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ISEG, Universidade Técnica de Lisboa,
Rua do Quelhas 6, 1200 Lisboa, Portugal

and
CMAF, Universidade de Lisboa,

Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal
E-mail: mrg@ptmat.lmc.fc.ul.pt

Pierpaolo OMARI ‡
Dipartimento di Scienze Matematiche,
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Abstract

We prove the solvability of the parabolic problem






















∂tu −
N
∑

i,j=1

∂xi
(aij(x, t)∂xj

u)+
N
∑

i=1

bi(x, t)∂xi
u=f(x, t, u) in Ω×IR,

u(x, t) = 0 on ∂Ω×IR,
u(x, t) = u(x, t + T ) in Ω×IR,

assuming certain conditions on the asymptotic behaviour of the ratio
2
∫ s
0 f(x, t, σ)dσ/s2 with respect to the principal eigenvalue of the as-

sociated linear problem. The method of proof, which is based on the
construction of upper and lower solutions, also yields information on
the localization and the stability of the solution.
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1 Introduction and statements

Let Ω (⊂ IRN) be a bounded domain, with a boundary ∂Ω of class C2, and
let T > 0 be a fixed number. Set Q = Ω×]0, T [ and Σ = ∂Ω × [0, T ]. Let us
consider the parabolic problem











∂tu+ A(x, t, ∂x)u = f(x, t, u) in Q,
u(x, t) = 0 on Σ,

u(x, 0) = u(x, T ) in Ω.
(1.1)

We assume throughout that

A(x, t, ∂x) = −
N
∑

i,j=1

∂xi
(aij(x, t)∂xj

) +
N
∑

i=1

bi(x, t)∂xi
,

where aij ∈ C0(Q), aij = aji, aij(x, 0) = aij(x, T ) in Ω, ∂xk
aij ∈ L∞(Q),

bi ∈ L∞(Q) and ∂xk
bi ∈ L∞(Q) for i, j, k = 1, . . . , N . We also suppose that

the operator ∂t +A is uniformly parabolic, i.e. there exists a constant η > 0
such that, for all (x, t) ∈ Q and ξ ∈ IRN ,

N
∑

i,j=1

aij(x, t)ξiξj ≥ η|ξ|2.

We further assume that f : Ω×]0, T [×IR → IR satisfies the Lp−Carathéodory
conditions, for some p > N + 2, and there exist continuous functions g± :
IR → IR such that, for a.e. (x, t) ∈ Q

f(x, t, s) ≤ g+(s) for s ≥ 0 and f(x, t, s) ≥ g−(s) for s ≤ 0. (1.2)

It is convenient, for the sequel, to suppose that all functions, which are
defined on Ω×]0, T [, have been extended by T–periodicity on Ω × IR.

In this paper we are concerned with the solvability of (1.1) when the
nonlinearity f lies in some sense to the left of the principal eigenvalue λ1 of
the linear problem











∂tu+ A(x, t, ∂x)u = λu in Q,
u(x, t) = 0 on Σ,

u(x, 0) = u(x, T ) in Ω.
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It was proven in [2] that the Dolph–type condition

lim sup
s→±∞

g±(s)

s
< λ1 (1.3)

guarantees the existence of a solution of (1.1). On the other hand, it does not
seem yet known whether the same conclusion holds under the more general
Hammerstein–type condition

lim sup
s→±∞

2G±(s)

s2
< λ1, (1.4)

where G±(s) =
∫ s
0 g±(σ)dσ for s ∈ IR. Our purpose here is to provide some

partial answers to this question. Of course, the main difficulty, in order to
use in this context conditions on the potential like (1.4), is due to the lack
of variational structure of problem (1.1); whereas the only known proof of
Hammerstein’s result, for a selfadjoint elliptic problem in dimension N ≥ 2,
relies on the use of variational methods. Accordingly, we will employ a
technique based on the construction of upper and lower solutions, which will
be obtained as solutions of some related, possibly one–dimensional, problems.
We stress that an important feature of the upper and lower solution method
is that it also provides information about the localization and, to a certain
extent, about the stability of the solutions. Yet, since we impose here rather
weak regularity conditions on the coefficients of the operator A and on the
domain Ω and we require no regularity at all on the function f , the classical
results in [11], [1], [3], [10] do not apply. Therefore, we will use the following
theorem recently proved in [4, Theorem 4.5]. Before stating it, we recall that
a lower solution α of (1.1) is a function α ∈ W 2,1

p (Q) (p > N + 2) such that











∂tα+ A(x, t, ∂x)α ≤ f(x, t, α) a.e. in Q,
α(x, t) ≤ 0 on Σ,

α(x, 0) ≤ α(x, T ) in Ω.

Similarly, an upper solution β of (1.1) is defined by reversing all the above
inequalities. A solution of (1.1) is a function u which is simultaneously a
lower and an upper solution.

