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Abstract

We study the existence of weak periodic solutions for certain damped

and forced linear beam equations resting on semi-linear elastic bearings.

Conditions for the periodic forcing term and semi-linear elastic bearings

are derived which ensure either the existence or nonexistence of periodic

solutions of the beam equation. Topological degree arguments are used

to achieve these results.
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1 Introduction

In this note, we consider a periodically forced and damped beam resting on two
different bearings with purely elastic responses. The length of the beam is π/4.
The equation of vibrations is as follows

utt + uxxxx + δut + h(x, t) = 0 ,
uxx(0, ·) = uxx(π/4, ·) = 0 ,
uxxx(0, ·) = −ku(0, ·)− f(u(0, ·)) ,
uxxx(π/4, ·) = ru(π/4, ·) + g(u(π/4, ·)) ,

(1)

where δ > 0, r ≥ 0, k ≥ 0 are constants, h ∈ C([0, π/4] × ST ), and f, g ∈ C(R)
have at most linear growth at infinity. Here ST is the circle ST = R/{TZ}.

The undamped and unforced case of the form

utt + uxxxx = 0 ,
uxx(0, ·) = uxx(π/4, ·) = 0 ,
uxxx(0, ·) = −f(u(0, ·)) ,
uxxx(π/4, ·) = f(u(π/4, ·))

(2)
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is studied in [7] and [9] by using variational methods, where among others the
following results are proved.

Theorem. ([9]) If the function f(u) satisfies the following assumptions:

(i) f ∈ C1(R), f(−u) = −f(u) for all u ∈ R.

(ii) For any C > 0 there is a K(C) such that f(u) ≥ Cu−K(C) for all u ≥ 0.

(iii) 1
2f(u)u − F (u) ≥ c1|f(u)| − c2 for all u ∈ R, where F (u) =

u
∫

0

f(s) ds and

c1, c2 are positive constants.

(iv) f(0) = f ′(0) = 0.

Then there is a sufficiently large positive integer M such that equation (2) pos-
sesses at least one nonzero time periodic solution with the period 2πM 2.

Theorem. ([7]) If the continuous function f(u) is odd on R, C1-smooth
near u = 0 with f ′(0) > 0 and lim

|u|→∞
f(u)/u = 0. Then equation (2) possesses

infinitely many odd time periodic solutions with periods densely distributed in
an interval (a1, 2a1) for a constant a1 > 0.

It is pointed out in [9] that equation (2) is a simple analogue of a more
complicated shaft dynamics model introduced in the works [5] and [6].

When the nonlinearities and parameters are small, i.e. (1) is of the form

utt + uxxxx + εδut + εµh(x,
√

εt) = 0 ,
uxx(0, ·) = uxx(π/4, ·) = 0 ,
uxxx(0, ·) = −εf(u(0, ·)), uxxx(π/4, ·) = εf(u(π/4, ·)) ,

(3)

where ε > 0 and µ are small parameters, δ > 0 is a constant, f ∈ C2(R),
h ∈ C2([0, π/4] × R) and h(x, t) is 1-periodic in t. Then by using analytic
methods, the following result is proved in [2] and [3].

Theorem. ([2], [3]) Let the following assumptions hold:

(I) f(0) = 0, f ′(0) < 0 and the equation ẍ+f(x) = 0 has a homoclinic solution
γ(t) 6= 0 that is a non trivial bounded solution such that lim

t→±∞
γ(t) = 0.

(II) The homoclinic solution γ1(t) :=
√

π
2 γ

(

2
√

2
π t

)

is non-degenerate, that is

the linear equation

v̈ +
24

π
f ′

( 2√
π

γ1(t)
)

v = 0

has no nontrivial bounded solutions.

(III) 10.5705675493 · |f ′(0)| < δ.
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If η 6= 0 can be chosen in such a way that the equation

δ

∞
∫

−∞

γ̇1(s)
2 ds +

2√
π

η

∞
∫

−∞

π/4
∫

0

γ̇1(s)h(x, s + α) dx ds = 0

has a simple root α, then there exists ε̄ > 0 such that for any ε ∈ (0, ε̄] and µ =
√

εη, equation (3) has a unique bounded solution on R near γ
(

2
√

2
π

(√
εt−α

)

)

which is exponentially homoclinic to a unique small periodic solution of (3).
Moreover, the Smale horseshoe (see [12]) can be embedded into the dynamics of
(3).

Finally, a damped case is studied in [8] of the form

utt + uxxxx + δut + h(x, t) = 0 ,
uxx(0, ·) = uxx(π/4, ·) = 0 ,
uxxx(0, ·) = −f(u(0, ·)) ,
uxxx(π/4, ·) = g(u(π/4, ·)) ,

(4)

where δ is a positive constant, f and g are analytic, the function h ∈ C([0, π/4]×
ST ) is splitted as follows

h(x, t) = 8
θ2 − 2θ1

Tπ
+ 96

θ1 − θ2

Tπ2
x + p(x, t)

for θ1,2 ∈ R and

∫ T

0

∫ π/4

0

p(x, t) dx dt =

∫ T

0

∫ π/4

0

xp(x, t) dx dt = 0 .

