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A NULL CONTROLLABILITY PROBLEM WITH A

FINITE NUMBER OF CONSTRAINTS ON THE

NORMAL DERIVATIVE FOR THE SEMILINEAR HEAT

EQUATION

CAROLE LOUIS-ROSE

Abstract. We consider the semilinear heat equation in a bounded

domain of R
m. We prove the null controllability of the system

with a finite number of constraints on the normal derivative, when

the control acts on a bounded subset of the domain. First, we

show that the problem can be transformed into a null controlla-

bility problem with constraint on the control, for a linear system.

Then, we use an appropriate observability inequality to solve the

linearized problem. Finally, we prove the main result by means of

a fixed-point method.

1. Introduction

Let m ∈ N\{0} and let Ω ⊂ R
m be a bounded domain with boundary

Γ of class C2. Let also ω be a non empty subdomain of Ω and Γ0 a non

empty part of Γ. For a time T > 0, set Q = Ω× (0, T ), Σ = Γ× (0, T ),

Σ0 = Γ0 × (0, T ) and G = ω× (0, T ). Consider the following system of

semilinear heat equation:

(1)











∂y
∂t

− ∆y + f(y) = vχω in Q,

y|Σ = 0,

y(0) = y0 in Ω,

where f is a function of class C1 on R, y0 ∈ L2(Ω), v ∈ L2(G) represents

the control function and χω is the characteristic function of ω, the set

where controls are supported. The function f is assumed to be globally

Lipschitz all along the paper, i.e. there exists K > 0 such that

(2) |f(x) − f(z)| 6 K|x− z|, ∀x, z ∈ R,
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and assume for simplicity that

(3) f(0) = 0.

We denote y by y(x, t, v) to mean that the solution y of (1) depends

on the control v.

Null controllability problem with constraint on the control has been

studied by O. Nakoulima in [1, 2], for the parabolic evolution equa-

tion. Indeed, he solved in [2] the following null controllability problem

with constraint on the control: Given a finite-dimensional subspace

Y of L2(G) and y0 ∈ H1
0 (Ω), find a control v ∈ Y ⊥, the orthogonal

complement of Y in L2(G), such that the solution of

(4)











∂y
∂t

− ∆y + a0y = vχω in Q,

y = 0 on Σ,

y(0) = y0 in Ω,

satisfies y(T ) = 0 in Ω.

The proof uses an observability inequality adapted to the constraint.

The results obtained by O. Nakoulima allowed G. M. Mophou and O.

Nakoulima to prove the existence of sentinels with given sensitivity in

[3], and to solve a new type of controllability problem (see [4]): Given

ei in L2(Q), 1 6 i 6 M , and y0 ∈ L2(Ω), find a control v ∈ L2(Q)

such that the solution of (4) satisfies y(T ) = 0 in Ω and

(5)

∫ T

0

∫

Ω

yeidxdt = 0, 1 6 i 6 M.

We also refer to [5] where a boundary null controllability with con-

straints on the state for a linear heat equation is solved. G. M. Mophou

in [6] showed the null controllability with a finite number of constraints

on the state, for a nonlinear heat equation involving gradient terms.

In this paper, we focus on a null controllability problem with con-

straint on the normal derivative that we describe now.

Let {e1, . . . em} be a family of vectors of

H1
0 (Σ) = {ψ|ψ ∈ H1(Σ), ψ(x, 0) = 0, ψ(x, T ) = 0 in Γ}

and let E = Span({e1, . . . , em}) be the span of the family of vectors

{e1, . . . em}. Suppose that:

(6) the vectors (ej)j=1,...,m are linearly independent on Σ0.
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The null controllability problem with constraint on the normal deriv-

ative for system (1) can be formulated as follows: Given f a globally

Lipschitz function of class C1 on R satisfying (3), y0 ∈ L2(Ω) and

ej ∈ H1
0 (Σ) j = 1, . . . , m satisfying (6), find v ∈ L2(G) such that if y

is solution of (1), then

(7) 〈∂y
∂ν
, ej〉H−1(Σ0),H1

0 (Σ0) = 0; j = 1, . . . , m,

and

(8) y(T ) = 0 in Ω,

where ν is the unit exterior normal vector of Γ,
∂y

∂ν
is the normal de-

rivative of y with respect to ν and 〈., .〉X,X′ denotes the duality bracket

between the spaces X and X ′.

The main result of this paper is as follows:

Theorem 1.1. Let f be a globally Lipschitz function of class C1 on

R satisfying (3). Then for any y0 ∈ L2(Ω) and ej ∈ H1
0 (Σ) j =

1, . . . , m satisfying (6), there exists a unique control ṽ of minimal norm

in L2(G), such that (ṽ, ỹ) satisfies the null controllability problem with

constraint on the normal derivative (1), (7) and (8). Moreover there

exists a positive constant C = C(Ω, ω,K, T,
∑m

j=1 ||ej||H1
0 (Σ)) such that

(9) ||ṽ||L2(G) 6 C||y0||L2(Ω).

The proof of this theorem will be the subject of the last section. The

rest of the paper is organized as follows. In Section 2, we show that

problem (1), (7), (8) is equivalent to a null controllability problem with

constraint on the control for a linearized system derived from (1). In

Section 3, we prove an observability estimate for the linearized system.

In Section 4, we use this estimate to prove the null controllability of

the linearized system. Section 5 is devoted to proving Theorem 1.1.

2. Equivalence with null controllability problem with

constraint on the control for linearized system

We introduce the notation

a0(s) =

{

f(s)
s

if s 6= 0

f ′(0) if s = 0.
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In view of the globally Lipschitz assumption (2) on f , a0 maps L2(Q)

into a bounded set of L∞(Q). Moreover

(10) ||a0(y)||L∞(Q) 6 K, ∀y ∈ L2(Q),

K being the Lipschitz constant of f .

Thus, system (1) may be rewritten in the form

(11)















∂y

∂t
− ∆y + a0(y)y = vχω in Q,

y|Σ = 0,

y(0) = y0 in Ω.

Given z ∈ L2(Q), consider the linearized system

(12)















∂y

∂t
− ∆y + a0(z)y = vχω in Q,

y|Σ = 0,

y(0) = y0 in Ω,

Since a0(z) ∈ L∞(Q), y0 ∈ L2(Ω) and vχω ∈ L2(Q), system (12) admits

a unique solution y in

 L2(0, T ;H1
0(Ω)) ∩ C([0, T ];L2(Ω)).

Note that since y ∈ L2(0, T ;H1
0(Ω)) and ∆y ∈ H−1(0, T ;L2(Ω)), we

can define ∂y
∂ν

on Γ and ∂y
∂ν

∈ H−1(0, T ;H− 3
2 (Γ)), which is a subset of

H−1(Σ), the dual of H1
0 (Σ).

Consequently our aim is: For any z ∈ L2(Q), a0(z) ∈ L∞(Q), y0 ∈
L2(Ω) and ej ∈ H1

0 (Σ) j = 1, . . . , m, to find a control v ∈ L2(G) such

that the solution y of (12) satisfies (7) and (8).

As we said in the introduction, we show in the rest of this section that

problem (12), (7), (8) is equivalent to a null controllability problem

with constraint on the control.

For each ej , 1 6 j 6 m, consider the adjoint of system (12):

(13)























−∂qj
∂t

− ∆qj + a0(z)qj = 0 in Q,

qj = ej on Σ0,

qj = 0 on Σ \ Σ0,

qj(T ) = 0 in Ω.

The following lemma holds:
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Lemma 2.1. Under the hypothesis (6), the functions qjχω, 1 6 j 6 m,

are linearly independent for any z ∈ L2(Q).

Proof. Let γj ∈ R, 1 6 j 6 m, be such that

(14)
m
∑

j=1

γjqj = 0 in G.

Since qj is solution of (13) for each j ∈ {1, . . . , m}, then
m
∑

j=1

γjqj := q

satisfies:

(15)







−∂q
∂t

− ∆q + a0(z)q = 0 in Q,

q =
∑m

j=1 γjej on Σ0.

