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ON PARAMETRIZED PROBLEMS WITH NON-LINEAR

BOUNDARY CONDITIONS

MIKLOS RONTO AND NATALYA SHCHOBAK

Abstract. We consider a parametrized boundary-value problem containing
an unknown parameter both in the non-linear ordinary differential equations
and in the non-linear boundary conditions. By using a suitable change of
variables, we reduce the original problem to a family of those with linear
boundary conditions plus some non-linear algebraic determining equations.
We construct a numerical-analytic scheme suitable for studying the solutions
of the transformed boundary-value problem.
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1. Introduction

The parametrized boundary value problems (PBVPs) were studied analytically
earlier mostly in the case when the parameters are contained only in the differential
equation (see, e.g. [1], [2]).

The analysis of the literature concerning the theory of boundary value problems
(BVPS) shows that a lot of numerical methods (shooting, collocation, finite dif-
ference methods) are used for finding the solutions of BVPs and PBVPs as well.
However, we note that the numerical methods appear only in the context when
the existence of a solution of the given BVP or PBVP is supposed (see, e.g. [3], [4],
[5], [6], [7] ).

The boundary value problems with parameters both in the non-linear differential
equations and in the linear boundary boundary conditions were investigated in [8],
[9], [10], [11], [12], [13] by using the so called numerical-analytic method based upon
successive approximations [8], [13].

According to the basic idea of the method mentioned the given boundary-value
problem (BVP) is replaced by a problem for a ”perturbed” differential equation con-
taining some new artificially introduced parameter, whose numerical value should
be determined later. The solution of the modified problem is sought for in the
analytic form by successsive iterations with all iterations depending upon both the
artificially introduced parameter and the parameter containing in the given BVP.

As for the way how the modified problem is constructed, it is essential that the
form of the ”perturbation term”, depending on the original differential equation
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and boundary condition, yields a certain system of algebraic or transcendental ”de-
termining equations”, which give the numerical values as well as for the artificially
introduced parameters and for the parameters of the given BVP.

By studying these determining equations, one can establish existence results for
the original PBVP. The numerical-analytic techniqueed described above was used
to different types of parametrized boundary-value problems. Namely, in [8], [13]
were studied the following two-point PBVPs :





dx

dt
= f(t, x), t ∈ [0, T ], x, f ∈ R

n,

Ax(0) + λCx(T ) = d, det C 6= 0, λ ∈ R,

x1(0) = x10,

the PBVPs with nonfixed right boundary :




dx

dt
= f(t, x), t ∈ [0, λ], x, f ∈ R

n,

Ax(0) + Cx(λ) = d, det C 6= 0, λ ∈ (0, T ],
x1(0) = x10,





dx

dt
= f(t, x), t ∈ [0, λ2], x, f ∈ R

n,

λ1Ax(0) + Cx(λ2) = d, det C 6= 0, λ1 ∈ R, λ2 ∈ (0, T ],
x1(0) = x10, x2(0) = x20,

and the PBVP of form




dx

dt
= f(t, x), t ∈ [0, T ], x, f ∈ R

n,

λ1Ax(0) + λ2Cx(T ) = d, det C 6= 0, λ1, λ2 ∈ R,

x1(0) = x10, x2(0) = x20,

The paper [9] deals with the two-point PBVP




dx

dt
= f(t, x) + λ1g(t, x), t ∈ [0, T ], x, f ∈ R

n,

Ax(0) + λ2Cx(T ) = d, det C 6= 0, λ1, λ2 ∈ R,

x1(0) = x10, x2(0) = x20.

In [10], [11] a scheme of the numerical-analytic method of successive approximations
was given for studying the solutions of PBVP






dx

dt
= f(t, x, λ1), t ∈ [0, λ2], x, f ∈ R

n,

λ1Ax(0) + C(λ1)x(λ2) = d(λ2), det C 6= 0, λ1 ∈ R, λ2 ∈ (0, T ],
x1(0) = x10, x2(0) = x20.

In the paper [12] it was studied the three-point PBVP of the form




dx

dt
= f(t, x, λ1), t ∈ [0, λ2], x, f ∈ R

n,

Ax(0) + A1x(t1) + Cx(λ2) = d(λ1), det C 6= 0, λ1 ∈ R, λ2 ∈ (0, T ],
x1(0) = x10, x2(0) = x20.

It should be noted, that the PBVPs mentioned above are subjected to linear bound-
ary conditions. In [18], [8], [13] the methodology of the numerical-analytic method
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was extended in order to make it possible to study the non-linear two-point bound-
ary value problem of the form

{
dy

dt
= f(t, y(t)), t ∈ [0, T ], y, f ∈ R

n,

g(y(0), y(T )) = 0, g ∈ R
n,

with non-linear boundary conditions, for which purpose a general non-linear change
of variable was introduced in the given equation.

In the paper [14], it was suggested to use a simpler substitution, which, as
was shown, essentially facilitates the application of the numerical-analytic method
based upon successive approximations. In particular all the assumptions for the
applicability of the method are formulated in terms of the original problem, and
not the transformed one. It was established, that for the non-linear boundary-value
problem with separated non-linear boundary conditions of the form

{
dx

dt
= f(t, x(t)), t ∈ [0, T ], x, f ∈ R

n,

x(T ) = a(x(0)), a ∈ R
n,

the numerical-analytic method can be applied without any change of variables.
The similar results were obtained in [15] for problems with separated non-linear

boundary conditions of form
{

dx

dt
= f(t, x(t)), t ∈ [0, T ], x, f ∈ R

n,

x(0) = b(x(T )), b ∈ R
n.

Naturally, the latter non-linear BVP by the trivial change t = T − τ of the
independent variable can be reduced to the last but one BVP. However, in [15] it was
shown that the appropriate version of the numerical-analytic method based upon
successive approximations can be applied directly without any change of variable.

Following to the method from [14], [15], in [16], [17] it was suggested how one
can construct a numerical-analytic scheme suitable for studying the PBVPs with
parameters both in the non-linear differential equation and in the non-linear two-
point boundary conditions of the form





dy

dt
= f(t, y, λ1, λ2), t ∈ [0, T ], y, f ∈ R

n,

g(y(0), y(T ), λ1, λ2) = 0, λ1 ∈ [a1, b1], λ2 ∈ [a2, b2],
y1(0) = y10, y2(0) = y20.

Here we give a possible approach how one can handle, by using the numerical-
analytic method, some PBVPs with boundary conditions of more general form then
mentioned above.

