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Abstract

This work deals with the nonlocal p(x)-Laplacian equations in RN with non-
variational form

{

A(u)
(

− ∆p(x)u + |u|p(x)−2u
)

= B(u)f(x, u) in RN ,

u ∈ W 1,p(x)(RN ),

and with the variational form


























a
(

∫

RN

|∇u|p(x) + |u|p(x)

p(x)
dx

)

(−∆p(x)u + |u|p(x)−2u)

= B
(

∫

RN

F (x, u)dx
)

f(x, u) in RN ,

u ∈ W 1,p(x)(RN ),

where F (x, t) =
∫ t

0 f(x, s)ds, and a is allowed to be singular at zero. Using (S+)
mapping theory and the variational method, some results on existence and multi-
plicity for the problems in RN are obtained.
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1 Introduction

The study on the problems of the nonlocal p(x)-Laplacian has attracted more and more
interest in the recent years(e.g., see [1, 2, 3]), they mainly concerned the problems of the
bounded domain, however the study on the existence of solutions for problems of nonlocal
p(x)-Laplacian in RN is rare. We know that in the study of p-Laplacian equations in RN ,
a main difficulty arises from the lack of compactness. In this paper, we study the nonlocal
p(x)-Laplacian equations in RN with non-variational form

{

A(u)
(

− ∆p(x)u + |u|p(x)−2u
)

= B(u)f(x, u) in RN ,

u ∈ W 1,p(x)(RN),
(1.1)
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and with the variational form


























a
(

∫

RN

|∇u|p(x) + |u|p(x)

p(x)
dx

)

(−∆p(x)u + |u|p(x)−2u)

= B
(

∫

RN

F (x, u)dx
)

f(x, u) in RN ,

u ∈ W 1,p(x)(RN),

(1.2)

where A and B are two functionals defined on W 1,p(x)(RN), F (x, t) =
∫ t

0
f(x, s)ds, and a

is allowed to be singular at zero. To deal with the problems (1.1) and (1.2), we will over-
come the difficulty caused by the absence of compactness through the method of weight
function.

The variable exponent problems have been studied by many authors. We refer to [4,
5] for applied background, to [6, 7, 8] for the variable exponent Lebesgue-Sobolev spaces
and to [9, 10, 11, 12] for the p(x)-Laplacian equations without nonlocal coefficient.

This paper is organized as follows: in Section 2, we deal with the problem with non-
variational form; in Section 3, we deal with the problem with variational form.

2 The non-variational form

Let Ω ⊂ RN(N ≥ 2) be an open subset of RN , set

L∞
+ (Ω) = {p ∈ L∞(Ω) : ess inf

Ω
p(x) ≥ 1}.

For p ∈ L∞
+ (Ω), let

p−(Ω) = ess inf
x∈Ω

p(x), p+(Ω) = ess sup
x∈Ω

p(x).

Denote by S(Ω) the set of all measurable real functions defined on Ω. Two measur-
able functions are considered as the same element of S(Ω) when they are equal almost
everywhere. For p ∈ L∞

+ (Ω), define

Lp(x)(Ω) = {u ∈ S(Ω) :

∫

Ω

|u|p(x)dx < ∞},

with the norm

|u|Lp(x)(Ω) = |u|p(x) = inf{λ > 0 :

∫

Ω

|
u

λ
|p(x)dx ≤ 1}

and
W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)},

with the norm
‖u‖W 1,p(x)(Ω) = |u|Lp(x)(Ω) + |∇u|Lp(x)(Ω).
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Denote by W
1,p(x)
0 (Ω) the closure of C∞

0 (Ω) in W 1,p(x)(Ω).

For some basic properties of the spaces Lp(x)(Ω), W 1,p(x)(Ω) and W
1,p(x)
0 (Ω) we may

refer to [6, 7, 8].

Proposition 2.1([6], [8]). The spaces Lp(x)(Ω), W 1,p(x)(Ω) and W
1,p(x)
0 (Ω) are all sepa-

rable and reflexive Banach spaces if p− > 1.

Proposition 2.2([6], [8]). Set ρ(u) =
∫

Ω
|u(x)|p(x)dx. If u, uk ∈ Lp(x)(Ω), we have

(1) For u 6= 0, |u|p(x) = λ ⇔ ρ(u
λ
) = 1.