Lemma 1.1 Assume that α is a lower solution and β is an upper solution
of (1.1), satisfying α ≤ β in Q. Then, there exist a minimum solution v
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and a maximum solution w of (1.1), with α ≤ v ≤ w ≤ β in Q. Moreover,
if α(·, 0) = 0 = β(·, 0) on ∂Ω, then the following holds: for every u0 ∈
W 2−2/p

p (Ω) ∩H1
0 (Ω), with α(·, 0) ≤ u0 ≤ v(·, 0) (resp. w(·, 0) ≤ u0 ≤ β(·, 0))

in Ω, the set Su0
of all functions u : Ω×[0,+∞[→ IR, with u ∈ W 2,1

p (Ω×]0, σ[)
for every σ > 0, satisfying











∂tu+ A(x, t, ∂x)u = f(x, t, u) a.e. in Ω × ]0,+∞[,
u(x, t) = 0 on ∂Ω × ]0,+∞[,

u(x, 0) = u0(x) in Ω
(1.5)

and α ≤ u ≤ v (resp. w ≤ u ≤ β) in Ω×]0,+∞[, is non–empty and
every u ∈ Su0

is such that lim
t→+∞

|u(·, t) − v(·, t)|∞ = 0 (resp. lim
t→+∞

|u(·, t) −
w(·, t)|∞ = 0).

Remark 1.1 We will say in the sequel that v (resp. w) is relatively attrac-
tive from below (resp. from above). Of course, this weak form of stability
can be considerably strenghthened provided that more regularity is assumed
in (1.1) (cf. [3]).

Remark 1.2 The condition α(·, 0) = 0 on ∂Ω is not restrictive. Indeed, if it
is not satisfied, we can replace α by the unique solution α, with α ≤ α ≤ v
in Q, of











∂tα + A(x, t, ∂x)α = f(x, t, α) + kρ(x, t, α, α) in Q,
α(x, t) = 0 on Σ,

α(x, 0) = α(x, T ) in Ω,

where kρ is the function associated to f by Lemma 3.3 in [4] and correspond-
ing to ρ = max{|α|∞, |β|∞}. A similar observation holds for β.

We start noting that Hammerstein’s result can be easily extended to a
special class of parabolic equations, which includes the heat equation.

Theorem 1.1 Assume that bi = 0, for i = 1, . . . , N , and suppose that there
exist constants c and q, with c > 0 and q ∈]1, 2N

N−2
[ if N ≥ 3, or q ∈]1,+∞[

if N = 2, such that

|g±(s)| ≤ |s|q−1 + c for s ∈ IR. (1.6)

Moreover, assume that condition (1.4) holds. Then, problem (1.1) has a so-
lution v and a solution w, satisfying v ≤ w, such that v is relatively attractive
from below and w is relatively attractive from above.
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We stress that this theorem completes, for what concerns the stability
information, the classical result of Hammerstein for the selfadjoint elliptic
problem















−
N
∑

i,j=1

∂xi
(aij(x)∂xj

u) = f(x, u) in Ω,

u = 0 on ∂Ω.

As already pointed out, we do not know whether a statement similar
to Theorem 1.1 holds for a general parabolic operator as that considered
in (1.1). The next two results provide some contributions in this direction,
although they do not give a complete answer to the posed question. In order
to state the former, we need to settle some notation. For each i = 1, . . . , N ,
denote by ]Ai, Bi[ the projection of Ω onto the xi–axis and set

ai = min
Q
aii and bi = |bi −

N
∑

j=1

∂xj
aji|∞.

Then, define

λ̂1 = max
i=1,...,N

{

(

π

Bi − Ai

)2

ai exp

(

− bi
ai

(Bi − Ai)

)}

.

Theorem 1.2 Assume

lim inf
s→±∞

2G±(s)

s2
< λ̂1. (1.7)

Then, the same conclusions of Theorem 1.1 hold.

The constant λ̂1 depends only on the coefficients of the operator A and on
the domain Ω. It is strictly positive and generally smaller than the principal
eigenvalue λ1; therefore, it provides an explicitly computable lower estimate
for λ1. Moreover, λ̂1 coincides with λ1 when N = 1, a11 = 1 and b1 = 0,
so that the equation in (1.1) is the one–dimensional heat equation. On the
other hand, it must be stressed that the restriction from above on a limit
superior required by (1.4) is replaced in (1.7) by a restriction from above
on a limit inferior. Furthermore, in Theorem 1.2 the growth condition (1.6)
is not needed anymore. We recall that conditions similar to (1.7) were first
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introduced in [6] for solving the one–dimensional two–point boundary value
problem

{

−u′′ = f(x, u) in ]A,B[,
u(A) = u(B) = 0

and were later used in [8] for studying the higher dimensional elliptic problem

{

−∆u = f(x, u) in Ω,
u = 0 on ∂Ω.

(1.8)

It is worth noticing at this point that, if the coefficients of the operator A
and the function f do not depend on t, then the same proof of Theorem 1.2
yields the solvability, under (1.7), of the, possibly non–selfadjoint, elliptic
problem















−
N
∑

i,j=1

∂xi
(aij(x)∂xj

u) +
N
∑

i=1

bi(x)∂xi
u = f(x, u) in Ω,

u = 0 on ∂Ω.

(1.9)

This observation provides an extension of the result in [8] to the more general
problem (1.9), which could not be directly handled by the approach intro-
duced in that paper. A preliminary version of Theorem 1.2 was announced
in [9].

In our last result we show that the constant λ̂1 considered in Theorem
1.2 can be replaced by the principal eigenvalue λ1, provided that a further
control on the functions g± is assumed.

Theorem 1.3 Assume

lim sup
s→±∞

g±(s)

s
≤ λ1 (1.10)

and

lim inf
s→±∞

2G±(s)

s2
< λ1. (1.11)

Then, the same conclusions of Theorem 1.1 hold.