Conditions are found in [8] between the numbers θ1,2, the function p(x, t) and
the nonlinearities f, g under which (4) has a T -periodic solution. It is also shown
that under certain assumptions, constants θ1,2 are functions of p(x, t) in order
to get a T -periodic solution of (4).

In this note, we are interested in T -periodic vibrations of (1) by using topo-
logical degree arguments. We show the existence of T -periodic vibrations of (1)
for r > 0, k > 0 and f, g sublinear at infinity. Also a generic result is derived
for this case when in addition f, g ∈ C1(R). If either r = 0 or k = 0, then we
derive Landesman-Lazer type conditions on h, f, g for showing either existence
or nonexistence results of T -periodic vibrations of (1).
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2 Setting of the Problem

By a weak T -periodic solution of (1), we mean any u(x, t) ∈ C([0, π/4] × ST )
satisfying the identity

T
∫

0

π/4
∫

0

[

u(x, t)
{

vtt(x, t) + vxxxx(x, t) − δvt(x, t)
}

+ h(x, t)v(x, t)
]

dx dt

+
T
∫

0

{(

ku(0, t) + f(u(0, t))
)

v(0, t)

+
(

ru(π/4, t) + g(u(π/4, t))
)

v(π/4, t)
}

dt = 0

(5)

for any v(x, t) ∈ C∞([0, π/4] × ST ) such that the following boundary value
conditions hold

vxx(0, ·) = vxx(π/4, ·) = vxxx(0, ·) = vxxx(π/4, ·) = 0 . (6)

The eigenvalue problem

wxxxx(x) = µ4w(x) ,
wxx(0) = wxx(π/4) = 0, wxxx(0) = wxxx(π/4) = 0

is known [9] to possesses a sequence of eigenvalues µk, k = −1, 0, 1, · · · with

µ−1 = µ0 = 0

and
cos(µkπ/4) cosh(µkπ/4) = 1, k = 1, 2, · · · . (7)

The corresponding orthonormal in L2(0, π/4) system of eigenvectors is

w−1(x) = 2√
π
, w0(x) = 16

π

(

x − π
8

)

√

3
π

wk(x) = 4√
πWk

[

cosh(µkx) + cos(µkx)

− cosh ξk−cos ξk

sinh ξk−sin ξk

(

sinh(µkx) + sin(µkx)
)

]

where the constants Wk are given by the formulas

Wk = cosh(ξk) + cos ξk − cosh ξk−cos ξk

sinh ξk−sin ξk

(

sinh ξk + sin ξk

)

for ξk = µkπ/4. From (7) we get the asymptotic formulas

1 < µk = 2(2k + 1) + r(k) ∀k ≥ 1

along with
|r(k)| ≤ c̄1e

−c̄2k ∀k ≥ 1 ,

where c̄1, c̄2 are positive constants. Moreover, the eigenfunctions {wi}∞i=−1 are
uniformly bounded in C([0, π/4]).
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3 Preliminary Results

Let H1(x, t) ∈ C([0, π/4]×ST ), H2(t), H3(t) ∈ C(ST ) be continuous T -periodic
functions and consider the equation

T
∫

0

π/4
∫

0

[

z(x, t)
{

vtt(x, t) + vxxxx(x, t) − δvt(x, t)
}

+ H1(x, t)v(x, t)
]

dx dt

+
T
∫

0

{

H2(t)v(0, t) + H3(t)v(π/4, t)
}

dt = 0

(8)

for any v(x, t) ∈ C∞([0, π/4]× R) satisfying the boundary conditions (6) along
with

∫ π/4

0

v(x, t)dx =

∫ π/4

0

xv(x, t)dx = 0 ∀t ∈ ST . (9)

Note that conditions (9) correspond to the orthogonality of v(x, t) to w−1(x)
and w0(x), for any t ∈ ST . We look for z(x, t) in the form

z(x, t) =

∞
∑

i=1

zi(t)wi(x) . (10)

We formally put (10) into (8) to get a system of ordinary differential equations

z̈i(t) + δżi(t) + µ4
i zi(t) = hi(t) , (11)

where

hi(t) = −
(

π/4
∫

0

H1(x, t)wi(x) dx + H2(t)wi(0) + H3(t)wi(π/4)
)

. (12)

Let us put

M1 = sup
i≥1,x

|wi(x)|, M2 = 4M1

∞
∑

i=1

1/µ2
i < ∞ M3 = sup

i≥1
i2/µ2

i < ∞ . (13)

Since µi > 0 for i ≥ 1, equation (11) has a unique T -periodic solution zi(t), for
2µ2

i > δ given by

zi(t) =
2

ω̄i

t
∫

−∞

e−δ(t−s)/2 sin
( ω̄i

2
(t − s)

)

× hi(s) ds , (14)

where ω̄i =
√

4µ4
i − δ2, for 2µ2

i = δ given by

zi(t) =

t
∫

−∞

e−δ(t−s)/2(t − s) × hi(s) ds , (15)
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and for 2µ2
i < δ given by

zi(t) =

t
∫

−∞

1

ω̃i

(

e(−δ+ω̃i)(t−s)/2 − e(−δ−ω̃i)(t−s)/2
)

× hi(s) ds , (16)

where ω̃i =
√

δ2 − 4µ4
i . Let ‖ · ‖∞ denote the maximum norm on [0, T ].

