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Abstract The author proves the W 1,p convergence of the symmetric

minimizers uε = (uε1, uε2, uε3) of a p-energy functional as ε→ 0, and the

zeros of u2
ε1 + u2

ε2 are located roughly. In addition, the estimates of the

convergent rate of u2
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the Euler-Lagrange equation of symmetric solutions and establishing its

C1,α estimate, the author obtains the C1,α convergence of some symmet-

ric minimizer.
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1 Introduction

Denote B = {x ∈ R2;x2
1+x2

2 < 1}. For b > 0, let E(b) = {x ∈ R3;x2
1+x2

2+
x2
3

b2 =

1} be a surface of an ellipsoid. Assume g(x) = (eidθ, 0) where x = (cos θ, sin θ)

on ∂B, d ∈ N . We concern with the minimizer of the energy functional

Eε(u,B) =
1

p

∫
B

|∇u|pdx+
1

2εp

∫
B

u2
3dx (p > 2)

in the function class

W = {u(x) = (sin f(r)eidθ, b cos f(r)) ∈W 1,p(B,E(b));u|∂B = g},

which is named the symmetric minimizer of Eε(u,B).

When p = 2, the functional Eε(u,B) was introduced in the study of some

simplified model of high-energy physics, which controls the statics of planar

ferromagnets and antiferromagnets (see [5][8]). The asymptotic behavior of

minimizers of Eε(u,B) has been considered in [3]. In particular, they discussed

the asymptotic behavior of the symmetric minimizer with E(1)-value of Eε(u,B)

in §5. When the term
u2
3

ε2 is replaced by (1−|u|2)2

2ε2 , the functional is the Ginzburg-

Landau functional, which was well studied in [1], [4] and [7]. The works in [1]

and [3] enunciated that the study of minimizers of the functional Eε(u,B) is
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connected tightly with the study of harmonic map with E(1)-value. Due to

this we may also research the asymptotic behavior of minimizers of Eε(u,B) by

referring to the p-harmonic map with ellipsoid value (which was discussed in

[2]).

In this paper, we always assume p > 2. As in [1] and [3], we are interested

in the behavior of minimizers of Eε(u,B) as ε → 0. We will prove the W 1,p
loc

convergence of the symmetric minimizers. In addition, some estimates of the

convergent rate of the symmetric minimizer will be presented and we will discuss

the location of the points where u2
3 = b2.

In polar coordinates, for u(x) = (sin f(r)eidθ, b cosf(r)), we have

|∇u|2 = (1 + (b2 − 1) sin2 f)f2
r + d2r−2 sin2 f,

∫
B

|∇u|pdx = 2π

∫ 1

0

r((1 + (b2 − 1) sin2 f)f2
r + d2r−2 sin2 f)p/2dr.

If we denote

V = {f ∈ W 1,p
loc (0, 1]; r1/pfr, r

(1−p)/p sin f ∈ Lp(0, 1), f(r) ≥ 0, f(1) =
π

2
},

then V = {f(r);u(x) = (sin f(r)eidθ , b cosf(r)) ∈ W}. It is not difficult to see

V ⊂ {f ∈ C[0, 1]; f(0) = 0}. Substituting u(x) = (sin f(r)eidθ, b cosf(r)) ∈ W

into Eε(u,B) we obtain

Eε(u,B) = 2πEε(f, (0, 1)),

where

Eε(f, (0, 1)) =

∫ 1

0

[
1

p
(f2

r (1+(b2−1) sin2 f)+d2r−2 sin2 f)p/2 +
1

2εp
b2 cos2 f ]rdr.

This shows that u = (sin f(r)eidθ , b cosf(r)) ∈ W is the minimizer of Eε(u,B)

if and only if f(r) ∈ V is the minimizer of Eε(f, (0, 1)). Applying the direct

method in the calculus of variations we can see that the functional Eε(u,B)

achieves its minimum on W by a function uε(x) = (sin fε(r)e
idθ , b cosfε(r)),

hence fε(r) is the minimizer of Eε(f, (0, 1)) in V . Observing the expression of

the functional Eε(f, (0, 1)), we may assume that, without loss of generality, the

function f satisfies 0 ≤ f ≤ π
2 .

We will prove the following

Theorem 1.1 Let uε be a symmetric minimizer of Eε(u,B) on W . Then for

any small positive constant γ ≤ b, there exists a constant h = h(γ) which is

independent of ε ∈ (0, 1) such that Zε = {x ∈ B; |uε3| > γ} ⊂ B(0, hε).
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This theorem shows that all the points where u2
ε3 = b2 are contained in

B(0, hε). Hence as ε→ 0, these points converge to 0.