We point out that the sole condition (1.10), which is a weakened form
of (1.3), is not sufficient to yield the solvability of (1.1) (cf. [2]). Theorem
1.3 extends to the parabolic setting a previous result obtained in [5] for the
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selfadjoint elliptic problem (1.8). By the same proof one also obtains the
solvability, under (1.10) and (1.11), of the, possibly non–selfadjoint, elliptic
problem (1.9). We stress that, although the proof of Theorem 1.3 exploits
some ideas borrowed from [5], nevertheless from the technical point of view
it is much more delicate, due to the different regularity that solutions of (1.1)
exhibit with respect to the space and the time variables.

2 Proofs

2.1 Preliminaries

In this subsection we state some results concerning the linear problem asso-
ciated to (1.1), which apparently are not well–settled in the literature, when
low regularity conditions are assumed on the coefficients of the operator A
and on the domain Ω.

We start with some notation. Fixed t1, t2, with t1 ≤ t2, and given u, v ∈
C1,0(Ω × [t1, t2]), we write:

• u ≥ v if, for every (x, t) ∈ Ω × [t1, t2], u(x, t) ≥ v(x, t);

• u>>v if, for every (x, t) ∈ Ω×[t1, t2], u(x, t) > v(x, t) and, for every (x, t) ∈
∂Ω × [t1, t2], either u(x, t) > v(x, t), or u(x, t) = v(x, t) and ∂νu(x, t) <
∂νv(x, t), where ν = (ν0, 0) ∈ IRN+1, ν0 ∈ IRN being the outer normal to
Ω at x ∈ ∂Ω.

Proposition 2.1 There exist a number λ1 > 0 and functions ϕ1, ϕ
∗

1 ∈
W 2,1

p (Q), for every p, satisfying, respectively,























∂tϕ1 −
N
∑

i,j=1

∂xi
(aij(x, t)∂xj

ϕ1) +
N
∑

i=1

bi(x, t)∂xi
ϕ1 = λ1ϕ1 in Q,

ϕ1(x, t) = 0 on Σ,
ϕ1(x, 0) = ϕ1(x, T ) in Ω

and






















−∂tϕ
∗

1 −
N
∑

i,j=1

∂xj
(aij(x, t)∂xi

ϕ∗

1) −
N
∑

i=1

∂xi
(bi(x, t)ϕ

∗

1) = λ1ϕ
∗

1 in Q,

ϕ∗

1(x, t) = 0 on Σ,
ϕ∗

1(x, 0) = ϕ∗

1(x, T ) in Ω.
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Moreover, the following statements hold:
(i) ϕ1>> 0 and ϕ∗

1>> 0;

(ii) if ψ is a solution of






















∂tψ −
N
∑

i,j=1

∂xi
(aij(x, t)∂xj

ψ) +
N
∑

i=1

bi(x, t)∂xi
ψ = λ1ψ in Q,

ψ(x, t) = 0 on Σ,
ψ(x, 0) = ψ(x, T ) in Ω,

or, respectively, of






















−∂tψ −
N
∑

i,j=1

∂xj
(aij(x, t)∂xi

ψ) −
N
∑

i=1

∂xi
(bi(x, t)ψ) = λ1ψ in Q,

ψ(x, t) = 0 on Σ,
ψ(x, 0) = ψ(x, T ) in Ω,

then ψ = cϕ1, or, respectively, ψ = cϕ∗

1, for some c ∈ IR;

(iii) λ1 is the smallest number λ for which the problems






















∂tu−
N
∑

i,j=1

∂xi
(aij(x, t)∂xj

u) +
N
∑

i=1

bi(x, t)∂xi
u = λu in Q,

u(x, t) = 0 on Σ,
u(x, 0) = u(x, T ) in Ω

and






















−∂tu−
N
∑

i,j=1

∂xj
(aij(x, t)∂xi

u) −
N
∑

i=1

∂xi
(bi(x, t)u) = λu in Q,

u(x, t) = 0 on Σ,
u(x, 0) = u(x, T ) in Ω

have nontrivial solutions.

Proposition 2.1 is a immediate consequence of [4, Proposition 2.3].

Proposition 2.2 Fix p > N + 2. Let q ∈ L∞(Q) satisfy ess supQq < λ1.
Then, for every f ∈ Lp(Q) the problem











∂tu+ A(x, t, ∂x)u = qu+ f(x, t) in Q,
u(x, t) = 0 on Σ,

u(x, 0) = u(x, T ) in Ω
(2.1)
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has a unique solution u ∈ W 2,1
p (Q) (which is asymptotically stable). More-

over, there exists a constant C > 0, independent of f , such that

|u|W 2,1
p

≤ C |f |p. (2.2)

Finally, if f ≥ 0 a.e. in Q, with strict inequality on a set of positive measure,
then u>> 0.