From (14) for 3µ4
i > δ2 we get

‖zi‖∞ ≤ 4
ω̄iδ

‖hi‖∞ ≤ 4
µ2

i
δ
‖hi‖∞

‖żi‖∞ ≤ 4
δ ‖hi‖∞ ,

(17)

and for 3µ4
i < δ2 < 4µ4

i from (14) we get

‖zi‖∞ ≤ ‖hi‖∞
t
∫

−∞
e−δ(t−s)/2(t − s) ds = 4

δ2 ‖hi‖∞
≤ 4√

3µ2

i
δ
‖hi‖∞ ≤ 4

µ2

i
δ
‖hi‖∞ ,

‖żi‖∞ ≤ 4
δ ‖hi‖∞ ,

(18)

where we use in derivation of (18) the inequality | sin x| ≤ |x| ∀x ∈ R. From
(15) for 2µ2

i = δ we get

‖zi‖∞ ≤ ‖hi‖∞
t
∫

−∞
e−δ(t−s)/2(t − s) ds = 4

δ2 ‖hi‖∞
= 2

µ2

i
δ
‖hi‖∞ ≤ 4

µ2

i
δ
‖hi‖∞ ,

‖żi‖∞ ≤ 4
δ ‖hi‖∞ .

(19)

From (16) for 2µ2
i < δ we get

‖zi‖∞ ≤ 1
µ4

i

‖hi‖∞
‖żi‖∞ ≤ δ

µ4

i

‖hi‖∞ ≤ δ‖hi‖∞ .
(20)

From (12) we get

‖hi‖∞ ≤ M1

(π

4
‖H1‖∞ + ‖H2‖∞ + ‖H3‖∞

)

. (21)

We consider the Banach space C([0, π/4]× ST ) with the usual maximum norm
‖ · ‖∞. We need the following result.

Proposition 1. A sequence {zn(x, t)}∞n=1 ⊂ C([0, π/4]×ST ) is precompact
if there is a constant M > 0 such that

sup
i≥1,n≥1

‖zn
i ‖∞i2 < M, sup

i≥1,n≥1
‖żn

i ‖∞ < M , (22)

where zn(x, t) =
∞
∑

i=1

zn
i (t)wi(x).
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Proof. From (22) we get

|zn
i (t)|i2 ≤ M, |żn

i (t)| ≤ M ∀t ∈ ST .

By the Arzela-Ascoli theorem, there is a subsequence {znk

1 }∞k=1 of {zn
1 }∞n=1

such that znk

1 (t) → z0
1(t) uniformly on ST . Similarly we have a subsequence

{znks

2 }∞s=1 of {znk

2 }∞k=1 such that z
nks

2 (t) → z0
2(t) uniformly on ST . Then we

follow this construction. By using the Cantor diagonal procedure, we find an
increasing sequence {mk}∞k=1 ⊂ N such that zmk

i (t) → z0
i (t) uniformly on ST

for any i ≥ 1. Clearly we have

sup
i≥1

‖z0
i ‖∞i2 ≤ M .

Hence z0(x, t) =
∞
∑

i=1

z0
i (t)wi(x) ∈ C([0, π/4] × ST ). Let ε > 0 be given. Then

we choose i1 ∈ N so large that 2M1M
∞
∑

i=i1

i−2 < ε/2. We estimate

‖zmk − z0‖∞ ≤ M1

∞
∑

i=1

‖zmk

i − z0
i ‖∞

≤ 2M1M
∞
∑

i=i1

i−2 + M1

i1
∑

i=1

‖zmk

i − z0
i ‖∞ < ε

2 + M1

i1
∑

i=1

‖zmk

i − z0
i ‖∞ .

For 1 ≤ i < i1, we have
‖zmk

i − z0
i ‖∞ → 0

as k → ∞. Hence ‖zmk − z0‖∞ < ε/2 for k large . This implies zmk → z0 in
C([0, π/4] × ST ). The proof is finished.

Now if hi(t), i ≥ 1 is given by (12) and T -periodic zi(t) are defined by
(11), then z(x, t) given by (10) satisfies z(x, t) ∈ C([0, π/4]×ST ). Indeed, from
∞
∑

i=1

µ−2
i < ∞ and (17) - (20) we have that the series (10) is uniformly convergent.

Hence z(x, t) ∈ C([0, π/4] × ST ) and (17) - (20) also imply

‖z‖∞ ≤ M1

∑

2µi<δ

1
µ4

i

‖hi‖∞ + M1

∑

2µi≥δ

4
µ2

i
δ
‖hi‖∞

≤ M1

∞
∑

i=1

(

1
µ2

i

+ 4
µ2

i
δ

)

‖hi‖∞

≤ M2

(

1
δ + 1

4

)(

π
4 ‖H1‖∞ + ‖H2‖∞ + ‖H3‖∞

)

.

Moreover, we derive

sup
i≥1

‖zi‖∞i2 ≤ M3

(4

δ
+ 1

)(π

4
‖H1‖∞ + ‖H2‖∞ + ‖H3‖∞

)

(23)

and

sup
i≥1

‖żi‖∞ ≤
(4

δ
+ δ

)(π

4
‖H1‖∞ + ‖H2‖∞ + ‖H3‖∞

)

. (24)
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We also know from [3] that such z(x, t) satisfies (8). On the other hand, if

z(x, t) ∈ C([0, π/4]×ST ) satisfies (8), then z(x, t) =
∞
∑

i=1

zi(t)wi(x) in L2(0, π/4)

for a.e. t ∈ ST . By inserting v(x, t) = φ(t)wi(x) in (8) with φ ∈ C∞(ST ), we
get (11) with (12). So z(x, t) has the above properties.