2. Problem setting

We consider the non-linear two-point parametrized boundary-value problem

dy

dt
= f(t, y (t) , λ), t ∈ [0, T ] (2.1)

g (y (0) , y (T ) , λ) = 0, (2.2)
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y1 (0) = h (λ, y2 (0) , y3 (0) , ..., yn (0)) (2.3)

containing the scalar parameter λ both in Eq.(2.1) and in conditions (2.2), (2.3).
Here, we suppose that the functions

f : [0, T ]× G × [a, b] → R
n, (n ≥ 2) ,

g : G × G × [a, b] → R
n

and

h : [a, b] × G1 → R

are continuous, where G ⊂ R
n, G1 ⊂ R

n−1are a closed, connected, bounded do-
mains and λ ∈ J := [a, b] is an unknown scalar parameter (the domain G1 is chosen
so that G1 ⊂ G).

Assume that, for t ∈ [0, T ] and λ ∈ J fixed, the function f satisfies the Lipschitz
condition in the form

|f(t, u, λ) − f(t, v, λ)| ≤ K |u − v| (2.4)

for all {u, v} ⊂ G and some non-negative constant matrix K = (Kij)
n
i,j=1. In (2.4),

as well as in similar relations below the signs |·| , ≤, ≥ are understood component-
wise.

The problem is to find the values of the control parameter λ such that the
problem (2.1), (2.2) has a classical continuously differentiable solution satisfying
the additional condition (2.3). Thus, a solution is the pair {y, λ} and, therefore,
(2.1)-(2.3) is similar, in a sence, to an eigen-value or to a control problem.

3. Construction of an equivalent problem with linear boundary
conditions

Let us introduce the substitution

y(t) = x(t) + w, (3.1)

where w = col(w1, w2, ..., wn) ∈ Ω ⊂ R
n is an unknown parameter. The domain Ω

is chosen so that D +Ω ⊂ G, whereas the new variable x is supposed to have range
in D, the closure of a bounded subdomain of G. Using the change of variables (3.1),
the problem (2.1)-(2.3) can be rewritten as

dx

dt
= f(t, x (t) + w, λ), t ∈ [0, T ], (3.2)

g (x (0) + w, x (T ) + w, λ) = 0, (3.3)

x1 (0) = h(λ, x2 (0) + w2, x3 (0) + w3, ..., xn (0) + wn) − w1. (3.4)

Let us rewrite the boundary conditions (3.3) in the form

Ax(0) + Bx(T ) + g (x (0) + w, x (T ) + w, λ) = Ax(0) + Bx(T ), (3.5)

where A, B are fixed square n-dimentional matrices such that det B 6= 0.

The artificially introduced parameter w is natural to be determined from the
system of algebraic determining equations

Ax(0) + Bx(T ) + g (x (0) + w, x (T ) + w, λ) = 0. (3.6)
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Obviously, if (3.6) holds then from (3.5)

Ax(0) + Bx(T ) = 0. (3.7)

Thus, the essentially non-linear problem (2.1)-(2.3) with non-linear boundary con-
ditions turns out to be equivalent to the collection of two-point boundary value
problems

dx

dt
= f(t, x (t) + w, λ), t ∈ [0, T ], (3.8)

Ax(0) + Bx(T ) = 0, (3.9)

x1 (0) = h(λ, x2 (0) + w2, x3 (0) + w3, ..., xn (0) + wn) − w1, (3.10)

parametrized by the unknown vector w ∈ R
n and considered together with the

determining equation (3.6). The essential advantage obtained thereby is that the
boundary condition (3.9) is linear already.

By virtue of (3.9), every solution x of the boundary-value problem (3.8)-(3.10)
satisfies the condition

x(T ) = −B−1Ax(0). (3.11)

Therefore, taking into account (3.11), the determining equation (3.6) can be rewrit-
ten as

g
(
x (0) + w,−B−1Ax(0) + w, λ

)
= 0. (3.12)

So, we conclude that the original non-linear boundary-value problem (2.1)-(2.3) is
equivalent to the family of boundary-value problems (3.8)-(3.10) with linear condi-
tions (3.9) considered together with the non-linear system of algebraic determining
equations (3.12).

We note, that the family of boundary-value problems (3.8)-(3.10) can be stud-
ied by using the numerical-analytic method based upon successive approximations
developed in [8], [13].

Assume, that the given PBVP (2.1)-(2.3) is such, that the subset

Dβ := {y ∈ R
n : B(y, β(y)) ⊂ G}

is non-empty

Dβ 6= �, (3.13)

where

β(y) :=
T

2
δG(f) +

∣∣(B−1A + In)y
∣∣ , (3.14)

δG(f) :=
1

2

[
max

(t,y,λ)∈[0,T ]×G×J
f (t, y, λ) − min

(t,y,λ)∈[0,T ]×G×J
f (t, y, λ)

]
,

In is an n-dimensional unit matrix and B(y, β(y)) denotes the ball of radius β(y)
with the center point y.

Moreover, we suppose that the spectral radius r(K) of the matrix K in (2.4)
satisfies the inequality

r(K) <
10

3T
. (3.15)

Let us define the subset U ⊂ R
n−1 such that

U :=
{
u = col(u2, u3, ..., un) ∈ R

n−1 : z ∈ Dβ

}
,
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where

z = col(h(λ, u2 + w2, u3 + w3, ..., un + wn) − w1, u2, u3, ..., un). (3.16)

Let us connect with the boundary-value problem (3.8)-(3.10) the sequence of func-
tions

xm+1(t, w, u, λ) := z +

t∫

0

f (s, xm(s, w, u, λ) + w, λ) ds

−
t

T

T∫

0

f (s, xm(s, w, u, λ) + w, λ) ds (3.17)

−
t

T

[
B−1A + In

]
z,

m = 0, 1, 2, ..., x0(t, w, u, λ) = z ∈ Dβ,

depending on the artificially introduced parameters w ∈ Ω ⊂ R
n, u ∈ U ⊂ R

n−1

and on the parameter λ ∈ [a, b] containing in the problem (2.1)-(2.3), where the
vector z has the form (3.16).

Note, that for the initial value of functions xm(t, w, u, λ) at the point t = 0 holds
the following equality

xm(0, w, u, λ) = z (3.18)

for all m = 0, 1, 2, ..., and arbitrary w ∈ Ω, u ∈ U, λ ∈ [a, b].
It can be verified also, that all functions of the sequence (3.17) satisfy the linear

homogeneous two-point boundary condition (3.9) and an additional condition (3.10)
for arbitrary u ∈ U given by (3.16) and w ∈ Ω, λ ∈ [a, b].