Proof. Fix a constant k ≥ 0 such that

ess infQ(k − q) > (2η)−1(maxi=1,...,N |bi|∞),

where η is the constant of uniform parabolicity of the operator ∂t +A. Then,
Proposition 2.1 in [4] guarantees that, for every f ∈ Lp(Q), the problem











∂tv + A(x, t, ∂x)v + (k − q)v = f(x, t) in Q,
v(x, t) = 0 on Σ,

v(x, 0) = v(x, T ) in Ω.
(2.3)

has a unique solution v ∈ W 2,1
p (Q) and, therefore, v ∈ C1+µ,µ(Q), for some

µ > 0. Let f ∈ Lp(Q) be given and let v be the corresponding solution
of (2.3). Set β = v + sϕ1, where s > 0 is such that β ≥ 0 and s(λ1 −
ess supQq)ϕ1 ≥ kv. We have

∂tβ + A(x, t, ∂x)β = qβ + f + s(λ1 − q)ϕ1 − kv ≥ qβ + f a.e. in Q,

that is β is an upper solution of (2.1). In a quite similar way we define a lower
solution α of (2.1), with α ≤ 0. Therefore Lemma 1.1 yields the existence of
a solution u ∈ W 2,1

p (Q) of problem (2.1), with α ≤ u ≤ β. The uniqueness of
the solution is a direct consequence of the parabolic maximum principle (see
e.g. [4, Proposition 2.2]) and its asymptotic stability follows from [4, Theorem
4.6]. Accordingly, the operator ∂t + A : W 2,1

p (Q) → Lp(Q) is invertible and
the open mapping theorem implies that its inverse is continuous, that is,
(2.2) holds. Finally, the last statement follows from the parabolic strong
maximum principle, as soon as one observes that if f ≥ 0 a.e. in Q, then
α = 0 is a lower solution of (2.1).
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Proposition 2.3 For i = 1, 2, let qi ∈ L∞(Q) be such that q1 ≤ q2 a.e. in
Q and let ui be nontrivial solutions of











∂tui + A(x, t, ∂x)ui = qiui in Q,
ui(x, t) = 0 on Σ,

ui(x, 0) = ui(x, T ), in Ω,

respectively. If u2 ≥ 0, then q1 = q2 a.e. in Q and there exists a constant
c ∈ IR such that u1 = c u2.

Proof. We can assume, without loss of generality, that u+
1 6= 0. Since

∂tu2 + A(x, t, ∂x)u2 + q−2 u2 = q+
2 u2 ≥ 0 a.e. in Q,

we have u2>> 0. If we set c = min{d ∈ IR | d u2 ≥ u1} and v = c u2 − u1, we
get, as c > 0 and v ≥ 0,

∂tv + A(x, t, ∂x)v + q−1 v = q+
1 v + c (q2 − q1) u2 ≥ 0 a.e. in Q

and hence either v >> 0, or v = 0. The minimality of c actually yields v = 0
and therefore u1 = cu2. This finally implies

0 = ∂tv + A(x, t, ∂x)v = (q2 − q1) c u2 a.e. in Q

and therefore q1 = q2 a.e. in Q.

2.2 Proof of Theorem 1.1

We indicate how to build an upper solution β of (1.1), with β ≥ 0; a lower
solution α, with α ≤ 0, can be constructed in a similar way. If there exists
a constant β ≥ 0 such that g+(β) ≤ 0, β is an upper solution of (1.1).
Therefore, suppose that g+(s) > 0 for s ≥ 0, and set

h(s) =

{

g+(s) if s ≥ 0,
g+(0) if s < 0.

(2.4)

Let us consider the elliptic problem














−
N
∑

i,j=1

∂xi
(aij(x)∂xj

u) = h(u) in Ω,

u = 0 on ∂Ω.

(2.5)
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From conditions (1.4) and (1.6), it follows that (2.5) admits a solution u ∈
H1

0 (Ω). A bootstrap argument, like in [7], shows that u ∈ W 2
p (Ω), for all

finite p, and the strong maximum principle implies that u>> 0. The function
β, defined by setting β(x, t) = u(x) for (x, t) ∈ Q, is by (1.2) an upper
solution of (1.1).

2.3 Proof of Theorem 1.2

Again we show how to construct an upper solution β of (1.1), with β ≥ 0;
a lower solution α, with α ≤ 0, being obtained similarly. Exactly as in the
proof of Theorem 1.1, we can reduce ourselves to the case where g+(s) > 0
for s ≥ 0. Then, we define a function h as in (2.4). The remainder of the
proof is divided in two steps: in the former, we study some simple properties
of the solutions of a second order ordinary differential equation related to
problem (1.1); in the latter, we use the facts established in the previous step
for constructing an upper solution of the original parabolic problem.

Step 1. Let A < B be given constants and let p, q : [A,B] → IR be
functions, with p absolutely continuous and q continuous, satisfying

0 < p0 := min
[A,B]

p(x) ≤ max
[A,B]

p(x) =: p∞ (2.6)

and
0 < q0 := min

[A,B]
q(x) ≤ max

[A,B]
q(x) =: q∞. (2.7)

Let also h : IR → IR be a continuous function and set H(s) =
∫ s
0 h(σ) dσ for

s ∈ IR. Consider the initial value problem











−(pu′)′ = qh(u),
u(A+B

2
) = d,

u′(A+B
2

) = 0,
(2.8)

where d is a real parameter. By a solution of (2.8) we mean a function u
of class C1, with pu′ of class C1, defined on some interval I ⊂ [A,B], with
A+B

2
∈

◦

I, which satisfies the equation on I and the initial conditions.
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Claim. Assume that there are constants c, d, with 0 ≤ c < d, such that

h(s) > 0 for s ∈ [c, d] (2.9)

and
∫ d

c

dσ
√

H(d) −H(σ)
≥
(√

2 p∞q∞
p0

)

B − A

2
. (2.10)

Then, there exists a solution u of (2.8), which is defined on [A,B] and satisfies

c ≤ u(x) ≤ d for x ∈ [A,B],

u′(x) > 0 for x ∈ [A,
A+B

2
[ and u′(x) < 0 for x ∈]

A +B

2
, B].