Theorem 1.2 Let uε(x) = (sin fε(r)e
idθ , b cosfε(r)) be a symmetric minimizer

of Eε(u,B) on W . Then

lim
ε→0

uε = (eidθ, 0), in W 1,p(K,R3) (1.1)

for any compact subset K ⊂ B \ {0}.

Theorem 1.3 (convergent rate) Let uε(x) = (sin fε(r)e
idθ, b cosfε(r)) be a

symmetric minimizer of Eε(u,B) on W . Then for any η ∈ (0, 1) and K =

B \B(0, η), there exist C, ε0 > 0 such that as ε ∈ (0, ε0),

∫ 1

η

r[(f ′
ε)

p +
1

εp
cos2 fε]dr ≤ Cεp. (1.2)

sup
x∈K

|uε3(x)| ≤ Cε
p−2
2 . (1.3)

(1.2) gives the estimate of the convergent rate of fε to π/2 in W 1,p(η, 1]

sense, and that of convergence of |uε3(x)| to 0 in C(K) sense is showed by (1.3).

However, there may be several symmetric minimizers of the functional in

W . We will prove that one of the symmetric minimizer ũε can be obtained as

the limit of a subsequence uτk
ε of the symmetric minimizer uτ

ε of the regularized

functionals

Eτ
ε (u,B) =

1

p

∫
B

(|∇u|2 + τ)p/2dx+
1

2εp

∫
B

u2
3dx, (τ ∈ (0, 1))

on W as τk → 0. In fact, there exist a subsequence uτk
ε of uτ

ε and ũε ∈ W such

that

lim
τk→0

uτk
ε = ũε, in W 1,p(B,E(b)). (1.4)

Here ũε is a symmetric minimizer of Eε(u,B) in W . The symmetric minimizer

ũε is called the regularized minimizer. Recall that the paper [3] studied the

asymptotic behavior of minimizers uε ∈ H1
g (B,E(1)) of the energy functional

Eε(u,B) as ε→ 0. It turns out that

lim
ε→0

uε = (u∗, 0), in C1,α
loc (B \A) (1.5)

for some α ∈ (0, 1), where u∗ is a harmonic map, A is the set of singularities of

u∗. Theorem 1.2 has shown the W 1,p
loc (B \ {0}) convergence (weaker than (1.5))

of the symmetric minimizer. We will prove that the convergence of (1.5) is still
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true for the regularized minimizer. The result holds only for the regularized

minimizer, since the Euler-Lagrange equation for the symmetric minimizer uε

is degenerate. To derive the C1,α convergence of the regularized minimizer ũε,

we try to set up the uniform estimate of uτ
ε by researching the classical Euler-

Lagrange equation which uτ
ε satisfies. By this and applying (1.4), one can see the

C1,α convergence of ũε. So, the following theorem holds only for the regularized

minimizer.

Theorem 1.4 Let ũε be a regularized minimizer of Eε(u,B). Then for any

compact subset K ⊂ B \ {0}, we have

lim
ε→0

ũε = (eidθ, 0), in C1,α(K,E(b)), α ∈ (0, 1/2).

At the same time, the estimates of the convergent rate of the regularized

minimizer, which is better than (1.3), will be presented as following

Theorem 1.5 Let ũε(x) be the regularized minimizer of Eε(u,B). Then for any

compact subset K of (0, 1] there exist positive constants ε0 and C (independent

of ε), such that as ε ∈ (0, ε0),

sup
K

|ũε3| ≤ Cελp, (1.6)

where λ = 1
2 . Furthermore, if K is any compact subset of (0, 1), then (1.6) holds

with λ = 1.

The proof of Theorem 1.1 will be given in §2. In §3, we will set up the

uniform estimate of Eε(uε,K) which implies the conclusion of Theorem 1.2. By

virtue of the uniform estimate we can also derive the proof of Theorem 1.3 in

§4. For the regularized minimizer, we will give the proofs of Theorems 1.4 and

1.5 in §5 and §6, respectively.

2 Proof of Theorem 1.1

Proposition 2.1 Let fε be a minimizer of Eε(f, (0, 1)). Then

Eε(fε, (0, 1)) ≤ Cε2−p

with a constant C independent of ε ∈ (0, 1).
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Proof. Denote

I(ε,R) = Min{
∫ R

0
[ 1p (f2

r (1 + (b2 − 1) sin2 f) + d2

r2 sin2 f)
p
2

+ 1
2εp b

2 cos2 f ]rdr; f ∈ VR},

where VR = {f(r) ∈ W 1,p
loc (0, R]; f(R) = π

2 , sin f(r)r
1
p
−1, f ′(r)r

1
p ∈ Lp(0, R)}.

