(U, H)
such that (17) holds. Then the controls (22) and (23) are globally exponentially robust to any

perturbation a and b such that a is dissipative, ‖a‖ <
−1 +

√

1 + α(B)
T‖B‖2

T
and ‖b‖ <

αa(B)

2T‖B∗‖ ,

where αa(B) = α(B) − T 2‖B‖2(T‖a‖2 + 2‖a‖).
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Proof.

Under the assumptions on a, the operator A + a is the infinitesimal generator of a semi-
group of contractions Sa(t) (see [11]), and for all t ≥ 0 and y ∈ H , we have

Sa(t)y = S(t)y +
∫ t

0
S(t − s)aSa(s)yds. (29)

The system (28) may be seen as a perturbation of the system (25) in its control operator
B by b. Then from Theorem 7, it is sufficient to show that

∫ T

0
‖B∗Sa(t)y‖2

U
dt ≥ αa‖y‖2, ∀y ∈ H, (30)

for some αa > 0.
Based on (29), we obtain the following relation

〈BB∗Sa(t)y, Sa(t)y〉 = 〈BB∗S(t)y, S(t)y〉+ φ(t), (31)

where φ(t) is a scalar function such that

|φ(t)| ≤ Ka‖y‖2, ∀t ∈ [0, T ],

where Ka = T‖B‖2
(

T‖a‖2 + 2‖a‖
)

.
Then we have

‖B∗Sa(t)y‖2 ≥ ‖B∗S(t)y‖2 − |φ(t)|
Integrating this last inequality and using (17), we deduce

∫ T

0
‖B∗Sa(t)y‖2

U
dt ≥ (α(B) − TKa) ‖y‖2·

Then we obtain (30) provided that α(B) − TKa > 0 i.e.

T 2‖B‖2
(

T‖a‖2 + 2‖a‖
)

− α(B) < 0,

which is equivalent to ‖a‖ <
−1 +

√

1 + α(B)
T‖B‖2

T
. Then we conclude by Theorem 7.

5 An example

Let Ω = (0, 1) and let Q = Ω×]0, +∞[. Consider the following wave equation



















∂2z(x, t)

∂t2
=

∂2z(x, t)

∂x2
+ u(t), on Q

z = 0, on ∂Ω×]0, +∞[

(32)
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and let H = H1
0 (Ω) × L2(Ω) with 〈(y1, z1), (y2, z2)〉 = 〈y1, y2〉H1

0
(Ω) + 〈z1, z2〉L2(Ω) . The

operator A =







0 I
∂2

∂x2
0





 with domain D(A) = (H2(Ω) ∩H1
0 (Ω))×H1

0 (Ω) is skew-adjoint.

The spectrum of the operator
∂2

∂x2
with Dirichlet boundary conditions is given by the simple

eigenvalues λj = (jπ)2, corresponding to eigenfunctions ϕj(x) =
√

2 sin(jπx), ∀j ∈ IN∗.
Here, we have B : L2(0, 1) → H, Bz = (0, z) and B∗ : H → L2(0, 1), B∗(y, z) = z.

Let y = (y1, y2) ∈ H with y1 =
∞
∑

j=1

αjϕj and y2 =
∞
∑

j=1

λ
1

2

j βjϕj, where (αj , βj) ∈ IR2, j ≥ 1·

We have ‖y‖2 =
∞
∑

j=1

λj(α
2
j + β2

j ). Separation of variables yields

S(s)y =
∞
∑

j=1









αj cos(λ
1

2

j s) + βj sin(λ
1

2

j s)

−αjλ
1

2

j sin(λ
1

2

j s) + βjλ
1

2

j cos(λ
1

2

j s)









ϕj , ∀s ≥ 0·

Then we have

‖B∗S(s)y‖2 =
∞
∑

j=1

λj

{

α2
j sin2(jπs) + β2

j cos2(jπs) − sin(2jπs)αjβj

}

·

It follows that
∫ 2

0
‖B∗S(s)y‖2ds =

∞
∑

j=1

λj(α
2
j + β2

j ),

so the assumption (17) holds with T = 2 and we have α(B) ≥ 1.

We conclude that the feedback controls

ui(t) =
−∂z(x, t)

∂t

ri(‖
∂z(x, t)

∂t
‖L2(Ω))

, i = 1, 2,

exponentially stabilize (32), where r1(x) = 1 + x and r2(x) = sup(1, x), ∀x ∈ IR.
Let us now consider the perturbed system :



















∂2z(x, t)

∂t2
= ∆z(x, t) + λ

∂z(x, t)

∂t
+ (1 + µ)u(t), on Q

z = 0, on ∂Ω×]0, +∞[

(33)

The system (32) may be seen as the system (1), perturbed in its dynamic by a =
(

0 0
0 λI

)

and in its operator of control by b =

(

0
µ

)

. Applying results of Theorem 8,

we deduce that (32) is exponentially stabilizable with the feedback law :
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ui(t) =
−(1 + µ)

∂z(x, t)

∂t

ri(|1 + µ|‖∂z(x, t)

∂t
‖L2(Ω))

, i = 1, 2,

under the perturbations a, b, provided that 0 < −λ <

√
6 − 2

4
and |µ| < 1 − 8(λ2 + λ).

6 Conclusion

In this work, sets of necessary and sufficient conditions for exponential stability of nonlinear
systems are obtained. Then we have studied the exponential stabilization of distributed
linear systems using bounded feedbacks. The established results can be applied to systems
which are subject to constraint on the control input. Also sets of allowed perturbations of
the parameters system that maintain the exponential stabilization of the considered systems
are given.
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