Proof of the Claim. Let u be a maximal solution of (2.8). Note that, by
(2.6), (2.7) and (2.9), u has a local maximum at the point A+B

2
and, if

]ω−, ω+[ denotes the maximal interval included in ]A,B[ where u(x) ∈]c, d],
we have

u′(x) > 0 for x ∈ ]ω−,
A+B

2
[ and u′(x) < 0 for x ∈]A+B

2
, ω+[. (2.11)

We want to prove that ω− = A and ω+ = B. Assume, by contradiction, that

ω+ < B. (2.12)

Similarly one should argue if ω− > A. From (2.11) we derive that u is
decreasing on [A+B

2
, ω+[ and, by the definition of ω+, we have

lim
x→ω+

u(x) = c =: u(ω+).

Now, pick x ∈ [A+B
2
, ω+[, multiply the equation in (2.8) by −pu′ and integrate

between A+B
2

and x. Taking into account that, by (2.9) and (2.11), h(u)u′ < 0
on ]A+B

2
, ω+[, we obtain, using (2.6) and (2.7) as well,

1
2
(p(x)u′(x))2 = −

∫ x

A+B
2

pqh(u)u′dt

≤ p∞q∞
(

H
(

u
(

A+B
2

))

−H(u(x))
)

= p∞q∞ (H(d) −H(u(x))) .
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By (2.6) and (2.11), we have, for each x ∈]A+B
2
, ω+[,

(0 <) |u′(x)|2 ≤ 2

(

p∞q∞
p0

2

)

(H(d) −H(u(x)))

and hence
−u′(x)

√

H(d) −H(u(x))
≤

√
2 p∞q∞
p0

.

Integrating this relation between A+B
2

and ω+ and changing variable, we get
by (2.12)

∫ d

c

dσ
√

H(d) −H(σ)
<

(√
2p∞q∞
p0

)

B − A

2
.

Then, condition (2.10) yields a contradiction and the conclusions of the Claim
follow.

Step 2. We prove now that problem (1.1) has an upper solution β ∈ C2,1(Q),
with β >> 0. Assume, without loss of generality, that

max
i=1,...,N

{

(

π

Bi − Ai

)2

ai exp

(

− bi
ai

(Bi − Ai)

)}

is attained at i = 1 and set, for the sake of simplicity,

]A,B[ := ]A1, B1[,

a := a1 = min
Q
a11

and

b := b1 = |b1 −
N
∑

j=1

∂xj
aj1|∞.

Note that
a > 0 and b ≥ 0. (2.13)

Let us set, for x ∈ [A,B],

p(x) := exp
(

− b
a

∣

∣

∣x− A+B
2

∣

∣

∣

)

and q(x) := 1
a
p(x)
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and consider the ordinary differential equation

−(pu′)′ = q h(u), (2.14)

where h is defined in (2.4). It is clear that p, q and h satisfy, respectively,
(2.6), (2.7) and (2.9), for any fixed c, d, with 0 ≤ c < d. Observe that (2.10)
is also fulfilled, for c = 0 and for some d > 0. Indeed, since (1.7) implies that

lim inf
s→+∞

(2H(s) − λ̂1s
2) = −∞,

we can find a sequence (dn)n, with dn → +∞, such that, for each n,

(0 <) H(dn) −H(s) <
λ̂1

2
(d2

n − s2) for s ∈ [0, dn[

and hence

∫ dn

0

dσ
√

H(dn) −H(σ)
>

√

2

λ̂1

∫ dn

0

dσ
√

d2
n − σ2

=

√

2

λ̂1

π

2
=

(√
2p∞q∞
p0

)

B − A

2
.

Therefore, taking d := dn, for some fixed n, we conclude that (2.10) holds.
Accordingly, by the Claim, there exists a solution u of (2.14), which is defined
on [A,B] and satisfies

u(x) > 0 for x ∈]A,B[, (2.15)

u′(x) > 0 for x ∈ [A, A+B
2

[ and u′(x) < 0 for x ∈ ]A+B
2
, B].

(2.16)

From the definition of p it follows that u is of class C2 on [A,B]\
{

A+B
2

}

and
satisfies the equation

−a u′′ + b sign
(

x− A+B
2

)

u′ = h(u), (2.17)

everywhere on [A,B] \
{

A+B
2

}

. Actually, since u′(A+B
2

) = 0, a direct in-

spection of (2.17) shows that u is of class C2 and satisfies equation (2.17)
everywhere on [A,B]. Moreover, using (2.13), (2.15), (2.16) and (2.9), with
c = 0 and any d > 0, we derive from (2.17)

u′′(x) = 1
a

(

b sign
(

x− A+B
2

)

u′(x) − h(u(x))
)

< 0 on [A,B]. (2.18)
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Now, we set

β(x1, . . . , xN , t) = u(x1) for (x1 . . . xN , t) ∈ Q.

We have that β ∈ C2,1(Q) and β >> 0. Let us check that β is an upper solution
of problem (1.1). Indeed, using (2.13), (2.17), (2.18) and (1.2), as well as the
definitions of a and b, we have, for each (x1, . . . , xN , t) ∈ Q,

∂tβ(x1, ..., xN , t) −
N
∑

i,j=1

aij(x1, ..., xN , t) ∂xixj
β(x1, ..., xN , t) +

+
N
∑

i=1

(bi(x1, ..., xN , t) −
N
∑

j=1

∂xj
aji(x1, ..., xN , t)) ∂xi

β(x1, ..., xN , t)

= −a11(x1, ..., xN , t)u
′′(x1) + (b1(x1, ..., xN , t) −

N
∑

j=1

∂xj
aj1(x1, ..., xN , t))u

′(x1)

≥ −au′′(x1) + b sign(x1 − A+B
2

)u′(x1) = h(u(x1)) = g+(u(x1))

≥ f(x1, ..., xN , t, β(x1, ..., xN , t)).