We suggest to solve the PBVP (3.8)-(3.10) together with the determining equa-
tion (3.12) sequentially, namely first solve (3.8)-(3.10), and then try to find the
values of parameters w ∈ Ω ⊂ R

n, u ∈ U ⊂ R
n−1, λ ∈ [a, b] for which the equation

(3.12) can simultaneously be fulfilled.

4. Investigation of the solutions of the transformed problem
( 3.8)-(3.10)

It was already pointed out that the transformed family of PBVPs (3.8)-(3.10)
can be studied on the base of the numerical-analytic technique developed in [8],
[13]. We shall follow it. However, we note, that the form of additional condition
(3.10) requires an appropriate modification of the scheme of successive approxima-
tions and, consequently, demands to find the corresponding conditions granting the
applicability of the method.

First we establish some results concerning the PBVP (3.8)-(3.10) with specially
modified right-hand side function in Eq.(3.8).

Theorem 1. Let us suppose that the functions f : [0, T ] × G × [a, b] → R
n, g :

G × G × [a, b] → R
n, h : [a, b] × G1 → R

n are continuous and the conditions (2.4),
(3.13)-(3.16) are satisfied.

Then:
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1. The sequence of functions (3.17) satisfying the boundary conditions (3.9),(3.10)
for arbitrary u ∈ U, w ∈ Ω and λ ∈ [a, b], converges uniformly as m → ∞ with
respect the domain

(t, w, u, λ) ∈ [0, T ]× Ω × U × [a, b] (4.1)

to the limit function

x∗(t, w, u, λ) = lim
m→∞

xm(t, w, u, λ). (4.2)

2. The limit function x∗(·, w, u, λ) having the initial value x∗(0, w, u, λ) = z

given by (3.16) is the unique solution of the integral equation

x(t) = z +

t∫

0

f (s, x(s) + w, λ) ds

−
t

T




T∫

0

f (s, x(s) + w, λ) ds +
(
B−1A + In

)
z


 , (4.3)

i.e. it is a solution of the modified ( with regard to (3.8) ) integro-differential
equation

dx

dt
= f(t, x + w, λ) + ∆(w, u, λ), (4.4)

satifying the same boundary conditions (3.9),(3.10), where

∆(w, u, λ) = −
1

T



(
B−1A + In

)
z +

T∫

0

f (s, x(s) + w, λ) ds



 . (4.5)

3.The following error estimation holds :

|x∗(t, w, u, λ) − xm(t, w, u, λ)| ≤ e(t, w, u, λ), (4.6)

where

e(t, w, u, λ) :=
20

9
t

(
1 −

t

T

)
Qm−1 (In − Q)

−1
[QδG(t)

+ K
∣∣(B−1A + In

)
z
∣∣] ,

the vector δG(t) is given by Eq.(3.14) and the matrix Q = 3T
10 K.

Proof. We shall prove, that under the conditions assumed, sequence (3.17) is a
Cauchy sequence in the Banach space C([0, T ] , Rn) equipped with the usual uniform
norm. First, we show that xm(t, w, u, λ) ∈ D for all (t, w, u, λ) ∈ [0, T ]×Ω×U×[a, b]
and m ∈ N. Indeed, using the estimation

∣∣∣∣∣∣

t∫

0


f(τ) −

1

T

T∫

0

f(s)ds


 dτ

∣∣∣∣∣∣
≤

≤
1

2
α1(t)

[
max

t∈[0,T ]
f(t) − min

t∈[0,T ]
f(t)

]
(4.7)
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of Lemma 2.3 from [13] or its generalization in Lemma 4 from [15], relation (3.17
) for m = 0 implies that

|x1(t, w, u, λ) − z| ≤

∣∣∣∣∣∣

t∫

0



f(t, z + w, λ) −
1

T

T∫

0

f(s, z + w, λ)ds



 dt

∣∣∣∣∣∣
+

+
∣∣[(B−1A + In

)
z
]∣∣ ≤ α1(t)δG(f) + β1(z) ≤ β(z) (4.8)

where

α1(t) = 2t

(
1 −

t

T

)
, |α1(t)| ≤

T

2
, (4.9)

β1(z) =
∣∣[B−1A + In

]
z
∣∣ . (4.10)

Therefore, by virtue of (3.13), (3.14), (4.8), we conclude that x1(t, w, u, λ) ∈ D

whenever (t, w, u, λ) ∈ [0, T ]×Ω×U × [a, b]. By induction, one can easily establish
that all functions (3.17) are also contained in the domain D for all m = 1, 2, ..., t ∈
[0, T ], w ∈ Ω, u ∈ U, λ ∈ [a, b]. Now, consider the difference of functions

xm+1(t, w, u, λ) − xm(t, w, u, λ) =

t∫

0

[f(s, xm(s, w, u, λ) + w, λ)−

− f(s, xm−1(s, w, u, λ) + w, λ)] ds− (4.11)

−
t

T

T∫

0

[f(s, xm(s, w, u, λ) + w, λ)−

− f(s, xm−1(s, w, u, λ) + w, λ)] ds

and introduce the notation

dm(t, w, u, λ) := |xm(t, w, u, λ) − xm−1(t, w, u, λ)| , m = 1, 2, ... . (4.12)

By virtue of identity (4.12) and the Lipschitz condition (2.4), we have

dm+1(t, w, u, λ) ≤ K




(
1 −

t

T

) t∫

0

dm(s, w, u, λ)ds +
t

T

T∫

t

dm(s, w, u, λ)ds


 (4.13)

for every m = 0, 1, 2, ... .According to (4.8)

d1(t, w, u, λ) = |x1(t, w, u, λ) − z| ≤ α1(t)δG(f) + β1(z), (4.14)

where β1(z) is given by (4.10).
Now we need the following estimations of Lemma 2.4 from [13]

αm+1(t) ≤

(
3

10
T

)
αm(t), αm+1(t) ≤

(
3

10
T

)m

α1(t), (4.15)
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obtained for the sequence of functions

αm+1(t) =

(
1−

t

T

) t∫

0

αm(s)ds +
t

T

T∫

t

αm(s)ds, m = 0, 1, 2, ...

α0(t) = 1, α1(t) = 2t

(
1−

t

T

)
, (4.16)

where α1(t) = 10
9 α1(t).