Finally, let us define the following Banach space

C0([0, π/4]× ST ) :=
{

z(x, t) ∈ C([0, π/4] × ST ) |
π/4
∫

0

z(x, t) dx =

π/4
∫

0

z(x, t)x dx = 0 ∀ t ∈ ST
}

with the maximum norm ‖ · ‖∞ on [0, π/4]×ST . Summarizing, we arrive at the
following result.

Proposition 2. For any given functions H1(x, t) ∈ C([0, π/4] × ST ),
H2(t), H3(t) ∈ C(ST ), equation (8) has a unique solution z(x, t) ∈ C0([0, π/4]×
ST ) of the form

z(x, t) =

∞
∑

i=1

zi(t)wi(x) .

Such a solution satisfies the condition (9) along with:

(a) z(x, t) ∈ X for the Banach space

X =
{

z(x, t) ∈ C([0, π/4] × ST ) | z(x, t) =
∞
∑

i=1

zi(t)wi(x),

sup
i≥1

‖zi‖∞i2 < ∞
}

.

(b) ‖z‖∞ ≤ M2

(

1
δ + 1

4

)

(

π
4 ‖H1‖∞ + ‖H2‖∞ + ‖H3‖∞

)

.

(c) The mapping L : C([0, π/4] × ST ) × C(ST ) × C(ST ) → C0([0, π/4] × ST )
defined by L(H1, H2, H3) := z(x, t) is compact.

Proof. Properties (a) and (b) are proved above. Property (c) follows from
Lemma 1 and inequalities (23) and (24). The proof is finished.

4 Nonhomogeneous Linear Problems

In this section, we consider the linear problem

utt + uxxxx + δut + h(x, t) = 0 ,
uxx(0, ·) = uxx(π/4, ·) = 0 ,
uxxx(0, ·) = −ku(0, ·)− f1(t) ,
uxxx(π/4, ·) = ru(u(π/4, ·) + f2(t) ,

(25)
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where h(x, t) ∈ C([0, π/4] × ST ), f1(t), f2(t) ∈ C(ST ). Of course, we consider
(25) in the sense of (5). Now we split u(x, t) as follows

u(x, t) = y1(t)w−1(x) + y2(t)w0(x) + z(x, t)

with z(x, t) ∈ C0([0, π/4] × ST ). Then (25) is equivalent to the system

ÿ1(t) + δẏ1(t) + 2√
π

π/4
∫

0

h(x, t) dx

+ 4
π (k + r)y1(t) + 4

√
3

π (r − k)y2(t)
+ 2√

π
(kz(0, t) + rz(π/4, t) + f1(t) + f2(t)) = 0 ,

(26)

ÿ2(t) + δẏ2(t) + 16
π

√

3
π

π/4
∫

0

h(x, t)
(

x − π
8

)

dx

+ 4
√

3
π (r − k)y1(t) + 12

π (k + r)y2(t)

+2
√

3
π (rz(π/4, t) − kz(0, t) + f2(t) − f1(t)) = 0 ,

(27)

T
∫

0

π/4
∫

0

[

z(x, t)
{

vtt(x, t) + vxxxx(x, t) − δvt(x, t)
}

+ h(x, t)v(x, t)
]

dx dt

+
T
∫

0

{(

k
(

2√
π
y1(t) − 2

√

3
π y2(t) + z(0, t)

)

+ f1(t)
)

v(0, t)

+
(

r
(

2√
π
y1(t) + 2

√

3
π y2(t) + z(π/4, t)

)

+ f2(t)
)

v(π/4, t)
}

dt = 0

(28)

where v(x, t) ∈ C∞([0, π
4 ] × ST ) satisfies the conditions (6), (9). Let us define

L1 : C(ST ) × C(ST ) → C0([0, π/4]× ST ) ,
L2 : C0([0, π/4] × ST ) → C0([0, π/4] × ST ) ,
H4 ∈ C0([0, π/4] × ST )

by

L1(y1, y2) := L
(

0, k
(

2√
π
y1(t) − 2

√

3
π y2(t)

)

, r
(

2√
π
y1(t) + 2

√

3
π y2(t)

))

,

L2(z) := L
(

0, kz(0, t), rz(π/4, t)
)

,

H4(t) := L
(

h(x, t), f1(t), f2(t)
)

.

Then according to Proposition 2, equation (28) has the form

z = L2(z) + L1(y1, y2) + H4 . (29)

Moreover, operators L1 and L2 are compact. Furthermore, since for r > 0,
k > 0 the matrix

A =
4

π

(

(k + r)
√

3(r − k)√
3(r − k) 3(r + k)

)

is invertible, the system

ÿ + δẏ + Ay = h̄(t) = (h1(t), h2(t)) ∈ C(ST )2 (30)
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has a unique T -periodic solution y = (y1, y2) := L3(h1, h2). Let us define

L4 : C0([0, π/4]× ST ) → C(ST )2, H5 ∈ C(ST )

given by

L4(z) := L3

(

2√
π

(kz(0, t) + rz(π/4, t)) , 2
√

3
π (rz(π/4, t) − kz(0, t))

)

,

H5(t) := L3

(

2√
π

π/4
∫

0

h(x, t) dx + 2√
π
(f1(t) + f2(t)),

16
π

√

3
π

π/4
∫

0

h(x, t)
(

x − π
8

)

dx + 2
√

3
π (f2(t) − f1(t))

)

.