Combining the first equation of (15) with (14), we deduce that, accord-

ing to a unique continuation property for the evolution equation, q = 0

in Q. Therefore, we have in particular q = 0 on Σ0. Since the second

equation of (15) holds, the hypothesis (6) implies that γj = 0 for all

j ∈ {1, . . . , m} and the proof of Lemma (2.1) is complete.

If X is a closed vector subspace of L2(G), let us denote by X⊥ the

orthogonal of X in L2(G).

Proposition 2.2. There exists a positive real function θ such that for

any z ∈ L2(Q), there exist two finite dimensional vector subspaces U ,Uθ
of L2(G), and u0(z) ∈ Uθ such that the null controllability problem with

constraint on the normal derivative (12), (7), (8) is equivalent to the

following null controllability problem with constraint on the control:

Given a0(z) ∈ L∞(Q), y0 ∈ L2(Ω) and u0 ∈ Uθ, find

(16) u ∈ U⊥

such that if y is solution of

(17)















∂y

∂t
− ∆y + a0(z)y = (u0 + u)χω in Q,

y = 0 on Σ,

y(0) = y0 in Ω,

then

(18) y(T ) = 0 in Ω.
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Proof. Suppose that the null controllability problem with constraint

on the normal derivative (12), (7), (8) holds.

Since a0(z) ∈ L∞(Q) and ej ∈ H1
0 (Σ), j = 1, . . . , m, for each j, system

(13) admits a unique solution qj in L2(0, T ;H2(Ω))∩H1(0, T ;L2(Ω)) :=

H2,1(Q).

Multiplying (12) by the solution qj of (13), then integrating by parts

over Q, we obtain
∫

Ω

y(T )qj(T )dx−
∫

Ω

y(0)qj(0)dx− 〈∂y
∂ν
, qj〉H−1(Σ),H1

0 (Σ)

+

∫

Σ

y
∂qj

∂ν
dΓdt+

∫

Q

y(−∂qj
∂t

− ∆qj + a0(z)qj)dxdt =

∫

Q

vχωqjdxdt.

It follows that

−
∫

Ω

y0qj(0)dx− 〈∂y
∂ν
, ej〉H−1(Σ0),H1

0 (Σ0) =

∫

G

vqjdxdt.

In view of (7), we have

−
∫

Ω

y0qj(0)dx =

∫

G

vqjdxdt.(19)

Let U = Span({q1χω, . . . , qmχω}) and let Uθ =
1

θ
U . Then there exists

a unique u0 ∈ Uθ such that for any j ∈ {1, . . . , m},

(20)

∫

G

u0qjdxdt = −
∫

Ω

y0qj(0)dx.

Thus according to (19), we have
∫

G

u0qjdxdt =

∫

G

vqjdxdt, for any j ∈ {1, . . . , m}.

Therefore, v − u0 ∈ U⊥ and there exists u ∈ U⊥ such that v = u0 + u.

Now, replacing v by u0 + u in (12), we obtain (17).

Conversely, suppose that for any z ∈ L2(Q), a0(z) ∈ L∞(Q) and

y0 ∈ L2(Ω) are given, and that the solution y of (17) satisfies y(T ) = 0

in Ω. Let qj , j = 1, . . . , m, be the solutions of (13), u ∈ U⊥ and u0

satisfying (20). Multiplying (17) by qj, then integrating by parts over

Q, we have

−
∫

Ω

y0qj(0)dx− 〈∂y
∂ν
, ej〉H−1(Σ0),H1

0 (Σ0) =

∫

G

u0qjdxdt+

∫

G

uqjdxdt.
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In view of (20), we get

−〈∂y
∂ν
, ej〉H−1(Σ0),H1

0 (Σ0) =

∫

G

uqjdxdt,

which ends the proof of Proposition 2.2, because u ∈ U⊥.

Remark 2.3. The function u0 is such that θu0 ∈ L2(G).

In the sequel, we will denote by P the orthogonal projection operator

from L2(G) into U .

3. Observability estimate

We prove in this section an observability estimate which is adapted

to the constraint, deriving from a global Carleman inequality due to

A. V. Fursikov and O. Yu. Imanuvilov [7].

Let ψ ∈ C2(Ω) be such that

(21)











ψ(x) > 0 ∀x ∈ Ω,

ψ(x) = 0 ∀x ∈ Γ,

|∇ψ(x)| 6= 0 ∀x ∈ Ω − ω.

Then, for any λ ∈ R
∗
+, define

(22) ϕ(x, t) =
eλ(m||ψ||L∞(Ω)+ψ(x))

t(T − t)
,

(23) η(x, t) =
e2λm||ψ||L∞(Ω − eλ(m||ψ||L∞(Ω+ψ(x))

t(T − t)
,

for (x, t) ∈ Q and m > 1.

We introduce the following notations


















V = {ρ ∈ C∞(Q); ρ|Σ = 0},
Lρ =

∂ρ

∂t
− ∆ρ+ a0(z)ρ,

L∗ρ = −∂ρ
∂t

− ∆ρ + a0(z)ρ,

(24)

where a0 ∈ L∞(Q).

Carleman’s inequality can be formulated as follows:

Proposition 3.1 (Global Carleman’s inequality [7, 8]). Let ψ, ϕ and η

the functions defined respectively by (21), (22), (23). Then there exist
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λ0 = λ0(Ω, ω) > 1, s0 = s0(Ω, ω, T ) > 1 and C = C(Ω, ω) > 0 such

that, for λ > λ0, s > s0, and for any ρ ∈ V, we have

∫

Q

e−2sη

sϕ

(

∣

∣

∣

∣

∂ρ

∂t

∣

∣

∣

∣

2

+ |∆ρ|2
)

dxdt+

∫

Q

sλ2ϕe−2sη|∇ρ|2dxdt

+

∫

Q

s3λ4ϕ3e−2sη|ρ|2dxdt

6 C

(
∫

Q

e−2sη|L∗ρ|2dxdt+

∫

G

s3λ4ϕ3e−2sη|ρ|2dxdt
)

.

(25)

Since ϕ does not vanish on Q, we set

(26) θ = ϕ− 3
2esη,

and from (25), we deduce the following corollary:

Corollary 3.2 ([4] p.546). There exist a positive real function θ (given

by (26)) and a positive constant C = C(Ω, ω,K, T ) such that for any

ρ ∈ V, we have

(27)
∫

Ω

|ρ(0)|2dx+

∫

Q

1

θ2
|ρ|2dxdt 6 C

(
∫

Q

|L∗ρ|2dxdt+

∫

G

|ρ|2dxdt
)

.

Now, we are going to state the adapted observability inequality. The

proof will require the two following lemmas.

Lemma 3.3. Assume (6). Let µ ∈ L∞(Q) and let ψj , 1 6 j 6 m, be

the solution of

(28)























−∂ψj
∂t

− ∆ψj + µψj = 0 in Q,

ψj = ej on Σ0,

ψj = 0 on Σ \ Σ0,

ψj(T ) = 0 in Ω.

Let ρ be a function in Span({ψ1χω, . . . , ψmχω}) satisfying

(29)







−∂ρ
∂t

− ∆ρ + µρ = 0 in Q,

ρ = 0 on Σ.

Then ρ is identically null on G.
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Proof. Let ρ be a function in Span({ψ1χω, . . . , ψmχω}) satisfying

(29). There exist γj ∈ R, 1 6 j 6 m, such that ρ =

m
∑

j=1

γjψjχω. Set

σ =
m
∑

j=1

γjψj . Then we have according to (28),







−∂σ
∂t

− ∆σ + µσ = 0 in Q,

σ =
∑m

j=1 γjejχΣ0 on Σ.

Since







−∂(σ − ρ)

∂t
− ∆(σ − ρ) + µ(σ − ρ) = 0 in Q,

σ − ρ = 0 in G,

we deduce that σ = ρ in Q. In particular σ|Σ = 0, which implies

that

m
∑

j=1

γjejχΣ0 = 0. From (6), we deduce that γj = 0 for all j ∈

{1, . . . , m}, then ρ = 0 in G.