(2) |u|p(x) < 1(= 1; > 1) ⇔ ρ(u) < 1(= 1; > 1).

(3) If |u|p(x) > 1, then |u|p
−

p(x) ≤ ρ(u) ≤ |u|p
+

p(x).

(4) If |u|p(x) < 1, then |u|p
+

p(x) ≤ ρ(u) ≤ |u|p
−

p(x).

(5) limk→∞ |uk|p(x) = 0 ⇔ limk→∞ ρ(uk) = 0.
(6) limk→∞ |uk|p(x) = ∞ ⇔ limk→∞ ρ(uk) = ∞.

In this section we consider problem (1.1), the nonlocal p(x)-Laplacian equation in RN

without the variational structure.

u ∈ W 1,p(x)(RN) is said to be a (weak) solution of (1.1) if

A(u)

∫

RN

(|∇u|p(x)−2∇u∇v + |u|p(x)−2uv)dx = B(u)

∫

RN

f(x, u)vdx,

for every v ∈ W 1,p(x)(RN ).

In what follows, for simplicity, we write X = W 1,p(x)(RN ) and ci, C, Ci are positive
constants.

Define the mapping T , G, Lp(·) and Nf : X → X∗ respectively by

T (u)v = A(u)

∫

RN

(|∇u|p(x)−2∇u∇v + |u|p(x)−2uv)dx, ∀u, v ∈ X,

G(u)v = B(u)

∫

RN

f(x, u)vdx, ∀u, v ∈ X,

Lp(·)(u)v =

∫

RN

(|∇u|p(x)−2∇u∇v + |u|p(x)−2uv)dx, ∀u, v ∈ X,

Nf(u)v =

∫

RN

f(x, u)vdx, ∀u, v ∈ X.

Then T (u) = A(u)Lp(·)(u) and G(u) = B(u)Nf(u) for u ∈ X. It is clear that u ∈ X is a
solution of (1.1) if and only if T (u) − G(u) = 0.

Proposition 2.3. Suppose that A satisfies the following condition:
(A1) A : X → [0, +∞) is continuous and bounded on any bounded subset of X, A(u) > 0
for all u ∈ X \ {0}, and for any bounded sequence {un} ⊂ X for which A(un) → 0, un

must converge strongly to 0 in X.
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Then the mapping T : X → X∗ is continuous and bounded, and is of type (S+).

The proof is similar to [3], so omit it.

Proposition 2.4. Suppose that the following conditions are satisfied:
(f1)

|f(x, t)| ≤ b(x)|t|q(x)−1, ∀(x, t) ∈ RN × R,

where b(x) ≥ 0, b ∈ Lr(x)(RN)
⋂

L∞(RN), r, q ∈ L∞
+ (RN), q(x) ≪ p∗(x), and there is

s ∈ L∞(RN ) such that

p(x) ≤ s(x) ≤ p∗(x),
1

r(x)
+

q(x)

s(x)
= 1.

(B1) The functional B : X → R is continuous and bounded on any bounded subset of X.
Then the mapping G : X → X∗ is completely continuous.

Proof. Under the condition (f1), the mapping Nf : X → X∗ is sequentially weakly-
strongly continuous (see [9]). The continuity of G is obvious. Assume {un} is bounded,
then there exists a subsequence {unk

} of {un} such that Nf (unk
) and B(unk

) are strongly
convergent, so is G(unk

). This shows that G : X → X∗ is completely continuous. �

We know that the sum of an (S+) type mapping and a completely continuous mapping
is of type (S+), so from Propositions 2.3 and 2.4 we have the following:

Corollary 2.1. Let (A1), (B1) and (f1) hold. Then the mapping T − G : X → X∗

is continuous and bounded, and is of type (S+).

Theorem 2.1. Let (A1), (B1) and (f1) hold. Suppose that the following conditions
are satisfied:
(A2)There are constants α ∈ R, M > 0 and c1 > 0 such that

A(u) ≥ c1‖u‖
α for u ∈ X with ‖u‖ ≥ M.

(B2)There are constants β ∈ R, M > 0 and c2 > 0 such that

|b(u)| ≤ c2‖u‖
β for u ∈ X with ‖u‖ ≥ M.

Then problem (1.1) has at least one solution. If, in addition, α+p− > 1, then the mapping
T − G : X → X∗ is subjective, and consequently for any h ∈ X∗ the operator equation
T (u) − G(u) = h has at least one solution.