In view of (4.14), (4.16), for m = 1 it follows from (4.13)

d2(t, w, u, λ) ≤ KδG(f)



(

1 −
t

T

) t∫

0

α1(s)ds +
t

T

T∫

t

α1(s)ds


 +

+ Kβ1(z)



(

1 −
t

T

) t∫

0

ds +
t

T

T∫

t

ds




≤ K [α2(t)δG(f) + α1(t)β1(z)] .

By induction, we can easily obtain

dm+1(t, w, u, λ) ≤ Km[αm+1(t)δG(f) + αm(t)β1(z)], m = 0, 1, 2, ... , (4.17)

where αm+1(t), αm(t) are calculated according to (4.16), δG(f), and β1(z) are given
by (3.14) and (4.10). By virtue of the second estimate from (4.15), we have from
(4.17)

dm+1(t, w, u, λ) ≤ α1(t)

[(
3

10
TK

)m

δG(f) + K

(
3

10
TK

)m−1

β1(z)

]
=

(4.18)

= α1(t)
[
QmδG(f) + KQm−1β1(z)

]
,

for all m = 1, 2, ..., where the matrix

Q =
3

10
TK. (4.19)

Therefore, in view of (4.18)

|xm+j(t, w, u, λ) − xm(t, w, u, λ)| ≤

≤ |xm+j(t, w, u, λ) − xm+j−1(t, w, u, λ)|+

+ |xm+j−1(t, w, u, λ) − xm+j−2(t, w, u, λ)| + ...+

+ |xm+1(t, w, u, λ) − xm(t, w, u, λ)| =

j∑

i=1

dm+i(t, w, u, λ) ≤

≤ α1(t)

[
j∑

i=1

(
Qm+iδG(f) + KQm+i−1β1(z)

)
]

= (4.20)

= α1(t)

[
Qm

j−1∑

i=0

QiδG(f) + KQm

j−1∑

i=0

Qiβ1(z)

]
.
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Since, due to (3.15), the maximum eigenvalue of the matrix Q of the form (4.19)
does not exceed the unity, therefore

j−1∑

i=0

Qi ≤ (In − Q)
−1

and

lim
m→∞

Qm = [0].

We can conclude from (4.20) that, according to the Cauchy criteria, the sequence
xm(t, w, u, λ) of the form (3.17) uniformly converges in the domain (4.1) and, hence,
the assertion (4.2) holds.

Since all functions xm(t, w, u, λ) of the sequence (3.17) satisfy the boundary con-
ditions (3.9), (3.10), the limit function x∗(t, w, u, λ) also satisfies these conditions.
Passing to the limit as m → ∞ in equality (3.17), we show that the limit function
satisfies the integral equation (4.3). It is also obvious from (4.3), that

x∗(T, w, u, λ) = −B−1Az, (4.21)

which means that x∗(t, w, u, λ) is a solution of the integral equation (4.3) as well as
the solution of the integro-differential equation (4.4). Estimate (4.6) is an immedi-
ate consequence of (4.20). �

Now we show that, in view of Theorem 1, the PBVP (3.8)-(3.10) can be for-
mally interpreted as a family of initial value problems for differential equations
with ”additively forced” right-hand side member. Namely, consider the Cauchy
problem

dx(t)

dt
= f(t, x(t) + w, λ) + µ, t ∈ [0, T ], (4.22)

x(0) = z = col(h(λ, x2 (0) + w2, ..., xn (0) + wn) − w1, u2, u3, ..., un), (4.23)

where µ ∈ R
n, z ∈ Dβ, w ∈ Ω, λ ∈ [a, b] are parameters.

Theorem 2. Under the conditions of Theorem 1, the solution x = x(t, w, u, λ)
of the initial value problem (4.22), (4.23) satisfies the boundary conditions (3.9),
(3.10) if and only if

µ = ∆(w, u, λ), (4.24)

where ∆ : Ω × U × [a, b] → R
n is the mapping defined by (4.5).

Proof. According to Picard-Lindelöf existence theorem it is easy to show that the
Lipschitz condition (2.4) implies that the initial value problem (4.22), (4.23) has a
unique solution for all

(µ, w, u, λ) ∈ R
n × Ω × U × [a, b].

It follows from the proof of Theorem 1 that, for every fixed

(w, u, λ) ∈ Ω × U × [a, b] (4.25)
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the limit function (4.2) of the sequence (3.17) satisfies the integral equation (4.3)
and, in addition, x∗(t, w, u, λ) = lim

m→∞

xm(t, w, u, λ) satisfies the boundary condi-

tions (3.9), (3.10). This implies immediately that the function x = x∗(t, w, u, λ) of
the form (4.2) is the unique solution of the initial value problem

dx(t)

dt
= f(t, x(t) + w, λ) + ∆(w, u, λ), t ∈ [0, T ], (4.26)

x(0) = col(h(λ, x2 (0) + w2, ..., xn (0) + wn) − w1, u2, u3, ..., un), (4.27)

where ∆(w, u, λ) is given by (4.5). Hence, (4.26), (4.27) coincides with (4.22), (4.23)
corresponding to

µ = ∆(w, u, λ) = −
1

T


(

B−1A + In

)
z +

T∫

0

f (s, x(s) + w, λ) ds


 . (4.28)

The fact that the function (4.2) is not a solution of (4.22), (4.23) for any other
value of µ, not equal to (4.28), is obvious, e.g., from Eq.(4.24). �

The following statement shows what is the relation of the solution x = x∗(t, w, u, λ)
of the modified PBVP (4.3), (3.9), (3.10) to the solution of the unperturbed BVP
(3.8)- (3.10).

Theorem 3. If the conditions of Theorem 1 are satisfied, then the function
x∗(t, w, u∗, λ∗) is a solution of the PBVP (3.8)- (3.10) if and only if, the triplet

{w, u∗, λ∗} ∈ Ω × U × [a, b] (4.29)

satisfies the system of determining equations

[
B−1A + In

]
z +

T∫

0

f (s, x∗(s, w, u, λ) + w, λ) ds = 0, (4.30)

where z is given by (4.27) and w is considered as a parameter.

Proof. It suffices to apply Theorem 2 and notice that the differential equation in
(4.26) coincedes with (3.8) if and only if the triplet (4.29) satisfies the equation

∆(w, u∗, λ∗) = 0, (4.31)

i.e., when the relation (4.30) holds, where w is considered as a parameter w ∈ Ω. �

Now becomes clear, how one should choose the value w = w∗ of the artificially
introduced parameter w in (3.1) in order to the function

y∗(t) = x∗(t, w∗, u∗, λ∗) + w∗ (4.32)

be a solution of the original PBVP (2.1)-(2.3).