Lemma 3.4 ([4, 6]). Let (H, (., .)H) be a Hilbert space. For n ∈ N
∗,

let {pn1, . . . , pnm} be a set of m linearly independent vectors of H and

let hn in the span of {pn1, . . . , pnm}. We assume that there exists a set

of linearly independent vectors {p1, . . . , pm} of H, such that

(30) pni → pi strongly in H for 1 6 i 6 m.

We also assume also that there exists a positive constant C such that

(31) ||hn||H 6 C,

where ||hn||H = (hn, hn)
1/2
H . Then we can extract a subsequence such

that

hn → h ∈ Span({p1, . . . , pm}) strongly in H.
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Proposition 3.5. There exists a positive constant C = C(Ω, ω,K, T )

such that for all z ∈ L2(Q) and ρ ∈ V,

∫

Ω

|ρ(0)|2dx+

∫

Q

1

θ2
|ρ|2dxdt 6 C

(
∫

Q

|L∗ρ|2dxdt+

∫

G

|ρ− Pρ|2dxdt
)

.

(32)

Proof. To prove (32), we argue by contradiction. If (32) does not

hold, then for any n ∈ N
∗, there exist a sequence zn of L2(Q) and a

sequence σn of V such that:
∫

Ω

|σn(0)|2dx+

∫

Q

1

θ2
|σn|2dxdt = 1,(33)

∫

Q

|L∗
nσn|2dxdt <

1

n
,(34)

∫

G

|σn − Pnσn|2dxdt <
1

n
,(35)

where L∗
nσn = −∂σn

∂t
− ∆σn + a0(zn)σn and Pn denotes the orthogonal

projection operator from L2(G) into U(zn) = Span({q1(zn)χω, . . . , qm(zn)χω}).

For any n ∈ N
∗, we have:

∫

G

1

θ2
|Pnσn|2dxdt 6 2

(

∫

G

1

θ2
|σn|2dxdt+

∫

G

1

θ2
|σn − Pnσn|2dxdt

)

.

The term

∫

G

1

θ2
|σn|2dxdt is bounded according to (33). Since

1

θ2
is

bounded, it follows from (35) that there exists a positive constant C

such that:
∫

G

1

θ2
|Pnσn|2dxdt 6 C.

Since Pnσn ∈ U(zn) and U(zn) is a finite dimensional vector subspace

of L2(G), we deduce that:

(36)

∫

G

|Pnσn|2dxdt 6 C.

But we have:
∫

G

|σn|2dxdt 6 2
(

∫

G

|Pnσn|2dxdt+

∫

G

|σn − Pnσn|2dxdt
)

.
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Using (35) and (36), we deduce that:

(37)

∫

G

|σn|2dxdt 6 C.

Consequently, there exist a subsequence of (σn)n (still denoted by

(σn)n) and σ ∈ L2(G) such that

(38) σn ⇀ σ weakly in L2(G).

Now in view of (33) and the definition of
1

θ
, we deduce that (σn)n is

bounded in L2((µ, T − µ) × Ω), ∀µ > 0. Extracting subsequences, we

can deduce that:

σn ⇀ σ weakly in L2((µ, T − µ) × Ω), ∀µ > 0.

Therefore,

(39) σn → σ in D′(Q).

Since for any z ∈ L2(Q), qj(z), 1 6 j 6 m is solution of (13) and

ej ∈ H1
0 (Σ), one can prove that qj(z) ∈ H2,1(Q).

Moreover there exists a positive constant C such that

(40) ||qj(zn)||H2,1(Q) 6 C||ej||H1
0 (Σ).

By extracting subsequences we may deduce that there exist ψj ∈
H2,1(Q) such that for j ∈ {1, . . . , m}

qj(zn) ⇀ ψj weakly in H2,1(Q).

As a consequence of the Aubin-Lions compactness Lemma, the injec-

tion from H2,1(Q) into L2(Q) is compact so that for 1 6 j 6 m

(41) qj(zn) → ψj strongly in L2(Q).

On the other hand, using (10), there exists a positive constant C =

C(T,Ω) such that

||a0(zn)||L2(Q) 6 C||a0(zn)||L∞(Q) 6 CK.

Consequently, there exist a subsequence of a0(zn) (still denoted by

a0(zn)) and µ ∈ L2(Q) such that

(42) a0(zn) ⇀ µ weakly in L2(Q).
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Therefore in view of (40)-(42), ψj , 1 6 j 6 m is solution of

(43)























−∂ψj
∂t

− ∆ψj + µψj = 0 in Q,

ψj |Σ0 = ej,

ψj |Σ\Σ0 = 0,

ψj(T ) = 0 in Ω.

Since Pnσn ∈ U(zn) and satisfies (36), we can apply Lemma 3.4 with

H = L2(G), pni = qj(zn)χω, hn = Pnσn. There exists g ∈ Span({ψ1χω, . . . , ψmχω})

such that

Pnσn → g strongly in L2(G).

On the other hand, it follows from (35) that

(44) σn − Pnσn → 0 strongly in L2(G).

We can deduce that

σn → g strongly in L2(G).

Hence from (38), we have:

(45) σn → σ = g strongly in L2(G).

We conclude that σχω ∈ Span({ψ1χω, . . . , ψmχω}).

Since L∗
n = ∂

∂t
− ∆ + a0(zn)I is weakly continuous in D′(Q), we have

according to (39) and (42),

L∗
nσn → −∂σ

∂t
− ∆σ + µσ in D′(Q).

But (34) implies that

(46) L∗
nσn → 0 strongly in L2(Q),

we deduce that −∂σ
∂t

− ∆σ + µσ = 0 in Q. Since σn ∈ V satisfies (37)

and (46), we can apply (25) to σn and deduce that σn is bounded in

L2(]µ, T − µ[;H2(Ω)), ∀µ > 0. Then for any µ > 0,

σn ⇀ σ weakly in L2(]µ, T − µ[×Γ).

Consequently,

σn → σ in D′(Σ).

Hence from σn|Σ = 0, we have

σ|Σ = 0.
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So σ satisfies σχω ∈ Span({ψ1χω, . . . , ψmχω}) and






−∂σ
∂t

− ∆σ + µσ = 0 in Q,

σ = 0 on Σ.

Using Lemma 3.3, we deduce that:

σ = 0 in G,

and (45) can be rewritten in the form

σn → 0 strongly in L2(G).

As (σn)n satisfies (27), then

∫

Ω

|σn(0)|2dx+

∫

Q

∣

∣

∣

∣

1

θ
σn

∣

∣

∣

∣

2

dxdt→ 0,

which is in contradiction with (33).

Let us now give a proposition that we will need to prove estimation

(9). The proof requires the following two lemmas:

Lemma 3.6. Assume (6). Let θ be the function given by Proposition

2.2. Let qj , 1 6 j 6 m and u0 respectively defined by system (13) and

(20). For any z ∈ L2(Q), set

Aθ(z) =

∫

G

1

θ
qi(z)qj(z)dxdt, 1 6 i, j 6 m.

Then there exists δ > 0 such that for any z ∈ L2(Q),

(Aθ(z)X(z), X(z))Rm > δ||X(z)||2
Rm,(47)

where X(z) = (X1(z), . . . , Xm(z)) ∈ R
m and

(Aθ(z)X(z), X(z))Rm =

∫

G

1

θ

(

m
∑

i=1

Xi(z)qi(z)
)(

m
∑

j=1

Xj(z)qj(z)
)

dxdt.

Proof. To prove (47), we argue by contradiction. If (47) does not

hold, then for any n ∈ N
∗, there exist a sequence (zn)n of L2(Q) and a

vector X(zn) = (X1(zn), . . . , Xm(zn)) of R
m such that

(Aθ(zn)X(zn), X(zn))Rm 6
1

n
||X(zn)||2

Rm.
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Set X̃(zn) =
X(zn)

||X(zn)||Rm

, then

||X̃(zn)||Rm =
(

m
∑

j=1

|X̃j(zn)|2
)1/2

= 1,(48)

(Aθ(zn)X̃(zn), X̃(zn))Rm 6
1

n
.(49)

Consequently, there exist subsequences of X̃j(zn), 1 6 j 6 m (still

denoted by X̃j(zn)) and X̃j ∈ R such that for 1 6 j 6 m,

(50) X̃j(zn) → X̃j in R.