Proof. Under the hypotheses of Theorem 2.1, by Corollary 2.1, the mapping T − G :
X → X∗ is continuous and bounded, and is of type (S+). For sufficiently large ‖u‖, we
have that

(

T (u) − G(u)
)

u = A(u)

∫

RN

(|∇u|p(x) + |u|p(x))dx − B(u)

∫

RN

f(x, u)udx

≥ c1‖u‖
α‖u‖p− − c2c3‖u‖

β|u|q
+

q(·)
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≥ c1‖u‖
α+p− − c2c4‖u‖

β‖u‖q+

= c1‖u‖
α+p− − c5‖u‖

β+q+

≥ c6‖u‖
α+p− > 0.

So, by the degree theory for (S+) type mappings(see [13]), for R > 0 large enough, we
have deg(T − G, B(0, R), 0) = 1, and consequently, there exists u ∈ B(0, R) such that
T (u) − G(u) = 0, that is, (1.1) has at least one solution u ∈ B(0, R). If in addition,
α + p− > 1, then

lim
‖u‖→+∞

(T (u) − G(u))u

‖u‖
≥ lim

‖u‖→+∞
c6‖u‖

α+p−−1 = +∞,

that is, the mapping T − G is coercive, and consequently, by the surjection theorem for
the pseudomonotone mappings(see [14]), the mapping T − G is surjective. �

Remark 2.1. In Theorem 2.1, α and β are allowed to be negative.

3 The variational form

In this section we consider problem (1.2) with variational form, where f satisfies condition
(f1), k and g are two real functions satisfying the following conditions.
(k1) k : (0, +∞) → (0, +∞) is continuous and k ∈ L1(0, t) for any t > 0.
(g1) g : R → R is continuous.

Note that the function k satisfying (k1) may be singular at t = 0.

Define

k̂(t) =

∫ t

0

k(s)ds, ∀t ≥ 0; ĝ(t) =

∫ t

0

g(s)ds, ∀t ∈ R,

I1(u) =

∫

RN

|∇u|p(x) + |u|p(x)

p(x)
dx, I2(u) =

∫

RN

F (x, u)dx, ∀u ∈ X,

J(u) = k̂(I1(u)) = k̂(

∫

RN

|∇u|p(x) + |u|p(x)

p(x)
dx), ∀u ∈ X,

Φ(u) = ĝ(I2(u)) = ĝ(

∫

RN

F (x, u)dx), ∀u ∈ X,

E(u) = J(u) − Φ(u), ∀u ∈ X.

Proposition 3.1. Let (f1), (k1), (g1) hold. Then the following statements hold:
(1) k̂ ∈ C0([0, +∞))

⋂

C1
(

(0, +∞)
)

, k̂(0) = 0, k̂′(t) = k(t) > 0, for any t > 0, k̂ is
increasing on [0, +∞); ĝ ∈ C1(R), ĝ(0) = 0.
(2) J , Φ, E ∈ C0(X), J(0) = Φ(0) = E(0) = 0. J ∈ C1(X \ {0}). For every u ∈ X \ {0}
and v ∈ X, it holds that

E ′(u)v = k
(

I1(u)
)

∫

RN

(|∇u|p(x)−2∇u∇v + |u|p(x)−2uv)dx
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− g
(

I2(u)
)

∫

RN

f(x, u)vdx.

Thus u ∈ X \ {0} is a (weak) solution of (1.2) if and only if u is a nontrivial critical
point of E.
(3) The functional J : X → R is sequentially weakly lower semi-continuous, Φ : X → R is
sequentially weakly continuous, and thus E is sequentially weakly lower semi-continuous.
(4) The mapping Φ′ : X → X∗ is sequentially weakly-strongly continuous. For any open
set D ⊂ X \ {0} with D ∈ X \ {0}, the mapping J ′ and E ′ : D → X∗ are bounded, and
are of type (S+) .

