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Abstract: This paper is concerned with the periodic solutions for a class of new Nicholson-type

delay system with nonlinear density-dependent mortality terms. By using coincidence degree

theory, some criteria are obtained to guarantee the existence of positive periodic solutions of the

model. Moreover, an example is employed to illustrate the main results.
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1 Introduction

In a classical study of population dynamics, the Nicholson’s blowflies model

N ′(t) = −δN(t) + pN(t − τ)e−aN(t−τ), (1.1)

has been proposed by Gurney et al. [1] to describe the population of the Australian sheep-

blowfly and to agree with the experimental data obtained in [2]. Here N(t) stands for the size

the population at time t, p is the maximum per capita daily egg production, 1
a

is the size at

which the population reproduces at its maximum rate, δ is the per capita daily adult death rate,

and τ is the generation time. In the past forty years, this model and its modifications have been

extensively and intensively studied from both theoretical and mathematical biologists(see, for

example [3-14]).
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Recently, as pointed out in L. Berezansky et al. [15], a new study indicates that a linear model

of density-dependent mortality will be most accurate for populations at low densities, and marine

ecologists are currently in the process of constructing new fishery models with nonlinear density-

dependent mortality rates. Consequently, the dynamic behaviors of the Nicholson’s blowflies

model with a nonlinear density-dependent mortality term have been the object of intensive

analysis by numerous authors and some of these results can be found in [16-18]. In particular,

B. Liu et al. [19] established the results on the permanence for the following Nicholson-type

delay system with nonlinear density-dependent mortality terms:










































N ′
1(t) = −(a11(t) − b11(t)e

−N1(t)) + (a12(t) − b12(t)e
−N2(t))

+
l

∑

j=1
c1j(t)N1(t − τ1j(t))e

−γ1j (t)N1(t−τ1j (t)),

N ′
2(t) = −(a22(t) − b22(t)e

−N2(t)) + (a21(t) − b21(t)e
−N1(t))

+
l

∑

j=1
c2j(t)N2(t − τ2j(t))e

−γ2j (t)N2(t−τ2j (t)),

(1.2)

under the admissible initial conditions

xt0 = ϕ, ϕ ∈ C+ = C([−r1, 0], R
1
+) × C([−r2, 0], R

1
+) and ϕi(0) > 0, i = 1, 2, (1.3)

where aij , bij , cik, γik : R1 → (0,+∞) and τik : R1 −→ [0,+∞) are all bounded continuous func-

tions, ri = max
1≤k≤l

{τ+
ik}, and i, j = 1, 2, k = 1, 2, · · · , l. However, to the best of our knowledge, few

authors have considered the problem for positive periodic solutions of Nicholson-type delay sys-

tem (1.2). On the other hand, system (1.2) can be used to describe the dynamics for the models

of Marine Protected Areas and B-cell Chronic Lymphocytic Leukemia dynamics that belong to

the Nicholson-type delay differential systems with nonlinear density-dependent mortality terms

(see [12-14, 19]). Motivated by the above papers, in this present paper, the main purpose is to

give the conditions to guarantee the existence of positive periodic solutions of system (1.2).

For convenience, we introduce some notations. Throughout this paper, given a bounded

continuous function g defined on R1, let g+ and g− be defined as

g− = inf
t∈R1

g(t), g+ = sup
t∈R1

g(t).

We also assume that aij, bij , cik, γik : R1 → (0,+∞) and τik : R1 −→ [0,+∞) are all ω-periodic

functions, and i, j = 1, 2, k = 1, 2, · · · , l.