Then

I(ε, 1) = Eε(fε, (0, 1)) = 1
p

∫ 1

0 r((fε)
2
r(1 + (b2 − 1) sin2 f)

+d2r−2(sin fε)
2)p/2dr + 1

2εp

∫ 1

0
rb2 cos2 fεdr

= 1
p

∫ 1/ε

0
ε2−ps((fε)

2
s(1 + (b2 − 1) sin2 f) + d2s−2 sin2 fε)

p/2ds

+ 1
2εp

∫ ε−1

0 ε2sb2 cos2 fεds = ε2−pI(1, ε−1).

(2.1)

Let f1 be the minimizer for I(1, 1) and define

f2 = f1, as 0 < s < 1; f2 =
π

2
, as 1 ≤ s ≤ ε−1.

We have

I(1, ε−1)

≤ 1
p

∫ ε−1

0
s[(f ′

2)
2(1 + (b2 − 1) sin2 f) + d2s−2 sin2 f2]

p/2ds

+ 1
2

∫ ε−1

0
sb2 cos2 f2ds

≤ 1
p

∫ ε−1

1 s1−pdpds+ 1
p

∫ 1

0 s((f
′
1)

2(1 + (b2 − 1) sin2 f) + d2s−2 sin2 f1)
p/2ds

+ 1
2

∫ 1

0
sb2 cos2 f1ds

= dp

p(p−2) (1 − εp−2) + I(1, 1) ≤ dp

p(p−2) + I(1, 1) = C.

Substituting into (2.1) follows the conclusion of Proposition 2.1.

By the embedding theorem we derive, from |uε| = max{1, b} and proposition

2.1, the following

Proposition 2.2 Let uε be a symmetric minimizer of Eε(u,B). Then there

exists a constant C independent of ε ∈ (0, 1) such that

|uε(x) − uε(x0)| ≤ Cε(2−p)/p|x− x0|
1−2/p, ∀x, x0 ∈ B.

As a corollary of Proposition 2.1 we have
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Proposition 2.3 Let uε be a symmetric minimizer of Eε(u,B). Then

1

ε2

∫
B

u2
ε3dx ≤ C

with some constant C > 0 independent of ε ∈ (0, 1).

Proposition 2.4 Let uε be a symmetric minimizer of Eε(u,B). Then for any

γ ∈ (0, γ0) with γ0 < b sufficiently small, there exist positive constants λ, µ

independent of ε ∈ (0, 1) such that if

1

ε2

∫
B∩B2lε

u2
ε3dx ≤ µ (2.2)

where B2lε is some disc of radius 2lε with l ≥ λ, then

|uε3(x)| ≤ γ, ∀x ∈ B ∩ Blε. (2.3)

Proof. First we observe that there exists a constant β > 0 such that for any

x ∈ B and 0 < ρ ≤ 1, mes(B ∩ B(x, ρ)) ≥ βρ2. To prove the proposition,

we choose λ = ( γ
2C )

p

p−2 , µ = β
4 ( 1

2C )
2p

p−2 γ2+ 2p

p−2 where C is the constant in

Proposition 2.2.

Suppose that there is a point x0 ∈ B ∩Blε such that (2.3) is not true, i.e.

|uε3(x0)| > γ. (2.4)

Then applying Proposition 2.2 we have

|uε(x) − uε(x0)| ≤ Cε(2−p)/p|x− x0|
1−2/p ≤ Cε(2−p)/p(λε)1−2/p

= Cλ1−2/p = γ
2 , ∀x ∈ B(x0, λε)

which implies |uε3(x) − uε3(x0)| ≤ γ
2 . Noticing (2.4), we obtain |uε3(x)|2 ≥

[|uε3(x0)| −
γ
2 ]2 > γ2

4 , ∀x ∈ B(x0, λε). Hence

∫
B(x0,λε)∩B

u2
ε3dx >

γ2

4
mes(B ∩ B(x0, λε)) ≥ β

γ2

4
(λε)2 = µε2. (2.5)

Since x0 ∈ Blε ∩ B, and (B(x0, λε) ∩ B) ⊂ (B2lε ∩ B), (2.5) implies

∫
B2lε∩B

u2
ε3dx > µε2,

which contradicts (2.2) and thus the proposition is proved.
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To find the points where u2
ε3 = b2 based on Proposition 2.4, we may take

(2.2) as the ruler to distinguish the discs of radius λε which contain these points.