Proof. The proof of statements (1) and (2) is obvious. Since the function k̂(t) is in-
creasing and the functional I1 is sequentially weakly lower semi-continuous, we can see
that the functional J : X → R is sequentially weakly lower semi-continuous. Moreover,
under the condition (f1), Φ and Φ′ are sequentially weakly-strongly continuous. Note let
D ∈ X \ {0}, it is clear that the mapping J ′ and E ′ : D → X∗ are bounded. In order
to prove that J ′ : D → X∗ is of type (S+), assuming that {un} ⊂ D, un ⇀ u in X and
limn→∞J ′(un)(un − u) ≤ 0, then there exist positive constants c1 and c2 such that c1 ≤
∫

RN

|∇un|p(x)+|un|p(x)

p(x)
dx ≤ c2 and so there exist positive constants c3 and c4 such that c3 ≤

k(
∫

RN

|∇un|p(x)+|un|p(x)

p(x)
dx) ≤ c4. Noting that J ′(un) = k(

∫

RN

|∇un|p(x)+|un|p(x)

p(x)
dx)Lp(·)(un), it

follows from limn→∞J ′(un)(un − u) ≤ 0 that limn→∞Lp(·)(un)(un − u) ≤ 0. Since Lp(·)

is of type (S+), we obtain unk
→ u in X. This shows that the mapping J ′ : D → X∗ is

of type (S+). Moreover, since Φ′ is sequentially weakly-strongly continuous, the mapping
E ′ : D → X∗ is of type (S+). �

Remark 3.1. To verify that E satisfies (P.S) condition on E, it is enough to verify
that any (P.S) sequence is bounded.

Theorem 3.1. Let (f1), (k1), (g1) and the following conditions hold.
(k2) There are positive constants α1, M and C such that k̂(t) ≥ Ctα1 for t ≥ M .
(g2) There are positive constants β1 and C1 such that |ĝ(t)| ≤ C1(1 + |t|β1) for t ∈ R.
(E2) β1q+ < α1p−.
Then the functional E is coercive and obtain its infimum in X at some u0 ∈ X. Thus u0

is a solution of (1.2) if E is differentiable at u0, and in particular, if u0 6= 0.

Proof. For ‖u‖ large enough, by (f1), (k2), (g2) and (E2), we have that

J(u) = k̂(

∫

RN

|∇u|p(x) + |u|p(x)

p(x)
dx) ≥ k̂(C‖u‖p−) ≥ C2‖u‖

α1p−,

∣

∣

∣

∫

RN

F (x, u)dx
∣

∣

∣
≤ C3|b|r(x)||u|

q(x)| s(x)
q(x)

≤ C4‖u‖
q+,

|Φ(u)| = ĝ(

∫

RN

F (x, u)dx) ≤ C5‖u‖
β1q+,

E(u) = J(u) − Φ(u) ≥ C2‖u‖
α1p− − C5‖u‖

β1q+ ≥ C6‖u‖
α1p−,

hence E is coercive. Since E is sequentially weakly lower semi-continuous and X is re-
flexive, E attains its infimum in X at some u0 ∈ X. In the case where E is differential at
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u0, u0 is a solution of (1.2). The proof is complete. �

As X is a separable and reflexive Banach space, there exist (see [15, Section 17])
{en}

∞
n=1 ⊂ X and {fn}

∞
n=1 ⊂ X∗ such that

fn(em) =

{

1 ifn = m,

0 ifn 6= m.

X = span{en : n = 1, 2, · · · , }, X∗ = spanW ∗

{en : n = 1, 2, · · · , }.

For k = 1, 2, · · · , denote

Xk = span{ek}, Yk =

k
⊕

j=1

Xj, Zk =

∞
⊕

j=k

Xj . (3.1)

Proposition 3.2. Assume that Φ : X → R is weakly-strongly continuous and Φ(0) = 0,
γ > 0 is a given positive constant. Set

βk = sup
u∈Zk,‖u‖≥γ

|Φ(u)|,

then βk → 0 as k → ∞.

The proof of the Proposition 3.2 is similar to [9], here we omit it.

Theorem 3.2. Let (f1), (k1), (k2), (g1), (g2), (E2) and the following conditions hold.

(k3) There exists α2 > 0 such that limt→0+
k̂(t)
tα2

< +∞.

(g3) There exists β2 > 0 such that limt→0+
ĝ(t)

tβ2
> 0.

(f2) f(x,−t) = −f(x, t) for x ∈ Ω and t ∈ R.
(f3) ∃δ > 0,

f(x, t) ≥ b0(x)tq0(x)−1 for x ∈ RN and 0 < t ≤ δ,

where b0 > 0, b0 ∈ C(RN , R), b0 6≡ 0, q0 ∈ L∞
+ (RN).