This concludes the proof of the Theorem 1.2.

2.4 Proof of Theorem 1.3

Again we describe how to build an upper solution β of (1.1), with β ≥ 0; a
lower solution α, with α ≤ 0, being constructed in a similar way. As in the
proof of Theorem 1.1, we can reduce ourselves to the case where g+(s) > 0
for s ≥ 0. Then, we define a function h as in (2.4), which by (1.10) and
(1.11) satisfies

lim sup
s→+∞

h(s)

s
≤ λ1 (2.19)

and

lim inf
s→+∞

2H(s)

s2
< λ1. (2.20)

Let us consider the problem










∂tu+ A(x, t, ∂x)u = h(u) in Q,
u(x, t) = 0 on Σ,

u(x, 0) = u(x, T ) in Ω
(2.21)
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and let us prove that it admits at least one solution. Observe that, since
h(s) > 0 for every s, any solution u of (2.21) is such that u>> 0 and then,
by condition (1.2), is an upper solution of (1.1).

Fix p > N + 2 and associate to (2.21) the solution operator S : C0(Q) →
C0(Q) which sends any function u ∈ C0(Q) onto the unique solution v ∈
W 2,1

p (Q) of










∂tv + A(x, t, ∂x)v = h(u) in Q,
v(x, t) = 0 on Σ,

v(x, 0) = v(x, T ) in Ω.

It follows from Proposition 2.2 that S is completely continuous and its fixed
points are precisely the solutions of (2.21). Let us consider the equation

u = µSu, (2.22)

with µ ∈ [0, 1], which corresponds to










∂tu+ A(x, t, ∂x)u = µh(u) in Q,
u(x, t) = 0 on Σ,

u(x, 0) = u(x, T ) in Ω.
(2.23)

By the Leray–Schauder degree theory, equation (2.22), with µ = 1, and
therefore problem (2.21), is solvable, if there exists an open bounded set O
in C0(Q), with 0 ∈ O, such that no solution of (2.22), or equivalently of
(2.23), for any µ ∈ [0, 1], belongs to the boundary of O. The remainder of
this proof basically consists of building such a set O.

Claim 1. Let (un)n be a sequence of solutions of










∂tun + A(x, t, ∂x)un = µnh(un) in Q,
un(x, t) = 0 on Σ,

un(x, 0) = un(x, T ) in Ω,
(2.24)

with µn ∈ [0, 1], such that |un|∞ → +∞. Then, possibly passing to subse-
quences,

un

|un|∞
→ v in W 2,1

p (Q),

where v = c ϕ1, for some c > 0, and

h(un)

|un|∞
→ λ1v in Lp(Q).

EJQTDE, 1999 No. 9, p. 16



Proof of Claim 1. Let us write, for s ∈ IR,

h(s) = q(s) s+ r(s),

with q, r continuous functions such that

0 ≤ q(s) ≤ λ1 (2.25)

and
r(s)

s
→ 0, as |s| → +∞. (2.26)

Let us set, for each n,

vn =
un

|un|∞
,

where vn satisfies











∂tvn + A(x, t, ∂x)vn = µnq(un)vn + µnr(un)/|un|∞ in Q,
vn(x, t) = 0 on Σ,

vn(x, 0) = vn(x, T ) in Ω.
(2.27)

The sequence (vn)n is bounded in W 2,1
p (Q) and therefore, possibly passing

to a subsequence, it converges weakly in W 2,1
p (Q) and strongly in C1+α,α(Q),

for some α > 0, to a function v ∈ W 2,1
p (Q), with |v|∞ = 1. We can also

suppose that µn → µ0 ∈ [0, 1] and q(un) converges in L∞(Q), with respect
to the weak* topology, to a function q0 ∈ L∞(Q), satisfying by (2.25)

0 ≤ q0(x, t) ≤ λ1 (2.28)

a.e. in Q. Moreover, by (2.26), we have

r(un(x, t))

|un|∞
→ 0 (2.29)

uniformly a.e. in Q. The weak continuity of the operator ∂t +A : W 2,1
p (Q) →

Lp(Q) implies that v satisfies











∂tv + A(x, t, ∂x)v = µ0q0v in Q,
v(x, t) = 0 on Σ,

v(x, 0) = v(x, T ) in Ω.
(2.30)
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Now, if we set q1 = µ0q0, q2 = λ1, v1 = v and v2 = ϕ1, Proposition 2.3 yields
µ0q0 = λ1 a.e. in Q, so that, by (2.28), µ0 = 1, and v = cϕ1, for some c > 0.
We also have

∫

Q
|λ1 − q(un)|p ≤ |λ1 − q(un)|p−1

∞

∫

Q
|λ1 − q(un)|

≤ λp−1
1

∫

Q
(λ1 − q(un)) → 0,

i.e. q(un) → λ1 in Lp(Q), and therefore, by (2.29), h(un)/|un|∞ → λ1v in
Lp(Q). Finally, Proposition 2.2 implies that vn → v in W 2,1

p (Q).