Then (26) and (27) are equivalent to

y = L4(z) + H5(t) (31)

and L4 is compact. Consequently, in order to solve uniquely equations (29) and
(31), we must show that if

z = L2(z) + L1(y1, y2), z ∈ C0([0, π/4] × ST )
y = L4(z), y = (y1, y2) ∈ C(ST )2 ,

(32)

then z = 0 and y = 0. Equation (32) is equivalent to the system

z̈j(t) + δżj(t) + µ4
jzj(t)

+
∞
∑

s=−1

(

kzs(t)ws(0)wj(0) + rzs(t)ws(π/4)wj(π/4)
)

= 0
(33)

for zj ∈ C2(ST ), j ≥ −1 with sup
j≥−1

‖zj‖∞(j2 + 1) < ∞. Let us expand

zj(t) =
∑

m∈Z

eı2πmt/T cmj .

Note that cmj ∼ j−2 as j → ∞ uniformly for m ∈ Z. Then by (33) we derive

cmj

(

µ4
j − 4π2m2

T 2 + ı 2δπ
T m

)

+
∞
∑

s=−1

(

kcmsws(0)wj(0) + rcmsws(π/4)wj(π/4)
)

= 0 .
(34)

By taking cmj = amj + ıbmj , from (34) we derive

amj

(

µ4
j − 4π2m2

T 2

)

− 2δπ
T mbmj

+
∞
∑

s=−1

(

kws(0)wj(0) + rws(π/4)wj(π/4)
)

ams = 0 ,

amj
2δπ
T m +

(

µ4
j − 4π2m2

T 2

)

bmj

+
∞
∑

s=−1

(

kws(0)wj(0) + rws(π/4)wj(π/4)
)

bms = 0 .
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Since amj , bmj ∼ j−2 as j → ∞, we get

∞
∑

j=−1

(

a2
mj + b2

mj

) 2πδ

T
m = 0 ,

hence amj = bmj = 0 for any m 6= 0 and j. For m = 0 we get

a0jµ
4
j +

∞
∑

s=−1

(

kws(0)wj(0) + rws(π/4)wj(π/4)
)

a0s = 0 , (35)

b0jµ
4
j +

∞
∑

s=−1

(

kws(0)wj(0) + rws(π/4)wj(π/4)
)

b0s = 0 . (36)

We put a0j(µ
4
j + 1) = ej and from (35) we get

∞
∑

j=−1

e2

j

µ4

j
+1

µ4

j

µ4

j
+1

+ k
( ∞

∑

s=−1
ws(0) es

µ4
s+1

)2

+ r
( ∞

∑

s=−1
ws(π/4) es

µ4
s+1

)2

= 0 . (37)

From (37) for r > 0, k > 0 we immediately get ej = 0 for j ≥ 1 and

2√
π

e−1 − 2

√

3

π
e0 = 0,

2√
π

e−1 + 2

√

3

π
e0 = 0 ,

which imply also e−1 = e0 = 0. Similar results hold for (36). Hence, (32) has
the only solution z = 0 and y = 0. Consequently, (29) and (31) are uniquely
solvable in z, y for r > 0, k > 0. Summarizing, we arrive at the following result.

Proposition 3. If r > 0, k > 0 then for any given functions h(x, t) ∈
C([0, π/4] × ST ) and f1(t), f2(t) ∈ C(ST ), equation (25) has a unique solution
u(x, t) ∈ C([0, π/4] × ST ) of the form

u(x, t) =
∞
∑

i=−1

zi(t)wi(x) .

Such a solution satisfies:

(a) u(x, t) ∈ Y for the Banach space

Y =
{

u(x, t) ∈ C([0, π/4] × ST ) | u(x, t) =
∞
∑

i=−1

zi(t)wi(x),

‖u‖ := sup
i≥−1

‖zi‖∞(|i| + 1)2 < ∞
}

.

(b) ‖u‖, ‖u‖∞ ≤ c (‖h‖∞ + ‖f1‖∞ + ‖f2‖∞) for a constant c > 0.

(c) The mapping L̃ : C([0, π/4] × ST ) × C(ST ) × C(ST ) → C([0, π/4] × ST )
defined by L̃(h, f1, f2) := u(x, t) is compact.
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We also define a compact mapping L̄ : C(ST ) × C(ST ) → C([0, π/4] × ST )
by L̄(f1, f2) := L̃(0, f1, f2). We denote by ‖L̄‖ the norm of L̄.