Let uε be a symmetric minimizer of Eε(u,B). Given γ ∈ (0, 1). Let λ, µ be

constants in Proposition 2.4 corresponding to γ. If

1

ε2

∫
B(xε,2λε)∩B

u2
ε3dx ≤ µ,

then B(xε, λε) is called γ− good disc, or simply good disc. Otherwise B(xε, λε)

is called γ− bad disc or simply bad disc.

Now suppose that {B(xε
i , λε), i ∈ I} is a family of discs satisfying

(i) : xε
i ∈ B, i ∈ I ; (ii) : B ⊂ ∪i∈IB(xε

i , λε);

(iii) : B(xε
i , λε/4) ∩ B(xε

j , λε/4) = ∅, i 6= j. (2.6)

Denote Jε = {i ∈ I ;B(xε
i , λε) is a bad disc}. Then, one has

Proposition 2.5 There exists a positive integer N (independent of ε) such that

the number of bad discs Card Jε ≤ N.

Proof. Since (2.6) implies that every point in B can be covered by finite,

say m (independent of ε) discs, from Proposition 2.3 and the definition of bad

discs,we have

µε2CardJε ≤
∑

i∈Jε

∫
B(xε

i
,2λε)∩B

u2
ε3dx

≤ m
∫
∪i∈Jε B(xε

i
,2λε)∩B u

2
ε3dx ≤ m

∫
B u

2
ε3dx ≤ mCε2

and hence Card Jε ≤ mC
µ ≤ N .

Applying TheoremIV.1 in [1], we may modify the family of bad discs such

that the new one, denoted by {B(xε
i , hε); i ∈ J}, satisfies

∪i∈Jε
B(xε

i , λε) ⊂ ∪i∈JB(xε
i , hε), λ ≤ h; Card J ≤ Card Jε,

|xε
i − xε

j | > 8hε, i, j ∈ J, i 6= j.

The last condition implies that every two discs in the new family are not inter-

sected. From Proposition 2.4 it is deduced that all the points where |uε3| = b

are contained in these finite, disintersected bad discs.
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Proof of Theorem 1.1. Suppose there exists a point x0 ∈ Zε such that

x0∈B(0, hε). Then all points on the circle S0 = {x ∈ B; |x| = |x0|} satisfy

u2
ε3(x) = b2 cos2 fε(|x|) = b2 cos2 fε(|x0|) = u2

ε3(x0) > γ2.

By virtue of Proposition 2.4 we can see that all points on S0 are contained in

bad discs. However, since |x0| ≥ hε, S0 can not be covered by a single bad disc.

As a result, S0 has to be covered by at least two bad disintersected discs. This

is impossible.

3 Proof of Theorem 1.2

Let uε(x) = (sin fε(r)e
idθ, b cos fε(r)) be a symmetric minimizer of Eε(u,B),

namely fε be a minimizer of Eε(f, (0, 1)) in V . From Proposition 2.1, we have

Eε(fε, (0, 1)) ≤ Cε2−p (3.1)

for some constant C independent of ε ∈ (0, 1). In this section we further prove

that for any η ∈ (0, 1), there exists a constant C(η) such that

Eε(fε; η) := Eε(fε, (η, 1)) ≤ C(η) (3.2)

for ε ∈ (0, ε0) with small ε0 > 0. Based on the estimate (3.2) and Theorem 1.1,

we may obtain the W 1,p
loc convergence for minimizers.

To establish (3.2) we first prove

Proposition 3.1 Given η ∈ (0, 1). There exist constants ηj ∈ [ (j−1)η
N+1 , jη

N+1 ],

(N = [p]) and Cj , such that

Eε(fε, ηj) ≤ Cjε
j−p (3.3)

for j = 2, ..., N , where ε ∈ (0, ε0).

Proof. For j = 2, the inequality (3.3) is just the one in Proposition 2.1.

Suppose that (3.3) holds for all j ≤ n. Then we have, in particular

Eε(fε; ηn) ≤ Cnε
n−p. (3.4)

If n = N then we are done. Suppose n < N . We want to prove (3.3) for

j = n+ 1.

Obviously (3.4) implies

1

4εp

∫ (n+1)η
N+1

nη
N+1

b2 cos2 fεrdr ≤ Cnε
n−p
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from which we see by integral mean value theorem that there exists ηn+1 ∈

[ nη
N+1 ,

(n+1)η
N+1 ] such that

[
1

εp
b2 cos2 fε]r=ηn+1 ≤ Cnε

n−p. (3.5)

Consider the functional

E(ρ, ηn+1) =
1

p

∫ 1

ηn+1

(ρ2
r + 1)p/2dr +

1

εp

∫ 1

ηn+1

b2 cos2 ρdr.