Claim 2. There exists a sequence (Sn)n, with Sn → +∞, such that, if u is
a solution of (2.23), for some µ ∈ [0, 1], then maxQ u 6= Sn, for every n.

Proof of Claim 2. By (2.20), we can find a sequence (sn)n, with sn → +∞,
and a constant ε > 0, such that

λ1 −
2H(sn)

s2
n

> ε (2.31)

for every n. Assume, by contradiction, that there exist a subsequence of
(sn)n, which we still denote by (sn)n, and a sequence (un)n of solutions of
(2.24) such that

max
Q

un = un(xn, tn) = sn,

where (xn, tn) ∈ Ω × [0, T ]. Since |un|∞ → +∞, we can suppose by Claim 1
that vn = un/|un|∞ → v in W 2,1

p (Q), and therefore in C1,0(Q), with v = cϕ1,
for some c > 0, and

|un|−1
∞
|λ1un − h(un)|p → 0. (2.32)

There is also a constant K > 0 such that

|un|−1
∞
|λ1un − h(un)|∞ ≤ K (2.33)

and
|∇xvn|∞ ≤ K, (2.34)

for every n. Moreover, we have

|∂tvn − ∂tv|p → 0 (2.35)
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and, possibly for a subsequence,

xn → x0 and tn → t0,

with (x0, t0) ∈ Ω × [0, T ], because (x0, t0) is a maximum point of v. Using
Fubini’s theorem and possibly passing to subsequences, we also obtain from
(2.32) and (2.35), respectively,

|un|−1
∞

(λ1un(·, t) − h(un(·, t))) → 0, (2.36)

∂tvn(·, t) − ∂tv(·, t) → 0 (2.37)

in Lp(Ω), for a.e. t ∈ [0, T ], and

|un|−1
∞

(λ1un(x, ·) − h(un(x, ·))) → 0, (2.38)

∂tvn(x, ·) − ∂tv(x, ·) → 0 (2.39)

in Lp(0, T ), for a.e. x ∈ Ω. Moreover, we have that

∫ T

0
|∂tv(x, τ)|2 dτ is finite (2.40)

for a.e. x ∈ Ω. Let us write

λ1

2
s2

n −H(sn) =
λ1

2
u2

n(xn, tn) −H(un(xn, tn))

=

[

λ1

2

(

u2
n(xn, tn) − u2

n(x, tn)
)

−H(un(xn, tn)) +H(un(x, tn))

]

+

[

λ1

2

(

u2
n(x, tn) − u2

n(x, t)
)

−H(un(x, tn)) +H(un(x, t))

]

+

[

λ1

2

(

u2
n(x, t) − u2

n(x
∗, t)

)

−H(un(x, t)) +H(un(x
∗, t))

]

, (2.41)

where the choices of points t ∈ [0, T ], such that (2.36) and (2.37) hold, x ∈ Ω,
such that (2.38), (2.39) and (2.40) hold, and x∗ ∈ ∂Ω will be specified later.

Let us observe that, for each n, we can find a sequence (w
(n)
k )k in C1(Q)

such that w
(n)
k → un in W 1

p (Q) and therefore in C0(Q), since p > N+2. This

implies in particular that w
(n)
k → un in L∞(Q) and ∂tw

(n)
k → ∂tun in Lp(Q).

Hence, using Fubini’s theorem and possibly passing to a subsequence, we get
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∂tw
(n)
k (x, ·) → ∂tun(x, .) in Lp(0, T ) for a.e. x ∈ Ω. Hence, it follows that, for

each n,
(

λ1w
(n)
k (x, ·) − h(w

(n)
k (x, ·))

)

∂tw
(n)
k (x, ·)

→ (λ1un(x, ·) − h(un(x, ·))) ∂tun(x, ·)

in Lp(0, T ), for a.e. x ∈ Ω, and therefore, for a.e. t ∈ [0, T ],

λ1

2

(

u2
n(x, tn) − u2

n(x, t)
)

− (H(un(x, tn)) −H(un(x, t)))

= lim
k→+∞

[

λ1

2

(

w
(n)
k

2
(x, tn) − w

(n)
k

2
(x, t)

)

−
(

H(w
(n)
k (x, tn)) −H(w

(n)
k (x, t))

)]

= lim
k→+∞

∫ tn

t

(

λ1w
(n)
k (x, τ) − h(w

(n)
k (x, τ))

)

∂tw
(n)
k (x, τ) dτ

=
∫ tn

t
(λ1un(x, τ) − h(un(x, τ))) ∂tun(x, τ) dτ. (2.42)

Moreover, for each n, we have H(un(·, t)) ∈ C1(Ω) for every t ∈ [0, T ] and
hence, by (2.33) and (2.34), we obtain, for every x ∈ Ω,

|un|−2
∞

∣

∣

∣

∣

∣

λ1

2

(

u2
n(xn, tn) − u2

n(x, tn)
)

− (H(un(xn, tn)) −H(un(x, tn)))

∣

∣

∣

∣

∣

≤
∫ 1

0

∣

∣

∣λ1vn(σn(τ), tn) − |un|−1
∞
h(un(σn(τ), tn))

∣

∣

∣×
×|∇xvn(σn(τ), tn)| |σ′

n(τ)| dτ
≤ K2 `(σn), (2.43)

where σn is a path, joining xn to x and having range contained in Ω, and
`(σn) denotes its length. Because xn → x0, with xn, x0 ∈ Ω, and x can be
chosen in a dense subset of Ω, we can suppose that