Moreover,

(51) ||X̃||Rm =
(

m
∑

j=1

|X̃j|2
)

1
2

= 1.

Now let φ̃n =
∑m

j=1 X̃j(zn)qj(zn). Then from (40), (41), (50) and

Lemma 3.4, it follows that

φ̃n →
m
∑

j=1

X̃jψj := φ̃ strongly in L2(Q).

But we deduce from (49) that
∫

G

1

θ
|φ̃n|2dxdt = (Aθ(zn)X̃(zn), X̃(zn))Rm 6

1

n
,

so

∫

G

1

θ
|φ̃|2dxdt = 0 and φ̃ = 0 in G.

Since ψj , 1 6 j 6 m is solution of (43), φ̃ satisfies:






−∂φ̃
∂t

− ∆φ̃+ µφ̃ = 0 in Q,

φ̃|Σ0 =
∑m

j=1 X̃jej .

We deduce that φ̃ = 0 in Q, which implies that
∑m

j=1 X̃jej = 0 on Σ0.

In view of assumption (6), X̃j = 0 for all j ∈ {1, . . . , m}, which is in

contradiction with (51).

Proposition 3.7. Let θ be the function given by Proposition 2.2, and

let qj , 1 6 j 6 m and u0 respectively defined by system (13) and (20).
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Then there exists a positive constant C = C(Ω, ω,K, T,
∑m

j=1 ||ej||H1
0 (Σ))

such that for any z ∈ L2(Q),

||u0(z)||L2(G) 6 C||y0||L2(Ω),(52)

||θu0(z)||L2(G) 6 C||y0||L2(Ω).

Proof. In view of (20), we have for any z ∈ L2(Q),

(53)

∫

G

u0(z)qj(z)dxdt = −
∫

Ω

y0qj(z)(0)dx, 1 6 j 6 m.

Since u0(z) ∈ Uθ(z), there exists α(z) = (α1(z), . . . , αm(z)) ∈ R
m such

that

(54) u0(z) =

m
∑

i=1

αi(z)
1

θ
qi(z)χω.

So (53) can be rewritten in the form

∫

G

m
∑

i=1

αi(z)
1

θ
qi(z)qj(z)dxdt = −

∫

Ω

y0qj(z)(0)dx, 1 6 j 6 m.

Therefore,

(55)
∫

G

1

θ

(

m
∑

i=1

αi(z)qi(z)
)(

m
∑

j=1

αj(z)qj(z)
)

dxdt = −
∫

Ω

y0
m
∑

j=1

αj(z)qj(z)(0)dx.

Now applying Lemma 3.6 to the left-hand-side of (55), we get

δ||α(z)||2
Rm 6 −

∫

Ω

y0

m
∑

j=1

αj(z)qj(z)(0)dx.

Using the Cauchy-Schwarz inequality for the right-hand-member of the

latter identity, it follows that

(56) δ||α(z)||2
Rm 6 ||y0||L2(Ω)

m
∑

j=1

|αj(z)|.||qj(z)(0)||L2(Ω).

Since qj is solution of (13) for 1 6 j 6 m, we have in addition to (40),

the following energy inequality,

||qj(z)(0)||L2(Ω) 6 C||ej||H1
0 (Σ).
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Consequently, we obtain according to (56),

||α(z)||2
Rm 6 δ−1C||y0||L2(Ω)||α(z)||Rm

(

m
∑

j=1

||ej||2H1
0 (Σ)

)
1
2

.

Moreover, if follows from (54) that for any z ∈ L2(Q),

||u0(z)||L2(G) 6

∣

∣

∣

∣

∣

∣

∣

∣

1

θ

∣

∣

∣

∣

∣

∣

∣

∣

L∞(Q)

||α(z)||Rm

(

m
∑

i=1

||qi(z)||2L2(G)

)
1
2

,

||θu0(z)||L2(G) 6 ||α(z)||Rm

(

m
∑

i=1

||qi(z)||2L2(G)

)
1
2

.

Hence

||u0(z)||L2(G) 6

∣

∣

∣

∣

∣

∣

∣

∣

1

θ

∣

∣

∣

∣

∣

∣

∣

∣

L∞(Q)

δ−1C||y0||L2(Ω)

(

m
∑

i=1

||ej||2H1
0 (Σ)

)
1
2

,

||θu0(z)||L2(G) 6 δ−1C||y0||L2(Ω)

(

m
∑

i=1

||ej||2H1
0 (Σ)

)
1
2

,

which ends the proof of the Proposition.

4. Null controllability of the linearized system

We begin by proving the existence of a solution for problem (16),

(17), (18).

We define on V × V the following symmetric bilinear form:

(57) b(ρ, σ) =

∫

Q

L∗ρL∗σdxdt+

∫

G

(ρ− Pρ)(σ − Pσ)dxdt.

In view of Proposition 3.5, this bilinear form is an inner product on V.

Let V = V be the completion of the pre-Hilbert space V with respect

to the norm

(58) b(ρ, ρ) =

(
∫

Q

|L∗ρ|2dxdt +

∫

G

|ρ− Pρ|2dxdt
)

1
2

.

The completion V of V is a Hilbert space.

Lemma 4.1. For any ρ ∈ V , let

L(ρ) =

∫

Q

u0χωρdxdt +

∫

Ω

y0ρ(0)dx.

EJQTDE, 2012 No. 95, p. 16



Then for any z ∈ L2(Q), there exists a unique ρθ = ρθ(z) ∈ V such

that

b(ρθ, σ) = L(σ) ∀σ ∈ V,

in other words,

(59)

∫

Q

L∗ρθL
∗σdxdt+

∫

G

(ρθ − Pρθ)(σ − Pσ)dxdt =

∫

Q

u0χωσdxdt

+

∫

Ω

y0σ(0)dx, ∀σ ∈ V.

Proof. According to the Cauchy-Schwarz inequality, the bilinear

form b(., .) is continuous on V × V and by definition, it is coercive on

V . Moreover for every σ ∈ V , it follows from (32) that, the linear form

L is continuous on V . Therefore in view of the Lax-Milgram Theorem,

for any z ∈ L2(Q), there exists a unique ρθ ∈ V such that for all σ ∈ V ,

we have:

b(ρθ, σ) = L(σ),

and the proof of Lemma 4.1 is complete.

Proposition 4.2. For any y0 ∈ L2(Ω) and z ∈ L2(Q), let ρθ be the

unique solution of (59). We set

(60) uθ = −(ρθ − Pρθ)χω,

(61) yθ = L∗ρθ.

Then (uθ, yθ) is solution of the controllability problem (16), (17), (18).

Moreover there exists a positive constant C = C(Ω, ω,K, T,
∑m

j=1 ||ej||H1
0 (Σ))

such that:

(62) ||ρθ||V 6 C||y0||L2(Ω),

(63) ||uθ||L2(G) 6 C||y0||L2(Ω),

(64) ||yθ||L2(Q) 6 C||y0||L2(Ω).
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Proof. On the one hand, since ρθ ∈ V , we have uθ ∈ L2(G) and

yθ ∈ L2(Q). On the other hand, since Pρθ ∈ U , uθ ∈ U⊥. Replacing

−(ρθ − Pρθ)χω and L∗ρθ respectively by uθ and yθ in (59), we get:

(65)
∫

Q

yθL
∗σdxdt−

∫

G

uθ(σ − Pσ)dxdt =

∫

Q

u0χωσdxdt+

∫

Ω

y0σ(0)dx,

for any σ ∈ V . In particular for φ ∈ D(Q), we obtain:

(66) 〈yθ, L∗φ〉D ′(Q),D(Q) − 〈uθχω, φ〉D ′(Q),D(Q) = 〈u0χω, φ〉D ′(Q),D(Q).

We deduce that

(67) Lyθ = (u0 + uθ)χω in Q.