It is easy to prove that the minimizer ρ1 of E(ρ, ηn+1) in W 1,p
fε

((ηn+1, 1), R+)

exists and satisfies

−εp(v(p−2)/2ρr)r = sin 2ρ, in (ηn+1, 1) (3.6)

ρ|r=ηn+1 = fε, ρ|r=1 = fε(1) =
π

2
(3.7)

where v = ρ2
r + 1. It follows from the maximum principle that ρ1 ≤ π/2 and

sin2 ρ(r) ≥ sin2 ρ(ηn+1) = sin2 fε(ηn+1) = 1 − cos2 fε(ηn+1) ≥ 1 − γ2, (3.8)

the last inequality of which is implied by Theorem 1.1. Noting min{1, b2} ≤

1 + (b2 − 1) sin2 f ≤ max{1, b2}, applying (3.4) we see easily that

E(ρ1; ηn+1) ≤ E(fε; ηn+1) ≤ C(b)Eε(fε; ηn+1) ≤ Cnε
n−p (3.9)

for ε ∈ (0, ε0) with ε0 > 0 sufficiently small.

Now, choosing a smooth function ζ(r) such that ζ = 1 on (0, η), ζ = 0 near

r = 1, multiplying (3.6) by ζρr(ρ = ρ1) and integrating over (ηn+1, 1) we obtain

v(p−2)/2ρ2
r|r=ηn+1 +

∫ 1

ηn+1

v(p−2)/2ρr(ζrρr + ζρrr)dr =
1

εp

∫ 1

ηn+1

sin 2ρζρrdr.

(3.10)

Using (3.9) we have

|
∫ 1

ηn+1
v(p−2)/2ρr(ζrρr + ζρrr)dr|

≤
∫ 1

ηn+1
v(p−2)/2|ζr|ρ2

rdr + 1
p |

∫ 1

ηn+1
(vp/2ζ)rdr −

∫ 1

ηn+1
vp/2ζrdr|

≤ C
∫ 1

ηn+1
vp/2dr + 1

pv
p/2|r=ηn+1 + C

p

∫ 1

ηn+1
vp/2dr

≤ Cnε
n−p + 1

pv
p/2|r=ηn+1

(3.11)
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and using (3.5)(3.9) we have

| 1
εp

∫ 1

ηn+1
ζρr sin 2ρdr| = 1

εp |
∫ 1

ηn+1
ζrb

2 cos2 ρdr −
∫ 1

ηn+1
(ζb2 cos2 ρ)rdr|

≤ 1
εp b

2 cos2 ρ|r=ηn+1 + C
εp

∫ 1

ηn+1
cos2 ρdr ≤ Cnε

n−p.

(3.12)

Combining (3.10) with (3.11)(3.12) yields

v(p−2)/2ρ2
r|r=ηn+1 ≤ Cnε

n−p +
1

p
vp/2|r=ηn+1 .

Hence
vp/2|r=ηn+1 = v(p−2)/2(ρ2

r + 1)|r=ηn+1

≤ Cnε
n−p + 1

pv
p/2|r=ηn+1 + v(p−2)/2|r=ηn+1

≤ Cnε
n−p + ( 1

p + δ)vp/2|r=ηn+1 + C(δ)

from which it follows by choosing δ > 0 small enough that

vp/2|r=ηn+1 ≤ Cnε
n−p. (3.13)

Noting (3.8), we can see sin ρ > 0. Multiply both sides of (3.6) by cot ρ =
cos ρ
sin ρ and integrate. Then

−εpv(p−2)/2ρr cot ρ|1ηn+1
= εp

∫ 1

ηn+1

v(p−2)/2ρ2
r

1

sin2 ρ
dr + 2

∫ 1

ηn+1

cos2 ρdr.

Noting cot ρ(1) = 0 (which is implied by (3.7)) and 1
sin2 ρ ≥ 1, we have

E(ρ1; ηn+1) = 1
p

∫ 1

ηn+1
vp/2dr + 1

εp

∫ 1

ηn+1
cos2 ρdr

≤ C[
∫ 1

ηn+1
v(p−2)/2ρ2

rdr + 1
εp

∫ 1

ηn+1
cos2 ρdr] ≤ Cv(p−2)/2ρr cot ρ|r=ηn+1 .