K2`(σn) <
ε

4
, (2.44)

for all large n. Fix x ∈ Ω such that (2.38), (2.39), (2.40), (2.42) and (2.44)
hold. For every t ∈ [0, T ], we derive from (2.33), (2.39) and (2.42)

|un|−2
∞

∣

∣

∣

∣

∣

λ1

2

(

u2
n(x, tn) − u2

n(x, t)
)

− (H(un(x, tn)) −H(un(x, t)))

∣

∣

∣

∣

∣
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≤
∣

∣

∣

∣

∫ tn

t

∣

∣

∣λ1vn(x, τ) − |un|−1
∞
h(un(x, τ))

∣

∣

∣ |∂tvn(x, τ)| dτ
∣

∣

∣

∣

≤ K
∫ tn

t
|∂tvn(x, τ)| dτ

≤ K
∫ T

0
|∂tvn(x, τ) − ∂tv(x, τ)| dτ +K

∫ tn

t
|∂tv(x, τ)| dτ

≤ ε

4
+K |tn − t|1/2

(

∫ T

0
|∂tv(x, τ)|2 dτ

)1/2

(2.45)

for all large n. Since tn → t0 and t can be chosen in a dense subset of [0, T ],
we can pick t such that

K

(

∫ T

0
|∂tv(x, τ)|2 dτ

)1/2

|tn − t|1/2 <
ε

4
, (2.46)

for all large n. Notice that, at this point, x ∈ Ω and t ∈ [0, T ] have been
fixed. Next, let B be a ball of radius R, centered at x and containing Ω, and
set, for each n

γn(x) =

{

|un|−1
∞

|λ1un(x, t) − h(un(x, t))| if x ∈ Ω,
|un|−1

∞
h(0) if x ∈ B \ Ω .

From (2.38), it follows that γn → 0 in L1(B). We now assume N ≥ 2;
the case where N = 1 can be dealt with in a similar (and even simpler)
way. We introduce spherical coordinates in IRN centered at x. Denoting by
(ρ, φ1, . . . , φN−2, ψ) with ρ ∈ [0, R], (φ1, . . . , φN−2) ∈ [0, π]N−2, ψ ∈ [0, 2π] the
spherical coordinates of a point x ∈ B and by Φ this change of coordinates,
we get

∫

[0,π]N−2×[0,2π]

(

∫ R

0
γn(Φ)| det Φ′|dρ

)

dφ1 . . . dφN−2dψ

=
∫

B
γndx→ 0 ,

where | detΦ′| = ρN−1(sin φ1)
N−2(sin φ2)

N−3 · . . . · sinφN−2. Hence, possibly
passing to a subsequence, we have

∫ R

0
|γn(Φ)| ρN−1dρ→ 0
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for a.e. (φ1, . . . , φN−2, ψ) ∈ [0, π]N−2 × [0, 2π]. Passing to a further subse-
quence, we also have that, for a.e. fixed (φ1, . . . , φN−2, ψ),

γn(Φ) → 0

for a.e. ρ ∈ [0, R]. On the other hand, the functions γn are continuous and
uniformly bounded, by the linear growth of h, and therefore, by Lebesgue’s
theorem,

∫ R

0
γn(Φ)dρ→ 0

for a.e. (φ1, . . . , φN−2, ψ). This means that
∫

[x,y]
γn → 0

for a.e. y ∈ ∂B. Denoting by x∗ the first intersection point of [x, y] with ∂Ω,
we obtain

∫ 1

0
|un|−1

∞
|λ1un(x∗ + τ(x− x∗), t) − h(un(x

∗ + τ(x− x∗), t))| dτ → 0 .

Hence, using (2.34) and (2.36), we have

|un|−2
∞

∣

∣

∣

∣

∣

λ1

2

(

u2
n(x, t) − u2

n(x
∗, t)

)

− (H(un(x, t)) −H(un(x
∗, t)))

∣

∣

∣

∣

∣

=
∫ 1

0

∣

∣

∣λ1vn(x∗ + τ(x− x∗), t) − |un|−1
∞
h(un(x∗ + τ(x− x∗), t))

∣

∣

∣×
× |∇xvn(x∗ + τ(x− x∗), t) · (x− x∗)| dτ

≤ K| x− x∗|
∫ 1

0
|λ1vn(x∗ + τ(x− x∗), t) +

−|un|−1
∞
h(un(x∗ + τ(x− x∗), t))

∣

∣

∣ dτ <
ε

4
(2.47)

for all large n. Combining the above estimates (from (2.41) to (2.47)), we
get a contradiction with (2.31). Accordingly, we take as (Sn)n a tail–end of
(sn)n.

We are now ready to prove the existence of a solution of (2.21). Let us
define the following open bounded set in C0(Q), with 0 ∈ O,

O =
{

u ∈ C0(Q) | − Sn < u(x, t) < Sn for every (x, t) ∈ Q
}

,
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where Sn, for any fixed n, comes from Claim 2. Let u be a solution of (2.23),
for some µ ∈ [0, 1], such that u ∈ O. Observing that any solution u of (2.23),
for any µ ∈]0, 1], satisfies u>> 0 and using Claim 2, we conclude that u ∈ O.
Then, the homotopy invariance of the degree yields the existence of a solution
in O of (2.23) for µ = 1, that is a solution of problem (2.21).
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