Let Rn(Rn
+) the set of all (nonnegative) real vectors, n = 1, 2, we will use x = (x1, x2)

T ∈ Rn

to denote a column vector, in which the symbol ( )T denotes the transpose of a vector. we let

|x| denote the absolute-value vector given by |x| = (|x1|, |x2|)
T and define ||x|| = max

1≤i≤2
|xi|. For
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matrix A = (aij)n×n, AT denotes the transpose of A. A matrix or vector A ≥ 0 means that all

entries of A are greater than or equal to zero. A > 0 can be defined similarly. For matrices or

vectors A and B, A ≥ B (resp. A > B) means that A − B ≥ 0 (resp. A − B > 0). We also

define the derivative and integral of vector function x(t) = (x1(t), x2(t))
T as x′ = (x′

1(t), x
′
2(t))

T

and
∫ ω

0 x(t)dt = (
∫ ω

0 x1(t)dt,
∫ ω

0 x2(t)dt)T .

The remaining part of this paper is organized as follows. In the next section, some sufficient

conditions for the existence of the positive periodic solutions of system (1.2) are given by using

the method of coincidence degree. In Section 3, an example is given to illustrate our result

obtained in the previous section.

2 Existence of Positive Periodic Solutions

In order to study the existence of positive periodic solutions, we first introduce the Continu-

ation theorem as follows:

Lemma 2.1 (Mawhin’s continuous theorem [20]). Let X and Z be two Banach spaces. Suppose

that L : D(L) ⊂ X → Z is a Fredholm operator with index zero and N : X → Z is L -compact

on Ω, where Ω is an open subset of X. Moreover, assume that all the following conditions are

satisfied:

(1)Lx 6= λNx, for all x ∈ ∂Ω ∩ D(L), λ ∈ (0, 1);

(2)Nx 6∈ ImL, for all x ∈ ∂Ω ∩ KerL;

(3) The Brouwer degree

deg{QN,Ω ∩ KerL, 0} 6= 0.

Then equation Lx = Nx has at least one solution in domL ∩ Ω.

We are now in a position to state our main result.

Theorem 2.1. Let

b−11
a+

11 + b+
12 − a−12

> 1, a−11 > a+
12 +

l
∑

j=1

c+
1j

γ−
1je

, (2.1)

and

b−22
a+

22 + b+
21 − a−21

> 1, a−22 > a+
21 +

l
∑

j=1

c+
2j

γ−
2je

. (2.2)

Then (1.2) has at least one positive ω−periodic solution.
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Proof. Let N(t) = (N1(t), N2(t))
T and Ni(t) = exi(t)(i = 1, 2). Then (1.2) can be rewritten as











































x′
1(t) = −a11(t)

ex1(t) + b11(t)

ex1(t)+ex1(t) + a12(t)

ex1(t) −
b12(t)

ex1(t)+ex2(t)

+
l

∑

j=1
c1j(t)

e
x1(t−τ1j(t))

e
x1(t)+γ1j(t)e

x1(t−τ1j(t)) := ∆1(x, t),

x′
2(t) = −a22(t)

ex2(t) + b22(t)

ex2(t)+ex2(t) + a21(t)

ex2(t) −
b21(t)

ex2(t)+ex1(t)

+
l

∑

j=1
c2j(t)

e
x2(t−τ2j(t))

e
x2(t)+γ2j(t)e

x2(t−τ2j(t)) := ∆2(x, t),

(2.3)

As usual, let X = Z = {x = (x1(t), x2(t))
T ∈ C(R1, R2) : x(t + ω) = x(t) for all t ∈ R1} be

Banach spaces equipped with the supremum norm || · ||. For any x ∈ X, because of periodicity,

it is easy to see that ∆(x, ·) = (∆1(x, ·),∆2(x, ·))T ∈ C(R1, R2) is ω-periodic. Let

L : D(L) = {x ∈ X : x ∈ C1(R1, R2)} ∋ x 7−→ x′ = (x′
1, x

′
2)

T ∈ Z,

P : X ∋ x 7−→
( 1

ω

∫ ω

0
x1(s)ds,

1

ω

∫ ω

0
x2(s)ds

)T
∈ X,

Q : Z ∋ z 7−→
( 1

ω

∫ ω

0
z1(s)ds,

1

ω

∫ ω

0
z2(s)ds

)T
∈ Z,

N : X ∋ x 7−→ ∆(x, ·) ∈ Z.