From this, using(3.13)(3.5) and noticing that n < p, we obtain

E(ρ1; ηn+1) ≤ Cv(p−2)/2ρr cot ρ|r=ηn+1

≤ Cv(p−1)/2 cot ρ|r=ηn+1 ≤ (Cnε
n−p)(p−1)/p( Cnεn

1−Cnεn )1/2

≤ Cn+1ε
n+1−p+(n/2−n/p) ≤ Cn+1ε

n+1−p.

(3.14)

Define wε = fε, for r ∈ (0, ηn+1); wε = ρ1, for r ∈ [ηn+1, 1]. Since fε is a

minimizer of Eε(f), we have Eε(fε) ≤ Eε(wε), namely,

Eε(fε; ηn+1)

≤ 1
p

∫ 1

ηn+1
(ρ2

r(1 + (b2 − 1) sin2 ρ) + d2r−2 sin2 ρ)p/2rdr + 1
εp

∫ 1

ηn+1
cos2 ρrdr

≤ C
p

∫ 1

ηn+1
(ρ2

r + 1)p/2dr + C
2εp

∫ 1

ηn+1
cos2 ρdr + C = CE(ρ1; ηn+1) + C.
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Thus, using (3.14) yields

Eε(fε; ηn+1) ≤ Cn+1ε
n−p+1

for ε ∈ (0, ε0). This is just (3.3) for j = n+ 1.

Proposition 3.2 Given η ∈ (0, 1). There exist constants ηN+1 ∈ [ Nη
N+1 , η] and

CN+1 such that

Eε(fε; ηN+1) ≤ CN+1ε
N−p+1 +

1

p

∫ 1

ηN+1

dp

rp−1
dr (3.15)

where N = [p].

Proof. Similar to the derivation of (3.5) we may obtain from Proposition 3.1

for j = N that there exists ηN+1 ∈ [ Nη
N+1 ,

(N+1)η
N+1 ], such that

1

εp
cos2 fε|r=ηN+1 ≤ CNε

N−p. (3.16)

Also similarly, consider the functional

E(ρ, ηN+1) =
1

p

∫ 1

ηN+1

(ρ2
r + 1)p/2dr +

1

εp

∫ 1

ηN+1

cos2 ρdr

whose minimizer ρ2 in W 1,p
fε

((ηN+1, 1), R+) exists and satisfies

−εp(v(p−2)/2ρr)r = sin 2ρ, in (ηN+1, 1)

ρ|r=ηN+1 = fε, ρ|r=1 = fε(1) =
π

2

where v = ρ2
r + 1. From (3.4) for n = N it follows immediately that

E(ρ2; ηN+1) ≤ E(fε; ηN+1) ≤ CNEε(fε; ηN+1) ≤ CNEε(fε; ηN ) ≤ CNε
N−p.

Similar to the proof of (3.13) and (3.14), we get, from Proposition 3.1 and (3.16),

vp/2|r=ηN+1 ≤ CNε
N−p, and E(ρ2; ηN+1) ≤ CN+1ε

N+1−p. (3.17)

Now we define

wε = fε, for r ∈ (0, ηN+1); wε = ρ2, for r ∈ [ηN+1, 1]
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and then we have Eε(fε) ≤ Eε(wε). Notice that

∫ 1

ηN+1
(ρ2

r(1 + (b2 − 1) sin2 ρ) + d2r−2 sin2 ρ)p/2rdr

−
∫ 1

ηN+1
(d2r−2 sin2 ρ)p/2rdr

= p
2

∫ 1

ηN+1

∫ 1

0
[(ρ2

r(1 + (b2 − 1) sin2 ρ) + d2r−2 sin2 ρ)s

+(d2r−2 sin2 ρ)(1 − s)](p−2)/2]dsρ2
rrdr

≤ C
∫ 1

ηN+1
(ρ2

r + d2r−2 sin2 ρ)(p−2)/2ρ2
rrdr

∫ 1

0
s(p−2)/2ds

+ C
∫ 1

ηN+1
(d2r−2 sin2 ρ)(p−2)/2ρ2

rrdr
∫ 1

0 (1 − s)(p−2)/2ds

≤ C(
∫ 1

ηN+1
ρp

rdr +
∫ 1

ηN+1
ρ2

rdr) ≤ C
∫ 1

ηN+1
(ρ2

r + 1)p/2dr.