(E3) q+
0 β2 < α2p

−.
Then problem (1.2) has a sequence of solutions {±uk : k = 1, 2, · · · , } such that E(±uk) <

0 and E(±uk) → 0 as k → ∞.

Proof. As E is coercive, by Remark 3.1 we know that E satisfies (P.S) condition.
By (f2), E is an even functional. Denote by γ(A) the genus of A(see [16]). Set

Σ = {A ⊂ X \ {0} : A is compact and A = −A},

Σk = {A ∈ Σ : γ(A) ≥ k}, k = 1, 2, · · · ,

ck = inf
A∈Σk

sup
u∈A

ϕ(u), k = 1, 2, · · · ,

we have
−∞ < c1 ≤ c2 ≤ · · · ≤ ck ≤ ck+1 ≤ · · · .
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Now let us prove that ck < 0 for every k.

As b0 6≡ 0 and b0 ≥ 0, we can find a bounded open set Ω ⊂ RN , such that b0(x) > 0

for x ∈ Ω. The space W
1,p(x)
0 (Ω) is a subspace of X. For any k, we can choose a k

dimensional linear subspace Ek of W
1,p(x)
0 (Ω) such that Ek ⊂ C∞

0 (Ω). As the norms on
Ek are equivalent each other, there exists ρk ∈ (0, 1) such that u ∈ Ek with ‖u‖ ≤ ρk

implies |u|L∞ ≤ δ. Set
S(k)

ρk
= {u ∈ EK : ‖u‖ = ρk},

the compactness of S
(k)
ρk with condition (f3) concludes the existence of a constant dk such

that
∫

Ω

b0(x)|u|q(x)

q0(x)
dx ≥ dk, ∀u ∈ S(k)

ρk
.

For u ∈ S
(k)
ρ(k) and sufficiently small λ > 0 we have

E(λu) = k̂
(

∫

RN

λp(x)(|∇u|p(x) + |u|p(x))

p(x)
dx

)

− ĝ(

∫

RN

F (x, λu)dx)

≤ C7

(

∫

RN

λp(x)(|∇u|p(x) + |u|p(x))

p(x)
dx

)α2

− C8(

∫

Ω

b0λ
q0(x)|u|q0(x)

q0(x)
dx)β2

≤ C9λ
α2p−ρ

α2p−

k − C10λ
β2q+

0 d
β2

k .

As q+
0 β2 < α2p

−, we can find λk ∈ (0, 1) and ǫk > 0 such that

E(λku) ≤ −ǫk < 0, ∀u ∈ S(k)
ρk

,

that is
E(u) ≤ −ǫk < 0, ∀u ∈ S

(k)
λkρk

.

We know that γ(S
(k)
λkρk

) = k, so ck ≤ −ǫk < 0.
By the genus theory (see [16]), each ck is a critical value of E, hence there is a sequence
of solutions {±uk : k = 1, 2, · · · , } of (1.2) such that E(±uk) = ck < 0.
It remains to prove ck → 0 as k → ∞.
By the coerciveness of E, there exists a constant γ > 0 such that E(u) > 0 when ‖u‖ ≥ γ.
Taking arbitrarily A ∈ Σk, then γ(A) ≥ k. Let Yk and Zk be the subspaces of X as
mentioned in (3.1), according to the properties of genus we know that A ∩ Zk 6= ∅. Let

βk = sup
u∈Zk,‖u‖≥γ

|Φ(u)|,

by Proposition 3.2 we have βk → 0 as k → ∞. When u ∈ Zk and ‖u‖ ≥ γ , we have

E(u) = J(u) − Φ(u) ≥ −Φ(u) ≥ −βk,

hence
sup
u∈A

E(u) ≥ −βk,

and then ck ≥ −βk, this concludes ck → 0 as k → ∞. �
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Proposition 3.3. Let (f1), (k1), (g1)and the following conditions be satisfied:
(k′

2) (k2) with α1p
− > 1 hold.

(k4) There exists λ > 0 such that λk̂(t) ≥ tk(t) for t > 0.
(g4) There exists ν > 0 such that νĝ(t) ≤ g(t)t for t > 0.
(f4) There exists µ > 0, such that 0 < µF (x, t) ≤ f(x, t)t, t 6= 0 and ∀x ∈ RN .
(E4) λp+ < νµ.
Then E satisfies condition (P.S)c for any c 6= 0.