It is easy to see that

ImL = {x|x ∈ Z,

∫ ω

0
x(s)ds = (0, 0)T },KerL = R2, ImP = KerL and KerQ = ImL.

Thus, the operator L is a Fredholm operator with index zero. Furthermore, denoting by L−1
P :

ImL → D(L) ∩ KerP the inverse of L|D(L)∩KerP , we have

L−1
P y(t) = −

1

ω

∫ ω

0

∫ t

0
y(s)dsdt +

∫ t

0
y(s)ds

=
(

−
1

ω

∫ ω

0

∫ t

0
y1(s)dsdt +

∫ t

0
y1(s)ds,−

1

ω

∫ ω

0

∫ t

0
y2(s)dsdt +

∫ t

0
y2(s)ds

)T
.

(2.4)

It follows that

QNx =
1

ω

∫ ω

0
Nx(t)dt =

( 1

ω

∫ ω

0
∆1(x(t), t)dt,

1

ω

∫ ω

0
∆2(x(t), t)dt

)T
, (2.5)

L−1
P (I − Q)Nx =

∫ t

0
Nx(s)ds −

t

ω

∫ ω

0
Nx(s)ds −

1

ω

∫ ω

0

∫ t

0
Nx(s)dsdt

+
1

ω

∫ ω

0

∫ t

0
QNx(s)dsdt.

(2.6)

Obviously, QN and L−1
P (I−Q)N are continuous. It is not difficult to show that L−1

P (I−Q)N(Ω)

is compact for any open bounded set Ω ⊂ X by using the Arzela-Ascoli theorem. Moreover,

QN(Ω) is clearly bounded. Thus N is L-compact on Ω with any open bounded set Ω ⊂ X.
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Considering the operator equation Lx = λNx, λ ∈ (0, 1), we have

x′(t) = (x′
1(t), x

′
2(t))

T = λ∆(x, t) = (λ∆1(x, t), λ∆2(x, t))T . (2.7)

Suppose that x = (x1(t), x2(t))
T ∈ X is a solution of (2.7) for some λ ∈ (0, 1), then there exist

ξ1, ξ2, η1, η2 ∈ [0, ω] such that

xi(ξi) = min
t∈[0,ω]

xi(t), xi(ηi) = max
t∈[0,ω]

xi(t), and x′
i(ξi) = x′

i(ηi) = 0, i = 1, 2. (2.8)

It follows from (2.7) and (2.8) that

x′
1(ξ1) =λ

[

−
a11(ξ1)

ex1(ξ1)
+

b11(ξ1)

ex1(ξ1)+ex1(ξ1)
+

a12(ξ1)

ex1(ξ1)
−

b12(ξ1)

ex1(ξ1)+ex2(ξ1)

+

l
∑

j=1

c1j(ξ1)
ex1(ξ1−τ1j(ξ1))

ex1(ξ1)+γ1j (ξ1)ex1(ξ1−τ1j (ξ1))

]

=0.

(2.9)

Thus,

a+
11 + b+

12 − a−12 ≥a11(ξ1) + b12(ξ1) − a12(ξ1)

≥a11(ξ1) +
b12(ξ1)

eex2(ξ1)
− a12(ξ1)

=
b11(ξ1)

eex1(ξ1)
+

l
∑

j=1

c1j(ξ1)
ex1(ξ1−τ1j(ξ1))

eγ1j (ξ1)ex1(ξ1−τ1j (ξ1))

≥
b11(ξ1)

eex1(ξ1)

≥
b−11

eex1(ξ1)
,

(2.10)

which, together with (2.1), implies that

x1(ξ1) ≥ ln

(

ln
b−11

a+
11 + b+

12 − a−12

)

:= H11. (2.11)

Combining (2.7) with (2.8), we also have

x′
1(η1) =λ

[

−
a11(η1)

ex1(η1)
+

b11(η1)

ex1(η1)+ex1(η1)
+

a12(η1)

ex1(η1)
−

b12(η1)

ex1(η1)+ex2(η1)

+
l

∑

j=1

c1j(η1)
ex1(η1−τ1j(η1))

ex1(η1)+γ1j (η1)ex1(η1−τ1j (η1))

]

=0.