Hence

Eε(fε; ηN+1) ≤
1
p

∫ 1

ηN+1
(d2r−2 sin2 ρ)p/2rdr + C

2εp

∫ 1

ηN+1
(cos ρ2)

2dr

+C
∫ 1

ηN+1
((ρ2)

2
r + 1)p/2dr ≤ 1

p

∫ 1

ηN+1
r(d2r−2)p/2dr + CE(ρ2; ηN+1).

Using (3.17) we have

Eε(fε; ηN+1) ≤
1

p

∫ 1

ηN+1

r(d2r−2)p/2dr + CN+1ε
N−p+1.

This is my conclusion.

Proof of Theorem 1.2. Without loss of generality, we may assume K = B \

B(0, ηN+1). From Proposition 3.2, We have Eε(uε,K) = 2πEε(fε, ηN+1) ≤ C

where C is independent of ε, namely

∫
K

|∇uε|
pdx ≤ C, (3.18)

∫
K

|uε3|
2dx ≤ Cεp. (3.19)

(3.18) and |uε| ≤ max{1, b} imply the existence of a subsequence uεk
of uε and

a function u∗ ∈ W 1,p(K,R3), such that

lim
εk→0

uεk
= u∗, weakly in W 1,p(K,R3)

lim
εk→0

uεk
= u∗, in Cα(K,R3), α ∈ (0, 1 −

2

p
). (3.20)
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(3.19) and (3.20) imply u∗ = (eidθ, 0). Noticing that any subsequence of uε has

a convergence subsequence and the limit is always (eidθ, 0), we can assert

lim
ε→0

uε = (eidθ, 0), weakly in W 1,p(K,R3). (3.21)

From this and the weakly lower semicontinuity of
∫

K
|∇u|p, using Proposition

3.2, we have

∫
K
|∇eidθ|pdx ≤ limεk→0

∫
K
|∇uε|pdx ≤ limεk→0

∫
K
|∇uε|pdx

≤ C limε→0 ε
N+1−p + 2π

∫ 1

ηN+1
(d2r−2)p/2rdr

and hence

lim
ε→0

∫
K

|∇uε|
pdx =

∫
K

|∇eidθ|pdx

since ∫
K

|∇eidθ|pdx = 2π

∫ 1

ηN+1

(d2r−2)p/2rdr.

Combining this with (3.21)(3.20) complete the proof.

4 Proof of Theorem 1.3

Firstly, it follows from Jensen’s inequality that

Eε(fε; η) ≥ 1
p

∫ 1

η
(f ′

ε)
p(1 + (b2 − 1) sin2 f)p/2rdr

+ 1
2εp

∫ 1

η b
2 cos2 fεrdr + 1

p

∫ 1

η
dp

rp sinp fεrdr.

Combining this with (3.15) yields

1
p

∫ 1

η
(f ′

ε)
p(1 + (b2 − 1) sin2 f)p/2rdr + 1

2εp

∫ 1

η
b2 cos2 fεrdr

≤ 1
p

∫ 1

η
dp

rp (1 − sinp fε)rdr + Cε[p]+1−p.

Noticing that 1 − sinp fε ≤ C(1 − sin2 fε) = C cos2 fε and (3.19), we obtain

∫ 1

η (f ′
ε)

prdr + 1
εp

∫ 1

η b
2 cos2 fεrdr

≤ C
∫ 1

η
dp

rp cos2 fεrdr + Cε[p]+1−p ≤ Cεp + Cε[p]+1−p ≤ Cε[p]+1−p.
(4.1)

Using (4.1) and the integral mean value theorem we can see that there exists

η1 ∈ [η, η(1 + 1/2)] ⊂ [R/2, R] such that

[
1

εp
cos2 fε]r=η1 ≤ C1ε

[p]−p+1. (4.2)
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Consider the functional

E(ρ, η1) =
1

p

∫ 1

η1

(ρ2
r + 1)p/2dr +

1

2εp

∫ 1

η1

cos2 ρdr.

It is easy to prove that the minimizer ρ3 of E(ρ, η1) in W 1,p
fε

((η1, 1), R+) exists.

By the same way to proof of (3.14), using (3.2) and (4.2) we have

E(ρ3, η1) ≤ v
p−2
2 ρ3r cot ρ3|r=η1 ≤ C1 cot ρ3(η1) ≤ Cε

[p]+1−p

2 + p

2 .

Hence, similar to the derivation of (3.15), we obtain

Eε(fε; η1) ≤ Cε
[p]−p+1

2 + p

2 +
1

p

∫ 1

η1

dp

rp−1
dr.

Thus (4.1) may be rewritten as
∫ 1

η1

(f ′
ε)

prdr +
1

εp

∫ 1

η1

b2 cos2 fεrdr ≤ Cε
[p]+1−p

2 +p
2 + Cεp ≤ C2ε

[p]+1−p

2 + p
2 .