As yθ ∈ L2(Q) = L2(0, T ;L2(Ω)), we have on the one hand ∂yθ

∂t
∈

H−1(0, T ;L2(Ω)), and from (67),

∆yθ =
∂yθ

∂t
+ a0yθ − (u0 + uθ)χω ∈ H−1(0, T ;L2(Ω))

since a0yθ − (u0 + uθ)χω ∈ L2(Q). Therefore, yθ|Σ and
∂yθ

∂ν

∣

∣

∣

Σ
exist and

belong respectively to H−1(0, T ;H− 1
2 (Γ)) and H−1(0, T ;H− 3

2 (Γ)) (see

[9]).

On the other hand, ∆yθ ∈ L2(0, T ;H−2(Ω)) and from (67), we have:

∂yθ

∂t
= ∆yθ − a0yθ + (u0 + uθ)χω ∈ L2(0, T ;H−2(Ω)).

Consequently, t 7→ yθ(x, t) is continuous from [0, T ] into H−1(Ω), which

means that yθ(T ) and yθ(0) are well defined in H−1(Ω) (see [9]).

Multiplying (67) by φ ∈ C∞(Q) then integrating by parts over Q yield:

(68) 〈yθ(T ), φ(T )〉H−1(Ω),H1
0 (Ω) − 〈yθ(0), φ(0)〉H−1(Ω),H1

0 (Ω)

−〈∂yθ
∂ν

, φ〉
H−1(0,T ;H−

3
2 (Γ)),H1

0 (0,T ;H
3
2 (Γ))

+〈yθ,
∂φ

∂ν
〉
H−1(0,T ;H−

1
2 (Γ)),H1

0 (0,T ;H
1
2 (Γ))

+

∫

Q

yθL
∗φdxdt =

∫

Q

u0χωφdxdt+

∫

G

uθφdxdt.

In particular for φ such that φ = 0 on Σ, we have according to (65),

〈yθ(T ), φ(T )〉H−1(Ω),H1
0 (Ω) − 〈yθ(0), φ(0)〉H−1(Ω),H1

0 (Ω)

+ 〈yθ,
∂φ

∂ν
〉
H−1(0,T ;H−

1
2 (Γ)),H1

0 (0,T ;H
1
2 (Γ))

+

∫

Ω

y0φ(0)dx = 0,
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which is equivalent to

〈yθ(T ), φ(T )〉H−1(Ω),H1
0 (Ω) + 〈y0 − yθ(0), φ(0)〉H−1(Ω),H1

0 (Ω)

+ 〈yθ,
∂φ

∂ν
〉
H−1(0,T ;H−

1
2 (Γ)),H1

0 (0,T ;H
1
2 (Γ))

= 0.

Choosing successively φ such that φ(T ) = φ(0) = 0 in Ω, then φ(0) = 0

in Ω, we conclude that:










yθ = 0 on Σ,

yθ(T ) = 0 in Ω,

yθ(0) = y0 in Ω.

We deduce that (uθ, yθ) is solution of (16), (17), (18).

Now let us take σ = ρθ in (59), we have

(69) ||yθ||2L2(Q) + ||uθ||2L2(G) =

∫

Q

u0χωρθdxdt+

∫

Ω

y0ρθ(0)dx,

which according to the definition of the norm in V given by (58), is

equivalent to

(70) ||ρθ||2V =

∫

Q

u0χωρθdxdt+

∫

Ω

y0ρθ(0)dx.

Therefore, it follows from the Cauchy-Schwarz inequality and (32) that

||ρθ||2V 6 C(||θu0χω||L2(Q) + ||y0||L2(Ω))||ρθ||V .(71)

Applying Proposition 3.7, (71) can be reduced to (62). (63) and (64)

follow from (69) and (70).

Proposition 4.3. For any z ∈ L2(Q), there exists a unique control

û = û(z) such that

||û||L2(G) = min{||u||L2(G), u ∈ F}

where F = {u = u(z) ∈ L2(G); (u, y) satisfies (16), (17), (18)}. More-

over, there exists a positive constant C = C(Ω, ω,K, T,
∑m

j=1 ||ej||H1
0 (Σ))

such that

(72) ||û||L2(G) 6 C||y0||L2(Ω).
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Proof. Proposition 4.2 guarantees that the set F is non empty.

Since F is a closed convex subset of L2(G), we deduce the existence

and the uniqueness of the optimal control û. Therefore

||û||L2(G) 6 ||uθ||L2(G) 6 C||y0||L2(Ω).

We now arrive at the main result of this section.

Theorem 4.4. Assume (6). Then for any z ∈ L2(Q), there exists a

unique control ũ = ũ(z) of minimal norm in L2(G) such that (ũ, ỹ) is

solution of the null controllability problem with constraint on the control

(16), (17), (18). Furthermore, the control ũ is given by

(73) ũ = ρ̃χω − P ρ̃,

where ρ̃ = ρ̃(z) satisfies

(74)

{

L∗ρ̃ = 0 in Q,

ρ̃|Σ = 0.

Moreover, there exists a positive constant C = C(Ω, ω,K, T,
∑m

j=1 ||ej ||H1
0 (Σ))

such that

||ρ̃||V 6 C||y0||L2(Ω),(75)

||ρ̃||L2(G) 6 C||y0||L2(Ω).(76)

Proof. We divide the proof into three steps.

Step 1: Let ε > 0 and z ∈ L2(Q), and let A be given by

A = {(u, y); u = u(z) ∈ U⊥, y = y(z) ∈ L2(Q), Ly ∈ L2(Q), y|Σ = 0, y(T ) = 0

in Ω and y(0) = y0 in Ω}.

For every pair (u, y) of A, we define the functional

(77) Jε(u, y) =
1

2
||u||2L2(G) +

1

2ε
||Ly − (u0 + u)χω||2L2(Q),

and we consider the optimal control problem:

(78) inf{Jε(u, y)|(u, y) ∈ A}.

We show that for every ε > 0, problem (78) has a unique solution.

Indeed, since (uθ, yθ) ∈ A, A 6= ∅ and Jε is bounded from below (by
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0), we deduce that inf{Jε(u, y); (u, y) ∈ A} := Iε exists. Let (un, yn) =

(u(zn), y(zn)) be a minimising sequence of A, so ∃n0 ∈ N, ∀n > n0,

(79) Iε 6 Jε(un, yn) < Iε +
1

n
.

But we have

(80) Iε 6 Jε(uθ, yθ) =
1

2
||uθ||2L2(G).

Consequently in view of (79), (80) and (63), there exists a positive

constant C = C(Ω, ω,K, T,
∑m

j=1 ||ej||H1
0 (Σ0)) such that Jε(un, yn) <

C2||y0||2L2(Ω). Due to (77), we have

||un||L2(G) 6 C||y0||L2(Ω),(81)

||Lnyn − (u0 + un)χω||L2(Q) 6 C
√
ε||y0||L2(Ω),(82)

with Ln = ∂
∂t
−∆+a0(zn)I. Combining (81) and (82), we have accord-

ing to (52),

(83) ||Lnyn||L2(Q) 6 C
√
ε||y0||L2(Ω).

It follows from (81) and (83) that there exist a subsequence of (un)

(still denoted by (un)), a subsequence of (yn) (still denoted by (yn)),

uε = uε(z) ∈ L2(G) and ξε ∈ L2(Q) such that

un ⇀ uε weakly in L2(G),(84)

Lnyn ⇀ ξε weakly in L2(Q),(85)

and we have uε ∈ U⊥ which is a closed vector subspace of L2(G). Let

W (0, T ) be defined by

W (0, T ) = {φ ∈ L2(0, T ;H1
0(Ω)),

∂φ

∂t
∈ L2(0, T ;H−1(Ω))}.

Since (un, yn) ∈ A, we have yn ∈ W (0, T ) and due to (83) and the

regularizing effect of the heat equation, we can write:

(86) ||yn||W (0,T ) 6 C
√
ε||y0||L2(Ω).

So there exist a subsequence of (yn) (still denoted by (yn)) and yε =

yε(z) ∈W (0, T ) such that

yn ⇀ yε weakly in W (0, T ).(87)

But for any φ ∈ D(Q), we have:

〈Lnyn, φ〉D ′(Q),D(Q) = 〈yn, L∗
nφ〉D ′(Q),D(Q),
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with L∗
n = − ∂

∂t
− ∆ + a0(zn)I. Passing to the limit n → +∞ in the

latter equality, we get using (85), (87) and (42):

(88)

〈ξε, φ〉D ′(Q),D(Q) = 〈yε,−
∂φ

∂t
−∆φ+µφ〉D ′(Q),D(Q) = 〈∂yε

∂t
−∆yε+µyε, φ〉D ′(Q),D(Q).