Now we study the case when r = 0 and k > 0 in (25). Then equation (29)
remains, but the matrix A is no more invertible. Equation (30) has a T -periodic
solution if and only if

T
∫

0

(
√

3h1(t) + h2(t)) dt = 0

and the linear equation
ÿ + δẏ + Ay = 0

has the only T -periodic solutions y(t) = c(
√

3, 1), c ∈ R. Consequently, we
are still working with Fredholm operators of index 0 possessing forms of com-
pact perturbations of identity operators [11]. Hence, in order to study (25) we
consider like in (33) the equations

z̈j(t) + δżj(t) + µ4
jzj(t) + k

∞
∑

s=−1

zs(t)ws(0)wj(0) = 0 (38)

z̈j(t) + δżj(t) + µ4
jzj(t) + k

∞
∑

s=−1

zs(t)ws(0)wj(0) + hj(t) = 0 (39)

for hj ∈ C(ST ), zj ∈ C2(ST ), j ≥ −1 with sup
j≥−1

‖zj‖∞(j2 + 1) < ∞. Like for

(33), we get that z−1(t) = c
√

3, z0(t) = c, c ∈ R, zj(t) = 0, j ≥ 1 for (38).
According to the above comments, the set of all {hj(t)}j≥−1 for which (39) is
solvable must have a codimension 1. For this reason, we consider an adjoint
equation to (38) of the form

v̈j(t) − δv̇j(t) + µ4
jvj(t) + k

∞
∑

s=−1

vs(t)ws(0)wj(0) = 0 (40)

for vj ∈ C2(ST ), j ≥ −1 with sup
j≥−1

‖vj‖∞(j2 + 1) < ∞. Like above we get

v−1(t) = c
√

3, v0(t) = c, c ∈ R, vj(t) = 0, j ≥ 1 for (40). By multiplying (39)
with vj(t) and using integration by parts, we get

T
∫

0

zj(t)
(

v̈j(t) − δv̇j(t) + µ4
jvj(t)

)

dt

+k
T
∫

0

( ∞
∑

s=−1
zs(t)ws(0)wj(0)vj(t)

)

dt +
T
∫

0

hj(t)vj(t) dt = 0 .

(41)

Inserting (40) to (41) we obtain

k
T
∫

0

∞
∑

s=−1

(

zs(t)ws(0)wj(0)vj(t) − zj(t)ws(0)wj(0)vs(t)
)

dt

+
T
∫

0

hj(t)vj(t) dt = 0 .

(42)
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Since vj(t) ∼ j−2, zj(t) ∼ j−2 uniformly on ST , (42) implies

0 =

∞
∑

s=−1

T
∫

0

hj(t)vj(t) dt =

T
∫

0

(
√

3h−1(t) + h0(t)) dt . (43)

We recall that the set of all {hj(t)}j≥−1 for which (39) is solvable has a codi-
mension 1. Then condition (43) is necessary and also sufficient for solvability of
(39). We note

h−1(t) = 2√
π

π/4
∫

0

h(x, t) dx + 2√
π

(f1(t) + f2(t)) ,

h0(t) = 16
π

√

3
π

π/4
∫

0

h(x, t)
(

x − π
8

)

dx + 2
√

3
π (f2(t) − f1(t)) .

Then condition (43) has the form

4

π

T
∫

0

π/4
∫

0

h(x, t)x dx dt +

T
∫

0

f2(t) dt = 0 . (44)

Finally, the corresponding kernel to (38) is spanned by the function

z−1(t)w−1(x) + z0(t)w0(x) =
16

π

√

3

π
x . (45)

Summarizing we get the next result.

Proposition 4. If r = 0, k > 0 then for any given functions h(x, t) ∈
C([0, π/4]×ST ) and f1(t), f2(t) ∈ C(ST ), equation (25) has a solution u(x, t) ∈
C([0, π/4]×ST ) if and only if condition (44) holds. Such a solution is unique if

T
∫

0

π/4
∫

0

u(x, t)x dx dt = 0 . (46)

Moreover, the mapping K : C1 → C2 is compact where

C1 :=
{

(h, f1, f2) ∈ C([0, π/4] × ST ) × C(ST )2 | condition (44) holds
}

,

C2 :=
{

u ∈ C([0, π/4] × ST ) | condition (46) holds
}

are Banach spaces endowed with the maximum norms and the mapping K is
defined by K(h, f1, f2) := u(x, t).

Similarly we derive the next results.
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Proposition 5. If r > 0, k = 0 then for any given functions h(x, t) ∈
C([0, π/4]×ST ) and f1(t), f2(t) ∈ C(ST ), equation (25) has a solution u(x, t) ∈
C([0, π/4] × ST ) if and only if

4

π

T
∫

0

π/4
∫

0

h(x, t)
(π

4
− x

)

dx dt +

T
∫

0

f1(t) dt = 0 . (47)

Such a solution is unique if

T
∫

0

π/4
∫

0

u(x, t)
(π

4
− x

)

dx dt = 0 . (48)

Moreover, the mapping K̃ : C̃1 → C̃2 is compact where

C̃1 :=
{

(h, f1, f2) ∈ C([0, π/4] × ST ) × C(ST )2 | condition (47) holds
}

,

C̃2 :=
{

u ∈ C([0, π/4] × ST ) | condition (48) holds
}

are Banach spaces endowed with the maximum norms and the mapping K is
defined by K̃(h, f1, f2) := u(x, t).