Theorem 4. If the conditions of Theorem 1 are satisfied, then, for function (4.32)
to be a solution of the given PBVP (2.1)-(2.3) it is necessary and sufficient that
the triplet

{w∗, u∗, λ∗} (4.33)
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satisfies the system of algebraic determining equations

g(z + w,−B−1Az + w, λ) = 0, (4.34)

where

z := col(h(λ∗, u∗

2 + w2, ..., u
∗

n + wn) − w1, u
∗

2, u
∗

3, ..., u
∗

n), (4.35)

and the pair {u∗, λ∗} is a solution of the system (4.30), parametrized by w.

Proof. It was established in Section 3, that the PBVP (2.1)-(2.3) is equivalent to
the family of BVPs (3.8)-(3.10) considered together with the determinig equation
(3.12). The vector parameter z in (4.35) can be interpreted as the initial value at
t = 0 of a possible solution of the problem (3.8)-(3.10). Therefore, Eq.(3.12) can be
rewritten in the form (4.34). Taking into account the change of variables (3.1) and
the equivalence (2.1)-(2.3) to (3.8)-(3.10) (3.12), we notice that the function y∗(t)
in (4.32) coincides with the solution of the PBVP (2.1)-(2.3) if and only if w = w∗

satisfies the equation (4.34). �

Corollary 1. Under the conditions of Theorem 1 the function y∗(t) of the form
(4.32), (4.2) will be a solution of the PBVP (2.1)-(2.3) if and only if the triplet
(4.33) satisfies the system of determining equations

[
B−1A + In

]
z +

T∫

0

f (s, x∗(s, w, u, λ) + w, λ) ds = 0,

g(z + w,−B−1Az + w, λ) = 0,

z = col(h(λ, u2 + w2, ..., un + wn) − w1, u2, u3, ..., un)), (4.36)

containing 2n scalar algebraic equations, where x∗(t, w, u, λ) is given by (4.2).

Proof. It suffices to apply Theorem 3 and Theorem 4. �

Remark 1. In practice, it is natural to fix some natural m and instead of (4.36)
consider the ”approximate determining system”

[
B−1A + In

]
z +

T∫

0

f (s, xm(s, w, u, λ) + w, λ) ds = 0,

g(z + w,−B−1Az + w, λ) = 0, (4.37)

z = col(h(λ, u2 + w2, ..., un + wn) − w1, u2, u3, ..., un).

In the case when the system (4.37) has an isolated root, say

w = wm, u = um, λ = λm, (4.38)

in some open subdomain of

Ω × U × [a, b],

one can prove that under certain additional conditions, the exact determining sys-
tem (4.36) is also solvable :

w = w∗, u = u∗, λ = λ∗.
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Hence, the given non-linear PBVP (2.1)-(2.3) has a solution of form (4.32), such
that

x∗(t = 0) = col(h(λ∗, u∗

2 + w∗

2 , ..., u∗

n + w∗

n) − w∗

1 , u∗

2, u
∗

3, ..., u
∗

n) ∈ Dβ,

w∗ ∈ Ω, λ∗ ∈ [a, b], u∗ ∈ U, y∗ ∈ G.

Furthermore, the function

ym(t) := xm(t, wm, um, λm) + wm, t ∈ [0, T ] (4.39)

can be regarded as the ”m-th approximation” to the exact solution
y∗(t) = x∗(t, w∗, u∗, λ∗) + w∗, (see estimation (4.6)). To prove the solvability of
the system (4.36), one can use some topological degree techniques (cf.Theorem 3.1
in [13], p.43) or the methods oriented to the solution of non-linear equations in
Banach spaces developed in [19] (see, e.g. Theorem 19.2 in [19], p.281). Here, we
do not consider this problem in more detail.

Remark 2. If we choose in (3.5), (3.7) for the matrix A a zero matrix, then the
PBVP (3.8)-(3.10) is reduced to the parametrized initial value problem

dx

dt
= f(t, x (t) + w, λ), t ∈ [0, T ], (4.40)

x(T ) = 0, (4.41)

with the additional condition (3.10). In this case, instead of successive approxima-
tions (3.17) we obtain

xm+1(t, w, u, λ) := z +

t∫

0

f (s, xm(s, w, u, λ) + w, λ) ds

−
t

T

T∫

0

f (s, xm(s, w, u, λ) + w, λ) ds −
t

T
z (4.42)

m = 0, 1, 2, ..., x0(t, w, u, λ) = z ∈ Dβ ,

where z = col(h(λ, u2 + w2, ..., un + wn) − w1, u2, u3, ..., un), and the system of
determining equations (4.36) is transformed into the system

z +

T∫

0

f (s, x∗(s, w, u, λ) + w, λ) ds = 0,

g(z + w, w, λ) = 0, (4.43)

z = col(h(λ, u2 + w2, ..., un + wn) − w1, u2, u3, ..., un).

In this case Theorem 3 guarantees the existence of the solution of the parametrized
Cauchy problem (4.40), (4.41) with the additional condition (3.10) on the interval
[0, T ].
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Remark 3. If one can obtain the solution x = x̃0(t, w, λ) of the parametrized initial
value problem (4.40), (4.41) on the interval [0, T ], i.e. by Picard’s iterations

x̃0(t, w, λ) = lim
m→∞

x̃m(t, w, λ) =

= lim
m→∞

t∫

T

f (s, x̃m−1(t, w, λ)) ds, (4.44)

m = 1, 2, ..., x̃0(t, w, λ) = z, then for finding the values of the parameters

w = w0, λ = λ0, (4.45)

for which the function
y0(t) = x̃0(t, w, λ) + w0 (4.46)

will be the solution of the original PBVP (2.1)-(2.3), we should solve, according to
(3.12), (3.4), the determining system

g(x̃0(0, w, λ) + w, w, λ) = 0,

x̃0
1(0, w, λ) = h(λ, x̃0

2(0, w, λ) + w2, ..., x̃
0
n(0, w, λ) + wn) − w1, (4.47)

containing (n + 1) equations with respect to (n + 1) unknown values
w = col(w1, w2, ..., wn) and λ.

We apply the above techniques to the following PBVP.