Thus ∂yε

∂t
− ∆yε + µyε = ξε and (85) can be rewritten in the form:

(89) Lnyn ⇀
∂yε

∂t
− ∆yε + µyε weakly in L2(Q).

Since ∂yε

∂t
−∆yε +µyε ∈ L2(Q) and yε ∈ L2(0, T ;H1

0(Ω)), we can define

as in page 18, yε|Σ in H−1(0, T,H− 1
2 (Γ)),

∂yε

∂ν

∣

∣

∣

Σ
in H−1(0, T,H− 3

2 (Γ)),

yε(0) and yε(T ) in H−1(Ω).

Now let φ ∈ C∞(Q) be such that φ|Σ = 0. Using Green’s Formula, we

have
∫

Q

(Lnyn)φdxdt = −
∫

Ω

y0φ(0)dx+

∫

Q

yn(L∗
nφ)dxdt.

In view of (89), (87) and (42), we can pass to the limit n→ +∞ in the

previous relation:

∫

Q

(∂yε

∂t
− ∆yε + µyε

)

φdxdt = −
∫

Ω

y0φ(0)dx+

∫

Q

yε

(

− ∂φ

∂t
− ∆φ+ µφ

)

dxdt

= −
∫

Ω

y0φ(0)dx− 〈yε(T ), φ(T )〉H−1(Ω),H1
0 (Ω)

+ 〈yε(0), φ(0)〉H−1(Ω),H1
0 (Ω)

− 〈yε,
∂φ

∂ν
〉H−1(0,T,H−1/2(Γ)),H1

0 (0,T,H1/2(Γ))

+

∫

Q

(∂yε

∂t
− ∆yε + µyε

)

φdxdt,

∀φ ∈ C∞(Q) such that φ|Σ = 0.

Hence,

〈yε(0) − y0, φ(0)〉H−1(Ω),H1
0 (Ω) − 〈yε(T )φ(T )〉H−1(Ω),H1

0 (Ω)

− 〈yε,
∂φ

∂ν
〉H−1(0,T,H−1/2(Γ)),H1

0 (0,T,H1/2(Γ)) = 0, ∀φ ∈ C∞(Q)

such that φ|Σ = 0.
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Choosing successively φ such that φ(0) = φ(T ) = 0 in Ω, then φ(T ) = 0

in Ω, we find that yε satisfies:

(90)











yε|Σ = 0,

yε(0) = y0 in Ω,

yε(T ) = 0 in Ω.

Consequently (uε, yε) ∈ A. J being lower semicontinuous, we have

Jε(uε, yε) 6 lim
n→+∞

Jε(un, yn) = Iε.

Therefore Jε(uε, yε) = Iε; the uniqueness is the consequence of the

strict convexity of Jε.

Step 2: We give the optimality system which characterizes the

optimal solution of problem (78). The Euler-Lagrange optimality con-

ditions which characterize (uε, yε) are given by:

d

dµ
Jε(uε + µu, yε)|µ=0 = 0, ∀u ∈ U⊥,

d

dµ
Jε(uε, yε + µφ)|µ=0 = 0, ∀φ ∈ C∞(Q)

such that φ|Σ = 0, φ(0) = φ(T ) = 0 in Ω.

After some calculations, we have
∫

G

uεudxdt−
1

ε

∫

Q

(

Lyε − (u0 + uε)χω

)

uχωdxdt = 0, ∀u ∈ U⊥,(91)

1

ε

∫

Q

(

Lyε − (u0 + uε)χω

)

Lφdxdt = 0, ∀φ ∈ C∞(Q)(92)

such that φ|Σ = 0, φ(0) = φ(T ) = 0 in Ω.

Set ρε =
1

ε

(

Lyε− (u0 +uε)χω

)

. Then ρε = ρε(z) ∈ L2(Q) and we have

Lyε = (u0 + uε)χω + ερε in Q,

which in addition to (90), gives:

(93)



















Lyε = (u0 + uε)χω + ερε in Q,

yε|Σ = 0,

yε(0) = y0 in Ω,

yε(T ) = 0 in Ω.
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Replacing
1

ε

(

Lyε − (u0 + uε)χω

)

by ρε in (91) and (92) yields,

∫

G

uεudxdt−
∫

Q

ρεuχωdxdt = 0, ∀u ∈ U⊥,(94)

∫

Q

ρεLφdxdt = 0, ∀φ ∈ C∞(Q)(95)

such that φ|Σ = 0, φ(0) = φ(T ) = 0 in Ω.

Relation (94) is equivalent to

∫

G

(uε − ρε)udxdt = 0, ∀u ∈ U⊥, hence

uε − ρεχω ∈ U . We deduce that uε − ρεχω = P (uε − ρεχω) and since

uε ∈ U⊥, we can write uε = ρεχω − Pρε.

Relation (95) holds in particular for φ ∈ D(Q),

〈ρε, Lφ〉D ′(Q),D(Q) = 〈L∗ρε, φ〉D ′(Q),D(Q) = 0.

Consequently,

(96) L∗ρε = 0 in Q.

Since L∗ρε ∈ L2(Q) and ρε ∈ L2(Q), we can define as in page 18, ρε|Σ
in

H−1(0, T,H− 1
2 (Γ)),

∂ρε

∂ν

∣

∣

∣

Σ
in H−1(0, T,H− 3

2 (Γ)), ρε(0) and ρε(T ) in

H−1(Ω).

Multiplying (96) by φ ∈ C∞(Q), then integrating by parts over Q, we

have:

− 〈ρε(T ), φ(T )〉H−1(Ω),H1
0 (Ω) + 〈ρε(0), φ(0)〉H−1(Ω),H1

0 (Ω)(97)

−〈∂ρε
∂ν

, φ〉
H−1(0,T ;H−

3
2 (Γ)),H1

0 (0,T ;H
3
2 (Γ))

+ 〈ρε,
∂φ

∂ν
〉
H−1(0,T,H−

1
2 (Γ)),H1

0 (0,T,H
1
2 (Γ))

+

∫

Q

ρεLφdxdt = 0.

Choosing φ such that φ|Σ = 0, φ(0) = φ(T ) = 0 in Ω, and using (95),

relation (97) can be rewritten in the form:

〈ρε,
∂φ

∂ν
〉
H−1(0,T,H−

1
2 (Γ)),H1

0 (0,T,H
1
2 (Γ))

= 0, for any function φ ∈ C∞(Q) such

that φ|Σ = 0, φ(0) = φ(T ) = 0 in Ω,

and we conclude that ρε|Σ = 0.
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In summary, we have proved that (uε, yε) is the optimal solution

of (78) if and only if there exists a function ρε such that the triplet

(uε, yε, ρε) satisfies the following optimality system:

(98) uε = ρεχω − Pρε

(99)



















Lyε = (u0 + uε)χω + ερε in Q,

yε|Σ = 0,

yε(0) = y0 in Ω,

yε(T ) = 0 in Ω,

(100)

{

L∗ρε = 0 in Q,

ρε|Σ = 0.

Step 3: We establish some useful estimates and we end the proof

of the main theorem.

From (81), (82), (84) and (89), there exists a positive constant

C = C(Ω, ω,K, T,
∑m

j=1 ||ej||H1
0 (Σ)) such that:

(101) ||uε||L2(G) 6 C||y0||L2(Ω),

(102) ||Lyε − (u0 + uε)χω||L2(Q) 6 C
√
ε||y0||L2(Ω).

Relation (102) and the fact that yε is solution of (99) imply:

(103) ||yε||W (0,T ) 6 C||y0||L2(Ω).

In view of (98), it follows from (101) that:

(104) ||ρεχω − Pρε||L2(G) 6 C||y0||L2(Ω),

and since ρε satisfies (100),

(105) ||ρε||V 6 C||y0||L2(Ω).