Proposition 6. If r = k = 0 then for any given functions h(x, t) ∈
C([0, π/4]×ST ) and f1(t), f2(t) ∈ C(ST ), equation (25) has a solution u(x, t) ∈
C([0, π/4] × ST ) if and only if the both conditions (44) and (47) hold. Such a
solution is unique if the both conditions (46) and (48) hold.

Moreover, the mapping K̄ : C̄1 → C̄2 is compact where

C̄1 :=
{

(h, f1, f2) ∈ C([0, π/4] × ST ) × C(ST )2 | conditions (44), (47) hold
}

,

C̄2 :=
{

u ∈ C([0, π/4] × ST ) | conditions (46), (48) hold
}

are Banach spaces endowed with the maximum norms and the mapping K̄ is
defined by K̄(h, f1, f2) := u(x, t).

5 Nonlinear Problems

In this section, we present the main results concerning equation (1).

Theorem 1. If r > 0, k > 0 and there are positive constants c11, c12, c21, c22

along with
c12 + c22 < 1/‖L̄‖

and such that
|f(u)| ≤ c11 + c12|u|, ∀u ∈ R

|g(u)| ≤ c21 + c22|u|, ∀u ∈ R ,
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then for any given function h(x, t) ∈ C([0, π/4] × ST ), equation (1) possesses a
weak T -periodic solution u(x, t) ∈ C([0, π/4] × ST ).

Proof. By using the above results, the proof is standard. According to Propo-
sition 3, equation (1) is equivalent to

u = F (u) := L̃(h, 0, 0) + L̄
(

f(u(0, ·)), g(u(π/4, ·))
)

. (49)

Proposition 3 also implies the compactness of the mapping

F : C([0, π/4] × ST ) → C([0, π/4] × ST ) .

From the assumptions of Theorem 1 and (b) of Proposition 3, we get

‖F (u)‖∞ ≤ c‖h‖∞ + ‖L̄‖
(

‖f(u(0, ·))‖∞ + ‖g(u(π/4, ·))‖∞
)

≤ c‖h‖∞ + ‖L̄‖
(

c11 + c21 + (c12 + c22)‖u‖∞
)

.
(50)

Since ‖L̄‖(c12 + c22) < 1, there is a unique τ > 0 such that

τ = c‖h‖∞ + ‖L̄‖
(

c11 + c21 + (c12 + c22)τ
)

.

Consequently, (50) implies that the ball

Bτ =
{

u ∈ C([0, π/4] × ST ) | ‖u‖ ≤ τ
}

is mapped to itself by the mapping F . The Schauder fixed point theorem ensures
the existence of a fixed point u ∈ Bτ of F . This gives a weak T -periodic solution
of (1). The proof is finished.

Of course, when f, g have sublinear growth at infinity:

lim
|u|→∞

f(u)/u = 0, lim
|u|→∞

g(u)/u = 0

and r > 0, k > 0, then the assumptions of Theorem 1 hold and equation
(1) possesses a weak T -periodic solution u(x, t) ∈ C([0, π/4] × ST ) for any
h(x, t) ∈ C([0, π/4] × ST ).

The implicit function theorem together with Proposition 3 gives the next
result.

Theorem 2. If r > 0, k > 0, f(0) = f ′(0) = g(0) = g′(0) = 0 and
f, g ∈ C1(ST ), then there are positive constants K1, ε0 such that for any given
function h(x, t) ∈ C([0, π/4] × ST ) with ‖h‖∞ < ε0, equation (1) possesses
a unique small weak T -periodic solution u(x, t) ∈ C([0, π/4] × ST ) satisfying
‖u‖∞ ≤ K1‖h‖∞.
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Now we suppose that r = 0 and k > 0 in equation (1). Let

P : C([0, π/4] × ST ) × C(ST )2 → C1

be a continuous projection and let

C2 ⊕ Rx = C([0, π/4] × ST )

be a continuous splitting u(x, t) = v(x, t) + c 4
π x with v(x, t) ∈ C2 and c ∈ R.

Then according to Proposition 4, equation (1) is equivalent to the system

v = λK
(

P
(

h, f(v(0, ·)), g(c + v(π/4, ·))
))

, (51)

4

π

T
∫

0

π/4
∫

0

h(x, t)x dx dt +

T
∫

0

g(c + λv(π/4, t)) dt = 0 (52)

for λ = 1. Now we can prove the next result.

Theorem 3. Let r = 0 and k > 0. If supu∈R |f(u)| < ∞, finite limits

lim
u→±∞

g(u) := g±

exist and it holds

4

Tπ

T
∫

0

π/4
∫

0

h(x, t)x dx dt ∈ (−g−,−g+) . (53)

Then equation (1) possesses a weak T -periodic solution u(x, t) ∈ C([0, π/4] ×
ST ). On the other hand, if

∣

∣

∣

4

Tπ

T
∫

0

π/4
∫

0

h(x, t)x dx dt
∣

∣

∣
> sup

u∈R

|g(u)| (54)

then equation (1) has no weak T -periodic solutions.