5. Example of parametrized boundary value problem

Consider the second order parametrized two-point boundary-value problem

d2y

dt2
−

t

8

dy

dt
+

λ2

2

(
dy

dt

)2

+
1

2
y(t) =

9

32
+

t2

16
, t ∈ [0, 1], (5.1)

y(0) =

[
dy(1)

dt

]2

, (5.2)

dy(0)

dt
=

dy(1)

dt
− y(1) −

λ

16
, (5.3)

satisfying an additional condition

y(0) =
1

16
+ λ

[
dy(0)

dt

]2

. (5.4)

There is no method for finding its exact solution.However, the construction of
the example allows us to check directly that the pair

{
y∗(t) =

t2

8
+

1

16
, λ = λ∗ = 1

}

is an exact solution.
The approximate solution to be found will be compare with this exact one.
We note, that symbolic algebra tools are suitable for performing the necessary

computations for the method described here, the authors have used Maple for them.
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By setting y1 := y and y2 :=
dy

dt
the PBVP (5.1)-(5.4) can be rewritten in the

form of system (2.1)-(2.3) :

dy1

dt
= y2,

dy2

dt
=

9

32
+

t2

16
+

t

8
y2 −

λ2

2
y2
2 −

1

2
y1, (5.5)

y1(0) = [y2(1)]2,

y2(0) = y2(1) − y1(1) −
λ

16
, (5.6)

y1(0) =
1

16
+ λ [y2 (0)]2 . (5.7)

Suppose that the PBVP (5.5)-(5.7) is considered in the domain

(t, y, λ) ∈ [0, 1] × G × [−1, 1], (5.8)

G :=

{
(y1, y2) : |y1| ≤ 1, |y2| ≤

3

4

}
.

One can verify that for the PBVP (5.5)
-(5.7), conditions (3.3), (3.13) and (3.15) are fulfiled in the domain (5.8) with

the matrices

A := B :=

[
1 0
0 1

]
, K :=

[
0 1
1
2

7
8

]
.

Indeed, from the Perron theorem it is known that the greatest eigenvalue λmax(K)
of the matrix K in virtue of the nonnegativity of its elements is real, nonnegative
and computations show that

λmax(K) ≤
21

16
.

Moreover the vectors δG(f) and β(y) in (3.14) are such

δG(f) ≤

[
3
4
5
4

]
, β(y) :=

T

2
δG(f) +

∣∣(B−1A + I2

)
y
∣∣ ≤

[
3
8
5
8

]
+ 2 |y| .

Substitution (3.1) brings the given system of differential equations (5.5) and the
additional conditions (5.7) to the following form

dx1(t)

dt
= x2(t) + w2,

dx2(t)

dt
=

9

32
+

t2

16
+

t

8
(x2(t) + w2)− (5.9)

−
λ2

2
(x2(t) + w2)

2 −
1

2
(x1(t) + w1),

and

x1(0) =
1

16
+ λ [x2 (0) + w2]

2
− w1. (5.10)
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Thus we reduce the essentially non-linear PBVP (5.5)- (5.7) to the collection of two-
point BVPs of view (3.8)- (3.10), namely to the system (5.9), which is considered
under the linear two-point boundary condition

x(0) + x(1) = 0, (5.11)

together with an additional condition (5.10) and algebraic determining system of
equations of form (3.12)

x1(0) + w1 = (x2(1) + w2)
2,

x2(0) + w2 = (x2(1) + w2) − (x1(1) + w1) −
λ

16
.

Taking into account that according to (3.11)

x(1) = col(x1(1), x2(1)) = −B−1Ax(0) = col(−x1(0),−x2(0)),

the determining system obtained above can be rewritten in the form

x1(0) + w1 = (−x2(0) + w2)
2,

2x2(0) = x1(0) − w1 −
λ

16
. (5.12)

In our case due to the equality (3.16),

z = col(z1, z2) = col

(
1

16
+ λ (u2 + w2)

2 − w1, u2

)
, (5.13)

and the components of the iteration sequence (3.17) for the PBVP (5.9) under the
linear boundary conditions (5.10) have the form

xm+1,1(t, w, u, λ) =

[
1

16
+ λ (u2 + w2)

2
− w1

]
+

+

t∫

0

[xm,2(s, w, u, λ) + w2] ds− (5.14)

−t

1∫

0

[xm,2(s, w, u, λ) + w2] ds − 2t

[
1

16
+ λ (u2 + w2)

2
− w1

]
,

xm+1,2(t, w, u, λ) = u2 +

t∫

0

[
9

32
+

s2

16
+

s

8
(xm,2(s, w, u, λ) + w2) −

−
λ2

2
(xm,2(s, w, u, λ) + w2)

2
−

1

2
(xm,1(s, w, u, λ) + w1)

]
ds− (5.15)

−t

1∫

0

[
9

32
+

s2

16
+

s

8
(xm,2(s, w, u, λ) + w2) −

−
λ2

2
(xm,2(s, w, u, λ) + w2)

2
−

1

2
(xm,1(s, w, u, λ) + w1)

]
ds − 2tu2,
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where m = 0, 1, 2, ...,and

x0(t, w, u, λ) = z = col

(
1

16
+ λ (u2 + w2)

2
− w1, u2

)
. (5.16)

On the base of equalities (3.18) and (5.13) the determining equations (5.12), which
are independent on the number of the iterations can be rewritten in the form

1

16
+ λ (u2 + w2)

2
= (w2 − u2)

2
,

2u2 =
1

16
+ λ (u2 + w2)

2
− 2w1 −

λ

16
. (5.17)

The system of approximate determining equations depending on the number of
iterations, which is given by the first equation in the system (4.37) together with
(5.13), is written in component form as

2

[
1

16
+ λ (u2 + w2)

2 − w1

]
+

1∫

0

[xm,2(s, w, u, λ) + w2] ds = 0,

2u2 +

1∫

0

[
9

32
+

s2

16
+

s

8
(xm,2(s, w, u, λ) + w2) − (5.18)

−
λ2

2
(xm,2(s, w, u, λ) + w2)

2
−

1

2
(xm,1(s, w, u, λ) + w1)

]
ds = 0.

Thus, for every m ≥ 1, we have four equations (5.17), (5.18) in four unknowns
w1, w2, u2 and λ. Note, that in our case we can decrease the number of unknown
values as follows.
Obviously, that from the first equation of (5.17)

λ =
(w2 − u2)

2

(w2 + u2)
2 −

1

16 (w2 + u2)
2 . (5.19)

Considering the auxiliarly equations (5.17) in the given domain, we find that

1

16
+ λ (u2 + w2)

2
= (w2 − u2)

2
,

1

16
+ λ (u2 + w2)

2
= 2u2 + 2w1 +

λ

16
,

from which

2w1 = (w2 − u2)
2
− 2u2 −

λ

16
,

or by using (5.19), we obtain

w1 =
(w2 − u2)

2

2
− u2− (5.20)

−
1

32

[
(w2 − u2)

2

(w2 + u2)
2 −

1

16 (w2 + u2)
2

]
.
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So, by solving the determining system (5.12), which is independent on the number
of iterations, we have already determined λ and w1 in (5.19) and (5.20) as the
functions of two other unknowns w2 and u2.