(2.12)
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In view of the fact that sup
u≥0

ue−u = 1
e
, one can get

a−11 − a+
12 ≤a11(η1) − a12(η1) +

b12(η1)

eex2(η1)

=
b11(η1)

eex1(η1)
+

l
∑

j=1

c1j(η1)
γ1j(η1)e

x1(η1−τ1j(η1))e−γ1j(η1)ex1(η1−τ1j (η1))

γ1j(η1)

≤
b+
11

eex1(η1)
+

l
∑

j=1

c+
1j

γ−
1je

,

(2.13)

it follows from (2.1) and (2.13) that

x1(η1) ≤ H12, (2.14)

where H12 is a fixed constant satisfying

a−11 − a+
12 ≥

b+
11

eeH12
+

l
∑

j=1

c+
1j

γ−
1je

.

In the same way, we can obtain

x2(ξ2) ≥ ln

(

ln
b−22

a+
22 + b+

21 − a−21

)

:= H21, (2.15)

and

x2(η2) ≤ H22, (2.16)

where H22 is a fixed constant satisfying

a−22 − a+
21 ≥

b+
22

eeH22
+

l
∑

j=1

c+
2j

γ−
2je

.

Let H > max{|H11|, |H21|, |H12|, |H22|} be a fix constant and define Ω = {x ∈ X : ||x|| < H}.

Then (2.11), (2.14), (2.15) and (2.16) imply that there is no λ ∈ (0, 1) and x ∈ ∂Ω such that

Lx = λNx. If x(t) = (x1(t), x2(t))
T ∈ ∂Ω ∩ KerL, then x(t) is a constant vector in R2, and

there exists some i ∈ {1, 2}, such that |xi| = H. Assume |x1| = H, so that x1 = ±H. Then, we

claim

(QN(x))1 > 0 for x1 = −H, and (QN(x))1 < 0 for x1 = H. (2.17)

If (QN(x))1 ≤ 0 for x1 = −H, it follows from (2.1) and (2.5) that

∫ ω

0
∆1(x, t)dt ≤ 0, for x1 = −H.
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Hence,

(a+
11 + b+

12 − a−12)e
H ≥

1

ω

∫ ω

0

[ a+
11

e−H
+

b+
12

e−H+ex2(t)
−

a−12
e−H

]

dt

≥
1

ω

∫ ω

0

[a11(t)

e−H
+

b12(t)

e−H+ex2(t)
−

a12(t)

e−H

]

dt

≥
1

ω

∫ ω

0

[ b11(t)

e−H+e−H
+

l
∑

j=1

c1j(t)

eγ1j(t)e−H

]

dt

>
b−11

e−H+e−H
,

which yields

−H > ln

(

ln
b−11

a+
11 + b+

12 − a−12

)

= H11.

This is contradiction and implies that (QN(x))1 > 0 for x1 = −H.

If (QN(x))1 ≥ 0 for x1 = H, from (2.1), (2.5) and sup
u≥0

ue−u = 1
e
, we get

∫ ω

0
∆1(x, t)dt ≥ 0, for x1 = H,

and

(a−11 − a+
12)e

−H <
1

ω

∫ ω

0

[

a11(t)

eH
−

a12(t)

eH
+

b12(t)

eH+ex2(t)

]

dt

=
1

ω

∫ ω

0

[

b11(t)

eH+eH
+

l
∑

j=1

c1j(t)γ1j(t)e
He−γ1j (t)eH

γ1j(t)eH

]

dt

≤
b+
11

eH+eH
+

l
∑

j=1

c+
1j

γ−
1je

He
.