Proof. By (k4) for ‖u‖ large enough,

λp+J(u) = λp+k̂
(

∫

RN

|∇u|p(x) + |u|p(x)

p(x)
dx

)

≥ p+k
(

∫

RN

|∇u|p(x) + |u|p(x)

p(x)
dx

)

∫

RN

|∇u|p(x) + |u|p(x)

p(x)
dx

≥ k
(

∫

RN

|∇u|p(x) + |u|p(x)

p(x)
dx

)

∫

RN

(|∇u|p(x) + |u|p(x))dx

= J ′(u)u. (3.2)

From (f4) we may know

0 ≤ µ

∫

RN

F (x, u)dx ≤

∫

RN

f(x, u)udx, ∀u ∈ X.

Moreover by (g4),

νµΦ(u) = νµĝ
(

∫

RN

F (x, u)dx
)

≤ µg
(

∫

RN

F (x, u)dx
)

∫

RN

F (x, u)dx

≤ g
(

∫

RN

F (x, u)d
)

∫

RN

f(x, u)udx = Φ′(u)u,

so
Φ′(u)u − νµΦ(u) ≥ 0, for every u ∈ X. (3.3)

Now let {un} ⊂ X \ {0} and E ′(un) → 0 and E(un) → c with c 6= 0. Applying (3.2)
and (3.3) and (k′

2), for sufficiently large n, we have

νµc + 1 + ‖u‖ ≥ νµE(un) − E ′(un)un

≥ (νµ − λp+)J(un) +
(

λp+J(un) − J ′(un)un

)

+ Φ′(un) − νµΦ(un)

≥ C11‖u‖
α1p− − C12. (3.4)

Since α1p
− > 1, (3.4) implies that {‖un‖} is bounded. By Proposition 3.1, E satisfies

condition (P.S)c for any c 6= 0. �

Proposition 3.4. Under the hypotheses of Proposition 3.3, for any ω ∈ X \ {0},
E(sω) → −∞ as s → +∞.

EJQTDE, 2012 No. 76, p. 9



For the proof of Proposition 3.4, we refer to [3].

Proposition 3.5. Let (f1),(k1),(g1) and the following conditions be satisfied:

(k5) There exists α3 > 0 such that limt→0+
k̂(t)
tα3

> 0.

(g5) There exists β3 > 0 such that limt→0
ĝ(t)

tβ3
< ∞.

(f5) There exists r ∈ L∞
+ (RN) such that p(x) ≤ r(x) ≤ p∗(x) for x ∈ RN and limt→0

|F (x,t)|

|t|r(x) <

+∞ uniformly in x ∈ RN .
(E5)α3p

+ < β3r
−.

Then there exist positive constants ρ and δ such that E(u) ≥ δ for ‖u‖ = ρ.

Proof. It follows from (k5) that J(u) ≥ C13‖u‖
α3p+

for ‖u‖ small enough. It follows
from (g5), (f5) and (f1) that |Φ(u)| ≤ C14‖u‖

β3r− for ‖u‖ small enough. So, by (E5), we
may obtain the conclusion of Proposition 3.5. �

By the Mountain Pass lemma(see [17]), from Proposition 3.3-3.5, we have

Theorem 3.3. Let all hypotheses of Propositions 3.3-3.5 hold. Then problem (1.2)
has a nontrivial solution with positive energy.

By the Symmetric Mountain Pass lemma(see e.g. [17]), we have

Theorem 3.4. Under the hypotheses of Theorem 3.3, if, in addition, f satisfies (f2), then
problem (1.2) has a sequence of solutions {±un} such that E(±un) → +∞ as n → ∞.

Example 3.1. Let f(x, t) = b(x)|t|q(x)−2t for t ∈ R, where b(x), q(x) satisfies (f1).
k(t) = tα−1 for t > 0, where α > 0. g(t) = |t|β−2t, for t ∈ R where β ≥ 1. Suppose
αp+ < βq−, then all hypotheses of Theorems 3.3-3.4 are satisfied.

Remark 3.1. (1) In this paper, RN can be replaced by an unbounded domain Ω with
cone property, in this case the solution of problems (1.1) and (1.2) is defined in the space

W
1,p(x)
0 (Ω).

(2) If p(x) and f(x, u) are radially symmetric in x, one can find the radially symmet-
ric solutions of problem (1.2). The corresponding problem become much easier.
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