For finding the rest unknown values of w2 and u2 for each step of iterations
(5.14) and (5.15), one should use the approximate determining equations (5.18).
On the base of (5.14) and (5.15) as a result of the first iteration (m = 1) we get

x1,1(t, w, u, λ) = λu2
2 + 2λu2w2 + λw2

2 +
1

16
− w1 − 2λtu2

2

− 4λtu2w2 − 2λtw2
2 −

1

8
t + 2tw1, (5.21)

x1,2(t, w, u, λ) = u2 +
1

48
t3 +

1

16
t2u2 +

1

16
t2w2 −

1

48
t −

33

16
u2t −

1

16
w2t.

The system (5.18) on the base of the first iteration (5.21), now has the form

1

256

768u3
2 + 1792u2

2w2 + 1280u2w
2
2 + 256w3

2 + 16u2
2 − 32u2w2768u3

2

u2
2 + 2u2w2 + w2

2

+
1

256

1792u2
2w2 + 1280u2w

2
2 + 256w3

2 + 16u2
2 − 32u2w2

u2
2 + 2u2w2 + w2

2

+
1

256

16w2
2 + 256u4

2 − 512u2
2w

2
2 + 256w4

2 − 1

u2
2 + 2u2w2 + w2

2

= 0, (5.22)

13

48
+

33

16
u2 +

1

16
w2 −

1

512

(−1 + 16u2
2 − 32u2w2 + 16w2

2)
2u2

2

(u2
2 + 2u2w2 + w2

2)
2

−
1

256

(−1 + 16u2
2 − 32u2w2 + 16w2

2)
2u2w2

(u2
2 + 2u2w2 + w2

2)
2

−
1

512

(−1 + 16u2
2 − 32u2w2 + 16w2

2)
2w2

2

(u2
2 + 2u2w2 + w2

2)
2

−
1

32

(−1 + 16u2
2 − 32u2w2 + 16w2

2)u
2
2

(u2
2 + 2u2w2 + w2

2)
−

1

16

(−1 + 16u2
2 − 32u2w2 + 16w2

2)u2w2

(u2
2 + 2u2w2 + w2

2)

−
1

32

(−1 + 16u2
2 − 32u2w2 + 16w2

2)
2w2

2

(u2
2 + 2u2w2 + w2

2)
= 0. (5.23)

whose solution, in the given domain is

w1,2 ≈ 0.1179015870, u1,2 ≈ −0.1338961033. (5.24)

Note that there are other solutions in the other domains.From (5.19) and (5.20)
one can easily obtain the values

λ1 ≈ 3.526154164, w1,1 ≈ 0.05540481607. (5.25)

Therefore, the first approximation to the first and second components of the solution
according to (4.39) has the form

y1,1(t) ≈ x1,1(t, w1,1, w1,2, u1,2, λ1) + w1,1 ≈ 0.06340207685− 0.01599452160t,
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y1,2(t) ≈ x1,2(t, w1,1, w1,2, u1,2, λ1) + w1,2 (5.26)

≈ 0.02083333333t3 − 0.999657268 · 10−3t2 + 0.2479585306t− 0.0159945163.

Proceeding analogously for the fourth approximation (m = 4) in (5.14) and (5.15)
we find

x4,1(t, w, u, λ) = −w1 + 2λu2w2 − 0.21374562 · 10−4t5 − 0.69130099 · 10−3t4

+0.65708464 · 10−3t3 − 0.6326129976 · 10−5t8

−0.3808172041 · 10−5t7 + 0.1248805182t2 − 0.42080288 · 10−8t9

+0.1662064401 · 10−10t13 − 0.1900061164 · 10−11t16

+0.6860781119 · 10−9t11 + 0.4862489477 · 10−12t15 (5.27)

−0.5957506904 · 10−10t14 + 0.6093635263 · 10−8t12

−0.2471813047 · 10−3t6 + 0.1704708784 · 10−6t10 + λu2
2 + λw2

2

+2w1t − 0.2495677846t− 2tλu2
2 − 2tλw2

2 − 4tλu2w2 + 0.0625,
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and

x4,2(t, w, u, λ) = u2 − 0.647545596 · 10−3t5 − 0.1118770981 · 10−3t4

+0.0133283149t3 − 0.4407955994 · 10−6t8 − 0.2304845756 · 10−4t7

−0.5845940655 · 10−2t2 − 0.0625w2t − 0.5342567636 · 10−6t9

+0.7031117611 · 10−9t13 + 0.5698229856 · 10−13t16 + 0.1937169073 · 10−7t11

−0.695042472 · 10−11t15 + 0.1929181894 · 10−11t14 + 0.7861311699 · 10−10t12

−0.2838727909 · 10−5t6 − 0.47340324 · 10−9t10 + 0.1503988637 · 10−12λ2t18

−0.6913042073 · 10−15λ2t20 + 0.4913103636 · 10−13λ2t19

−0.2235366075 · 10−12t17 − 0.006696109t

−0.6332049769 · 10−16λ2t22 + 0.4509410252 · 10−17λ2t25

−0.9620951462 · 10−18λ2t24 + 0.7391221931 · 10−23λ2t30

−0.1490676615 · 1022λ2t31 + 0.5192983789 · 10−4λ2t7

−0.1008467555 · 10−13λ2t21 − 0.121375516 · 10−15λ2t23

+0.6939382414 · 10−19λ2t27 − 0.4757705056 · 10−20λ2t26+

0.4518584297 · 10−21λ2t28 − 0.8752608579 · 10−21λ2t29

−0.1248805182λ2t2w2 + 0.0625t2w2 + 0.0154415763λ2t2

−0.2520690302 · 10−4λ2t6 − .6093635262 · 10−8λ2t2w2 (5.28)