Proof. This is a Landesman-Lazer type result [4], [10]. We consider (51) and
(52) for 0 ≤ λ ≤ 1 on C2 ⊕ R. Since h, f, g are bounded, Proposition 4 implies
that any solution of (51) must satisfy ‖v‖∞ ≤ K1, for a constant K1 > 0. We
take the set

B =
{

(v, c) ∈ C2 ⊕ R | ‖v‖∞ < K1 + 1, |c| < K2

}

for a fixed large K2 > 0. If (v, c) ∈ ∂B then either ‖v‖∞ = K1 + 1 and then
(51) does not hold, or ‖v‖∞ ≤ K1 + 1 and c = ±K2, and then (52) does not
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hold according to (53). Hence we can apply Leray-Schauder degree to (51) and
(52) on B [4], [10]. For λ = 0 we get a function

c → 4

Tπ

T
∫

0

π/4
∫

0

h(x, t)x dx dt + g(c) ,

which according to (53) changes the sign on [−K2, K2]. Consequently, (51) and
(52) are solvable on B. On the other hand, if (52) holds then clearly (54) can
not be satisfied. The proof is finished.

Similarly we get the next result.

Theorem 4. Let r = 0 and k > 0. If supu∈R |f(u)| < ∞, finite limits

lim
u→±∞

g(u) := g±

exist and g is monotonic on R. Then equation (1) possesses a weak T -periodic
solution if (53) holds and it has no weak T -periodic solutions if

4

Tπ

T
∫

0

π/4
∫

0

h(x, t)x dx dt /∈ [−g−,−g+] .

If in addition, g is strictly monotonic on R, then equation (1) possesses a weak
T -periodic solution if and only if (53) holds.

By using Proposition 5, similar arguments hold for the case r > 0 and k = 0.
We state this result for the reader convenience.

Theorem 5. Let r > 0 and k = 0. If supu∈R |g(u)| < ∞, finite limits

lim
u→±∞

f(u) := f±

exist and it holds

4

Tπ

T
∫

0

π/4
∫

0

h(x, t)
(π

4
− x

)

dx dt ∈ (−f−,−f+) . (55)

Then equation (1) possesses a weak T -periodic solution u(x, t) ∈ C([0, π/4] ×
ST ). On the other hand, if

∣

∣

∣

4

Tπ

T
∫

0

π/4
∫

0

h(x, t)
(π

4
− x

)

dx dt
∣

∣

∣
> sup

u∈R

|f(u)| (56)

then equation (1) has no weak T -periodic solutions.
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Theorem 4 can be also modified for the case r > 0 and k = 0. Now we study
the case that r = k = 0 in equation (1). This is a codimension two problem.
The above approach to Theorem 3 can be used with the following modifications.
Let

P̄ : C([0, π/4] × ST ) × C(ST )2 → C̄1

be a continuous projection and let

C̄2 ⊕ R

(

1 − 4

π
x
)

⊕ Rx = C([0, π/4] × ST )

be a continuous splitting u(x, t) = v(x, t)+ c1

(

1− 4
π x

)

+ c2
4
π x with v(x, t) ∈ C̄2

and c1, c2 ∈ R. Then according to Proposition 6, equation (1) is equivalent to
the system

v = λK̄
(

P̄
(

h, f(c1 + v(0, ·)), g(c2 + v(π/4, ·))
))

, (57)

4

π

T
∫

0

π/4
∫

0

h(x, t)
(π

4
− x

)

dx dt +

T
∫

0

f(c1 + λv(0, t)) dt = 0 (58)

4

π

T
∫

0

π/4
∫

0

h(x, t)x dx dt +

T
∫

0

g(c2 + λv(π/4, t)) dt = 0 (59)

for λ = 1. By repeating the proof of Theorem 3 to (57)-(59), we get the next
result.

Theorem 6. Let r = k = 0. If finite limits

lim
u→±∞

f(u) := f±, lim
u→±∞

g(u) := g±

exist and the both conditions (53) and (55) hold, then equation (1) possesses
a weak T -periodic solution u(x, t) ∈ C([0, π/4] × ST ). On the other hand, if
one of the conditions (54) and (56) is satisfied, then equation (1) has no weak
T -periodic solutions.

Now let us suppose that f, g ∈ C1(R). If we consider equation (8) for
any v(x, t) ∈ C∞([0, π/4] × R) satisfying the boundary conditions (6) and also
orthogonal to each wi(x), i = −1, 0, · · · , i1 for i1 ∈ N large and fixed, like in (9).
Then we look for z(x, t) in the form

z(x, t) =

∞
∑

i=i1+1

zi(t)wi(x) ,

and we get a result similar to Proposition 2 with an estimate as (b) for M2 → 0 as
i1 → ∞. Consequently, we can locally reduce by means of the Ljapunov-Schmidt
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method the solvability of (1) to finite-dimensional mappings. In this way, we
can repeat the proof of the Sard-Smale theorem [4], [11] for (1). Moreover, by
following a method of [11], we can prove the next result.

Theorem 7. Let the assumptions of Theorem 1 hold along with that f, g ∈
C1(R). Then there is an open and dense subset C3 ⊂ C([0, π/4]×ST ) such that
for any given h(x, t) ∈ C3, equation (1) possesses a finite nonzero number of
weak T -periodic solutions u(x, t) ∈ C([0, π/4] × ST ). This number of solutions
is constant on each connected components of C3.

Finally, we note that the question on the existence of a global bounded weak
solution of (1) remains open when h(x, t) is only bounded on [0, π/4] × ST . A
combination of methods of [1] and this paper would be hopeful.
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