Now applying inequality (32) to ρε yields,
∣

∣

∣

∣

∣

∣

1

θ
ρε

∣

∣

∣

∣

∣

∣

L2(Q)
6 C||y0||L2(Ω).

We have
∣

∣

∣

∣

∣

∣

1

θ
Pρε

∣

∣

∣

∣

∣

∣

L2(G)
6

∣

∣

∣

∣

∣

∣

1

θ
(ρεχω − Pρε)

∣

∣

∣

∣

∣

∣

L2(G)
+
∣

∣

∣

∣

∣

∣

1

θ
ρεχω

∣

∣

∣

∣

∣

∣

L2(G)
and

since
1

θ
∈ L∞(Q), then

∣

∣

∣

∣

∣

∣

1

θ
Pρε

∣

∣

∣

∣

∣

∣

L2(G)
6 C||y0||L2(Ω).
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Since Pρε ∈ U and U is a finite dimensional vector subspace of L2(G),

we deduce that:

(106) ||Pρε||L2(G) 6 C||y0||L2(Ω).

Using again (104), we obtain

(107) ||ρε||L2(G) 6 C||y0||L2(Ω).

By extracting subsequences, we have according to (101), (103), (105),

(106) and (107),

uε ⇀ ũ = ũ(z) weakly in L2(G),(108)

yε ⇀ ỹ = ỹ(z) weakly in W (0, T ),(109)

ρε ⇀ ρ̃ = ρ̃(z) weakly in V,(110)

Pρε ⇀ ν̃ = ν̃(z) weakly in L2(G),(111)

ρε ⇀ ρ̃ weakly in L2(G),(112)

and so ũ ∈ U⊥, ν̃ ∈ U .

Since the injection from W (0, T ) into L2(Q) is compact, (ũ, ỹ) is solu-

tion of the null controllability problem with constraint on the control

(16), (17), (18).

We know, based on Proposition 4.3, that there exists a unique control

û of minimal norm in L2(G), such that problem (16), (17), (18) holds.

So, we have
1

2
||û||2L2(G) 6

1

2
||ũ||2L2(G).

Now, let ŷ be the solution of (17) corresponding to û; then we have

∂ŷ

∂t
− ∆ŷ + a0(z)ŷ = (u0 + û)χω in Q.

(uε, yε) being the optimal solution of (78), we have:

(113)
1

2
||uε||2L2(G) 6 Jε(uε, yε) 6 Jε(û, ŷ) =

1

2
||û||2L2(G).

But because of (108), we can also write:

(114)
1

2
||ũ||2L2(G) 6 lim inf

ε→0

1

2
||uε||2L2(G),

and we deduce that ũ = û.

In view of (114), (113) and (72), the following estimate holds:

(115) ||ũ||L2(G) 6 C||y0||L2(Ω),
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where C = C(Ω, ω,K, T,
∑m

j=1 ||ej||H1
0 (Σ)) is a positive constant.

On the other hand, ρε satisfying (100), it follows from (110) that,
{

L∗ρ̃ = 0 in Q,

ρ̃|Σ = 0.

Furthemore, (104) implies that

ρεχω − Pρε ⇀ ς̃ weakly in L2(G),

so ς̃ = ς̃(z) ∈ U⊥ and in view of (111) and (112), ρ̃ = ν̃ + ς̃. We

conclude that ν̃ = P ρ̃ and

ρεχω − Pρε ⇀ ρ̃− P ρ̃ weakly in L2(G).

(75) and (76) are consequences of (105), (107), (110) and (112), which

establishes Theorem 4.4.

5. Proof of Theorem 1.1

For any z ∈ L2(Q), we showed that there exists a unique control

ũ = ũ(z) such that (ũ, ỹ(ũ)) satisfies (16), (17), (18). Therefore in view

of Proposition 2.2, there exists a unique control ṽ = ṽ(z) satisfying

(116) ṽ = (u0 + ũ)χω,

solution of the null controllability problem with constraint on the nor-

mal derivative (12), (7), (8). As a consequence of (116), (115) and (52),

we have

(117) ||ṽ||L2(G) 6 C||y0||L2(Ω).

Thus, we have built a non-linear mapping

S : L2(Q) → L2(Q)

z 7→ S(z) = ỹ(ṽ)

where ỹ(ṽ) is the solution of (12) corresponding to the control ṽ =

(u0 + ũ)χω, with u0 ∈ Uθ and ũ ∈ U⊥ is defined by (73) and (74).

The problem is then reduced to finding a fixed point of S. Indeed,

if z ∈ L2(Q) is such that S(z) = ỹ(ṽ) = z, the solution ỹ of (12) is

actually solution of (11). Then, the control ṽ is the one we were looking

for, since by construction, ỹ(ṽ) satisfies (7) and (8).

In order to conclude the existence of a fixed point of S, we can use
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Schauder’s fixed point Theorem. So it is sufficient to check the following

three properties:

S is continuous,

S is compact,

the range of S is bounded, i.e. ∃R > 0; ||S(z)||L2(Q) 6 R, ∀z ∈ L2(Q).

5.1. Continuity of S. We divide the proof into five steps.

Step 1: Let (zn)n be a sequence of L2(Q) and assume that zn →
z strongly in L2(Q). Then there exists a subsequence (znk

)k such that

znk
(x) → z(x) almost everywhere in Q. f being a function of class C1,

the function a0 is continuous and is such that

a0(znk
(x)) → a0(z(x)) almost everywhere in Q.

In view of (10), we have |a0(znk
(x))| 6 K and as a consequence of

Lebesgue’s Theorem,

(118) a0(znk
) → a0(z) strongly in L2(Q).

Step 2: The control ṽnk
= ṽ(znk

) is such that the solution ỹnk
=

ỹ(ṽnk
) of

(119)











∂ỹnk

∂t
− ∆ỹnk

+ a0(znk
)ỹnk

= ṽnk
χω in Q,

ỹnk
|Σ = 0,

ỹnk
(0) = y0 in Ω,

satisfies

(120) 〈∂ỹnk

∂ν
, ej〉H−1(Σ0),H1

0 (Σ0) = 0; j = 1, . . . , m,

and

(121) ỹnk
(T ) = 0 in Ω.

Moreover, ṽnk
is given by

(122) ṽnk
= (u0(znk

) + ũnk
)χω,

where on the one hand, u0(znk
) ∈ Uθ(znk

) = Span({1
θ
q1(znk

)χω, . . . ,
1
θ
qm(znk

)χω})

satisfies in view of (20),
∫

G

u0(znk
)qj(znk

)dxdt = −
∫

Ω

y0qj(znk
)(0)dx,(123)
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with qj(znk
) solution of

(124)






















−∂qj(znk
)

∂t
− ∆qj(znk

) + a0(znk
)qj(znk

) = 0 in Q,

qj(znk
) = ej on Σ0,

qj(znk
) = 0 on Σ \ Σ0,

qj(znk
)(T ) = 0 in Ω.