−0.1704708784 · 10−6λ2t10w2 + 0.877965225 · 10−8λ2t10

−0.3437663379 · 10−8λ2t12 − 0.16620644 · 10−10λ2t13w2

−0.1515754547 · 10−6λ2t11 − 0.6842671 · 10−8λ2t13

+0.247181304 · 10−3λ2t6w2 − 0.6860781118 · 10−9λ2t11w2

+0.21374562 · 10−4λ2t5w2 + 0.380817204 · 10−5t7λ2w2

−0.4862489477 · 10−12t15λ2w2 + 0.1105588996 · 10−9t15λ2

−0.0103155135λ2t3 + 0.1350964754 · 10−3λ2t5

+0.3785125161 · 10−6t8λ2 − 0.2085655281 · 10−3λ2t4

+0.42080288 · 10−8λ2t9w2 + 0.6326129975 · 10−5t8λ2w2

+0.00069130099λ2t4w2 − 0.6570846399 · 10−3λ2t3w2

+0.953475575 · 10−6t9λ2 + 0.1177754495 · 10−10λ2t17

+0.3699654819 · 10−11λ2t16 + 0.5957506904 · 10−10λ2t14w2

+0.1900061164 · 10−11λ2t16w2 − 0.1073892527 · 10−9λ2t14

−0.0050804956λ2t + 0.1245677846λ2tw2 − 2tu2.
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The determining system (5.18) for the fourth approximation is

0.5 · 10−9 ·
126833963u2

2 − 246332074u2w2 + 126833963w2
2 + 0.1 · 1011u2

2w2

u2
2 + 2u2w2 + w2

2

+0.5 · 10−9 ·
8 · 109u2w

2
2 + 2 · 109w3

2 + 2 · 109u4
2 − 4 · 109u2

2w
2
2

u2
2 + 2u2w2 + w2

2

(5.29)

+0.5 · 10−9 ·
2 · 109w4

2 + 4 · 109u3
2 − 7812500

u2
2 + 2u2w2 + w2

2

= 0,

−0.1 · 10−13 ·
358195910w2 + 0.5 · 1014u5

2w2 + 0.25 · 1014u4
2w

2
2 − 0.3 · 1015u3

2w
3
2

(u2
2 + 2u2w2 + w2

2)
2

−0.1 · 10−13 ·
0.275 · 1015u2

2w
4
2 − 0.25 · 1015u5

2 + 0.25 · 1014u6
2 + 0.75 · 1014w6

2

(u2
2 + 2u2w2 + w2

2)
2

−0.1 · 10−13 ·
(−0.1525366793) · 1016u3

2w
2
2 − 0.1036949811 · 1016u2

2w
3
2

(u2
2 + 2u2w2 + w2

2)
2

−0.1 ·10−13 ·
(−0.2753667926) · 1015u2w

4
2 − 0.615830184 · 1013w5

2 − 0.15 · 1015w5
2u2

(u2
2 + 2u2w2 + w2

2)
2

−0.1 · 10−13 ·
(−0.100615) · 1016w2u

4
2 + 0.6560293 · 1011u2

2 − 0.3277 · 1014u4
2

(u2
2 + 2u2w2 + w2

2)
2

−0.1 · 10−13 ·
(−0.1146226912) · 1011u2

2w2 + 0.229245382 · 1011u2w
2
2

(u2
2 + 2u2w2 + w2

2)
2

(5.30)

−0.1 · 10−13 ·
(−0.3902743497) · 1014w4

2 − 0.1146226912 · 1011w3
2

(u2
2 + 2u2w2 + w2

2)
2

−0.1 · 10−13 ·
(−0.1269111518) · 1015u3

2w2 − 0.114411151 · 1015u2w
3
2 + 1001665969

(u2
2 + 2u2w2 + w2

2)
2

−0.1 · 10−13 ·
0.260915 · 1012w2

2 − 0.1904146 · 1015u2
2w

2
2 + 0.25941 · 1012u2w2

(u2
2 + 2u2w2 + w2

2)
2

= 0.

Solving numerically the system (5.18), taking into account (5.19), (5.20), we
obtain the following values of the parameters:

w4,2 ≈ 0.1264301453, u4,2 ≈ −0.1235847040,

λ4 ≈ 0.9170414150, w4,1 ≈ 0.1261810697. (5.31)

The fourth approximation of the first and second components of the solution of
PBVP (5.5)- (5.7) then has the form

y2,1(t) ≈ x2,1(t, w2,1, w2,2, u2,2, λ2) + w2,1 ≈ (5.32)
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≈ −0.21374562 · 10−4t5 − 0.0006913t4 + 0.0006570846t3

−0.6326129976 · 10−5t8 − 0.380817204 · 10−5t7 + 0.1248805182t2

−0.42080288 · 10−8t9 + 0.16620644 · 10−10t13 − 0.1900061164 · 1011t16

+0.6860781119 · 10−9t11 + 0.4862489477 · 10−12t15 − 0.5957506904 · 10−10t14

+0.6093635263 · 10−8t12 − 0.2471813047 · 10−3t6 + 0.1704708784 · 10−6t10

+0.002779505t+ .00625074249,

y2,2(t) ≈ x2,2(t, w2,1, w2,2, u2,2, λ2) + w2,2 ≈ (5.33)

≈ −0.000531661t5 − 0.0021377198t4 + 0.0045834661t3

+0.5501353148 · 10−6t8 + 0.2102761382 · 104t7 + 0.0017640565t2

+0.2680301942 · 10−6t9 − 0.505310211 · 10−8t13 + 0.3370283168 · 10−11t16

−0.1081709011 · 10−6t11 + 0.8597403591 · 10−10t15 − 0.8204719714 · 10−10t14

−0.346023686 · 10−8t12 + 0.224428736 · 10−5t6 − 0.1121505341 · 10−7t10

+0.9680965973 · 10−11t17 + 0.2415433567t + 0.6215758632 · 10−23t30

−0.8090883031 · 10−18t24 + 0.379225599 · 10−17t25 − 0.532503196 · 10−16t22

+0.4131747987 · 10−13t19 − 0.5813626128 · 10−15t20 + 0.1264801739 · 10−12t18

−0.7360637096 · 10−21t29 + 0.3799971048 · 10−21t28 − 0.4001063227 · 10−20t26

+0.5835777432 · 10−19t27 − 0.1020725556 · 10−15t23 − 0.8480858738 · 10−14t21

−0.1253606795 · 10−22t31 + 0.002845441.

As is seen from Figure 1, 2 and 3, 4, the graphs of the exact solution
{

y∗(t) =
t2

8
+

1

16
, λ = λ∗ = 1

}

and the fourth approximation almost coincide, whereas the deviation of their deriva-
tives does not exceed 0.0025.
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