Consequently,

H < ln

(

ln
b+
11

a−11 − a+
12 −

l
∑

j=1

c+1j

γ−
1j

e

)

= H12,

a contradiction to the choice of H. Thus, (QN(x))1 < 0 for x1 = H.

Similarly, if |x2| = H, we obtain

(QN(x))2 > 0 for x2 = −H, and (QN(x))2 < 0 for x2 = H. (2.18)

Furthermore, let 0 ≤ µ ≤ 1 and define a continuous function H(x, µ) by setting

H(x, µ) = −(1 − µ)x + µQNx.
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It follows from (2.17) and (2.18) that H(x, µ) 6= (0, 0)T for all x ∈ ∂Ω∩ kerL. Hence, using the

homotopy invariance theorem, we obtain

deg{QN,Ω ∩ kerL, (0, 0)T } = deg{−x,Ω ∩ kerL, (0, 0)T } 6= 0.

It then follows from the continuation theorem that Lx = Nx has a solution

x∗(t) = (x∗
1(t), x

∗
2(t))

T ∈ DomL
⋂

Ω,

which is an ω-periodic solution to system (2.3). Therefore N∗(t) = (N∗
1 (t), N∗

2 (t))T = (ex∗
1(t), ex∗

2(t))T

is a positive ω-periodic solution of (1.2) and the proof is complete.

3 Example and Remark

In this section, we give an example to illustrate the results obtained in the previous section.

Example 3.1. Consider the following Nicholson-type delay system with nonlinear density-

dependent mortality terms:



















































N ′
1(t) = −(4 + sin t) + (8 + | cos t|)e−N1(t) + (1 + cos t) − (1 + | sin t|)e−N2(t)

+ e4π(1 + cos t
4 )N1(t − |2 + cos t|)e−e4π+| sin t|N1(t−|2+cos t|)

+ e4π(1 + sin t
4 )N1(t − |2 + sin t|)e−e4π+| cos t|N1(t−|2+sin t|),

N ′
2(t) = −(6 + cos t) + (10 + | sin t|)e−N2(t) + (2 + sin t) − (1 − | cos t|)e−N1(t)

+ e4π(1 + sin t
4 )N2(t − |2 + sin t|)e−e4π+| cos t|N2(t−|2+sin t|)

+ e4π(1 + cos t
4 )N2(t − |2 + cos t|)e−e4π+| sin t|N2(t−|2+cos t|),

(3.1)

Obviously,

a−11 = 3, a+
11 = 5, b−11 = 8, b+

11 = 9, a−12 = 0, a+
12 = 2, b+

12 = 2,

a−22 = 5, a+
22 = 7, b−22 = 10, b+

22 = 11, a−21 = 1, a+
22 = 3, b+

21 = 2,

c+
ij =

5

4
e4π, γ−

ij = e4π (i, j = 1, 2),

then

b−11
a+

11 + b+
12 − a−12

=
8

7
> 1, a−11 > a+

12 +

l
∑

j=1

c+
1j

γ−
1je

,

b−22
a+

22 + b+
21 − a−21

=
5

4
> 1, a−22 > a+

21 +
l

∑

j=1

c+
2j

γ−
2je

.

Consequently, all the conditions in Theorem 2.1 hold. Therefore, system 3.1 has at least one

2π-periodic solution with strictly positive components.
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Remark 3.1. To our knowledge, few authors have studied the problems of positive periodic solu-

tion of Nicholson’s blowflies delayed systems with nonlinear density-dependent mortality terms.

It is clear that the results in [3,4,7,14,17-18] and the references therein cannot be applicable to

system (3.1) to prove the existence of positive periodic solution. Moreover, one can find that the

main results of [16] is restricted to consider the Nicholson’s blowflies delayed systems with non-

linear density-dependent mortality terms
aij(t)N

bij(t)+N
and give no opinions about aij(t)− bij(t)e

−N .

This implies that the results of the present paper are new and complement previously known

results.
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