On the other hand, ũnk
= ũ(znk

) is given by

(125) ũnk
= ρ̃(znk

)χω − Pnk
ρ̃(znk

),

where ρ̃(znk
) ∈ V solves

(126)

{

∂ρ̃(znk
)

∂t
− ∆ρ̃(znk

) + a0(znk
)ρ̃(znk

) = 0 in Q,

ρ̃(znk
)|Σ = 0,

and Pnk
denotes the orthogonal projection operator from L2(G) into

U(znk
) = Span({q1(znk

)χω, . . . qm(znk
)χω}). Furthermore, in view of

(75), (76), (52), (115) and (117), there exists a positive constant C =

C(Ω, ω,K, T,
∑m

j=1 ||ej||H1
0 (Σ)) such that

||ρ̃(znk
)||V 6 C||y0||L2(Ω),(127)

||ρ̃(znk
)||L2(G) 6 C||y0||L2(Ω),(128)

||u0(znk
)||L2(G) 6 C||y0||L2(Ω),(129)

||θu0(znk
)||L2(G) 6 C||y0||L2(Ω),(130)

||ũnk
||L2(G) 6 C||y0||L2(Ω),(131)

||ṽnk
||L2(G) 6 C||y0||L2(Ω).(132)

By extracting subsequences, we may deduce that

ρ̃(znk
) ⇀ ρ weakly in V,(133)

ρ̃(znk
) ⇀ ρ weakly in L2(G),(134)

u0(znk
) ⇀ x weakly in L2(G),(135)

θu0(znk
) ⇀ x1 weakly in L2(G),(136)

ũnk
⇀ u weakly in L2(G),(137)

and so u ∈ U . Hence from (122), we have

(138) ṽnk
⇀ (x + u)χω = vχω weakly in L2(Q).
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Step 3: Since ỹnk
solves (119), we have according to (132),

(139) ||ỹnk
||W (0,T ) 6 C||y0||L2(Ω),

where C = C(Ω, ω,K, T,
∑m

j=1 ||ej||H1
0 (Σ)) . On the one hand, we de-

duce that
∣

∣

∣

∣

∣

∣

∣

∣

∂ỹnk

∂ν

∣

∣

∣

∣

∣

∣

∣

∣

H−1(Σ)

6 C||y0||L2(Ω),

on the other hand, by Aubin-Lions compactness Lemma, it follows that

(140) ỹnk
→ y strongly in L2(Q).

Therefore, using (118), (138), (139) and (140), we can pass to the limit

k → +∞ in (119), (120) and (121) and we obtain that (v, y = y(v))

satisfies










∂y
∂t

− ∆y + a0(z)y = vχω in Q,

y|Σ = 0,

y(0) = y0 in Ω,

〈∂y
∂ν
, ej〉H−1(Σ0),H1

0 (Σ0) = 0; j = 1, . . . , m,

and

y(T ) = 0 in Ω.

Step 4: qj(znk
) being solution of (124), we have in view of (40),

(141) ||qj(znk
)||H2,1(Q) 6 C||ej||H1

0 (Σ),

and once again, by Aubin-Lions compactness Lemma, it follows that

for j ∈ {1, . . . , m},

(142) qj(znk
) → ψj strongly in L2(Q).

Moreover, we also have the following energy inequality

(143) ||qj(znk
)(0)||L2(Ω) 6 C||ej||H1

0 (Σ).

Passing to the limit k → +∞ on (124), we obtain according to (118),

(141) and (142),






















−∂ψj
∂t

− ∆ψj + a0(z)ψj = 0 in Q,

ψj |Σ0 = ej ,

ψj |Σ\Σ0 = 0,

ψj(T ) = 0 in Ω.
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Thus for each ej , 1 6 j 6 m, ψj solves (13). From (143), we get for

j ∈ {1, . . . , m}
(144) qj(znk

)(0) ⇀ ψj(0) weakly in L2(Ω).

The uniqueness of the solution of (13) implies that forall j ∈ {1, . . . , m},

(145) ψj(z) = qj(z).

Step 5: Since θu0(znk
) ∈ U(znk

) and (130), (142), (145) and (136)

hold, we can apply Lemma 3.4 with H = L2(G), hn = θu0(znk
), pni =

qj(znk
), pi = qj , we deduce that there exist αj ∈ R, 1 6 j 6 m such

that

θu0(znk
) → x1 =

m
∑

j=1

αjqj strongly in L2(G).

Then, using (135) and the fact that 1
θ

is bounded in L∞(Q),

(146) u0(znk
) =

1

θ
θu0(znk

) → x =
1

θ

m
∑

j=1

αjqj strongly in L2(G).

In view of (146), (142), (144) and (145) , we can pass to the limit

k → +∞ in (123),
∫

G

xqj(z)dxdt = −
∫

Ω

y0qj(z)(0)dx, 1 6 j 6 m.

The function u0 ∈ Uθ given by (20) being unique, we conclude that

(147) u0 = x.

Since ũnk
∈ U(znk

)⊥, we have
∫

G

ũnk
qj(znk

)dxdt = 0, 1 6 j 6 m.

Passing to the limit k → +∞ in the latter identity, we obtain according

to (137), (142) and (145),
∫

G

uqj(z)dxdt = 0, 1 6 j 6 m.

We deduce that u ∈ U⊥.

Since ρ̃(znk
) ∈ V satisfies (126) and (128), we can apply (25) to ρ̃(znk

)

and deduce that ρ̃(znk
) is bounded in L2(]β, T − β[;H2(Ω)), ∀β > 0.

Then for any β > 0,

ρ̃(znk
) ⇀ ρ weakly in L2(]β, T − β[×Ω),
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ρ̃(znk
) ⇀ ρ weakly in L2(]β, T − β[×Γ).

Consequently,

ρ̃(znk
) → ρ in D′(Q),

ρ̃(znk
) → ρ in D′(Σ).

Therefore,

−∂ρ̃(znk
)

∂t
−∆ρ̃(znk

)+a0(znk
)ρ̃(znk

) ⇀ L∗ρ = −∂ρ
∂t

−∆ρ+a0(z)ρ weakly in D′(Q).

Hence from (126), we have
{

L∗ρ = 0 in Q,

ρ|Σ = 0.

Using (125) and (131), there exists a positive constant

C = C(Ω, ω,K, T,
∑m

j=1 ||ej||H1
0 (Σ)) such that

(148) ||ρ̃(znk
)χω − Pnk

ρ̃(znk
)||L2(G) 6 C||y0||L2(Ω).

Now applying (32) to ρ̃(znk
), we get

(149)

∣

∣

∣

∣

∣

∣

∣

∣

1

θ
ρ̃(znk

)

∣

∣

∣

∣

∣

∣

∣

∣

L2(Q)

6 C||y0||L2(Ω).

Arguing as in the proof of Proposition 3.5, we deduce from (148) and

(149) that

(150) ||Pnk
ρ̃(znk

)||L2(G) 6 C||y0||L2(Ω).

Consequently, Pnk
ρ̃(znk

) being in U(znk
), we can apply Lemma 3.4 with

H = L2(G), hn = Pnk
ρ̃(znk

), pni = qj(znk
), pi = qj , according to (142),

(145) and (150). We conclude that,

(151)

Pnk
ρ̃(znk

) → τ ∈ U(z) = Span({q1(z)χω, . . . , qm(z)χω}) strongly in L2(G).

Now in view of (125), (134), (137) and (151), we get

(152) ũnk
= ρ̃(znk

)χω − Pnk
ρ̃(znk

) ⇀ ρχω − τ = u weakly in L2(G).

Since u ∈ U⊥ and τ ∈ U , we have Pu = 0 and Pτ = τ . From (152), it

follows that Pρ− τ = 0. Then τ = Pρ and u = ρχω − Pρ = ũ. Using

(138) and (147),

v = u0 + u = ṽ.

It results that (ṽ, ỹ) satisfies (12), (7), (8).
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5.2. Compactness of S. The arguments above shows that when z lies

in a bounded subset B of L2(Q), ỹ(ṽ) = S(z) also lies in a bounded

set of W (0, T ). As a consequence of Aubin-Lions compactness Lemma,

W (0, T ) is a compact set of L2(Q). Then, S(B) is relatively compact

in L2(Q). This completes the proof of the compactness of S.

5.3. Boundedness of the range of S. Let z ∈ L2(Q). Since ỹ(ṽ) =

S(z) solves (12) with ṽ satisfying (9), we have

||ỹ(ṽ)||L2(0,T ;H1
0 (Ω)) 6 C||y0||L2(Ω)

with C = C(Ω, ω,K, T,
∑m

j=1 ||ej||H1
0 (Σ)). The embedding of L2(0, T ;H1

0(Ω))

into L2(Q) being continuous, it follows that

||ỹ(ṽ)||L2(Q) 6 C||y0||L2(Ω).

This concludes the proof of Theorem 1.1.
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dérivées partielles, Dunod, Gauthier-Villars, Paris (1968).
EJQTDE, 2012 No. 95, p. 33



[10] E. Zuazua, Approximate controllability for semilinear heat equations with

globally Lipschitz nonlinearities, Control and Cybernetics 26 (1999), pp.665-

683.

(Received July 9, 2012)

Laboratoire CEREGMIA, Université des Antilles et de la Guyane,
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