Let ηm = R(1− 1
2m ) where R < 1. Proceeding in the way above (whose idea

is improving the exponent of ε from [p]+1−p
2k + (2k−1)p

2k to [p]+1−p
2k+1 + (2k+1−1)p

2k+1

step by step), we can get that for any m ∈ N ,
∫ 1

ηm

(f ′
ε)

prdr +
1

εp

∫ 1

ηm

b2 cos2 fεrdr ≤ Cε
[p]+1−p

2m +
(2m

−1)p
2m + Cεp.

Letting m→ ∞, we derive (1.2).

From (1.2) we can see that∫
K

u2
ε3dx ≤ Cε2p. (4.3)

On the other hand, for any x0 ∈ K, we have

|uε3(x) − uε3(x0)| ≤ Cε(2−p)/p|x− x0|
1−2/p, ∀x ∈ B(x0, αε),

by applying Proposition 2.2, where α = ( |uε3(x0)|
2C )

p
p−2 . Thus

|uε3(x)| ≥ |uε3(x0)| − Cα1−2/p ≥
1

2
|uε3(x0)|.

Substituting this into (4.3) we obtain

Cε2p ≥

∫
K

u2
ε3dx ≥

∫
B(x0,αε)

u2
ε3dx ≥

π

4
|uε3(x0)|

2(αε)2,

which implies |uε3(x0)| ≤ Cε
p−2
2 . Noting x0 is an arbitrary point in K, we have

sup
x∈K

|uε3(x)| ≤ Cε
p−2
2 .

Thus (1.3) is derived and the proof of Theorem is complete.
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5 Proof of Theorem 1.4

By the method in the calculus of variations we can see the following

Proposition 5.1 The minimizer fε ∈ V of the functional Eε(f, (0, 1)) satisfies

the following equality

∫ 1

0

v(p−2)/2[frφr +
b2 − 1

2
f2

r (sin 2f)φ+
d2

2r2
(sin 2f)φ]rdr =

1

2εp

∫ 1

0

(sin 2f)φrdr

for any function φ ∈ C∞
0 [0, 1], where v = f2

r (1 + (b2 − 1)sin2f) + d2 sin2 f
r2 .

Assume uτ
ε = (eidθ sin fτ

ε , cos fτ
ε ) is the minimizer of the regularized func-

tional Eτ
ε (u,B). It is easy to prove that the minimizer f τ

ε is a classical solution

of the equation

−(rA(p−2)/2fr)r +
r(b2 − 1)

2
A(p−2)/2f2

r sin 2f + d2A(p−2)/2 sin 2f

2r
=
r sin 2f

2εp
,

(5.1)

where A = v + τ . By the same argument of Theorem 1.1 and Proposition 3.2,

we can also see that for any compact subset K ∈ (0, 1], there exist constants

η ∈ (0, 1/2) and C > 0 which are independent of ε and τ , such that

η ≤ fτ
ε (r) ≤

π

2
, r ∈ K, (5.2)

Eτ
ε (fτ

ε ,K) ≤ C, (5.3)

where

Eτ
ε (f,K) =

∫
K

[
1

p
(f2

r (1+(b2−1)sin2f)+d2r−2 sin2 f+τ)p/2 +
1

2εp
b2 cos2 f ]rdr.

Proposition 5.2 Denote f τ
ε = f . Then for any closed subset K ⊂ (0, 1), there

exists C > 0 which is independent of ε, τ such that

‖f‖C1,α(K,R) ≤ C, ∀α ≤ 1/2.

Proof. Without loss of the generality, we assume d = 1. Take R > 0 suffi-

ciently small such that K ⊂⊂ (2R, 1− 2R). Let ζ ∈ C∞
0 ([0, 1], [0, 1]) be a func-

tion satisfying ζ = 0 on [0, R]∪ [1−R, 1], ζ = 1 on [2R, 1−2R] and |ζr| ≤ C(R)

on (0, 1). Differentiating (5.1), multiplying with frζ
2 and integrating, we have

−
∫ 1

0
(A(p−2)/2fr)rr(frζ

2)dr −
∫ 1

0
(r−1A(p−2)/2fr)r(frζ

2)dr

+ 1
2

∫ 1

0
[(r−2 + (b2 − 1)f2

r )A(p−2)/2 sin 2f ]r(frζ
2)dr = b2

εp

∫ 1

0
(cos 2f)f2

r ζ
2dr.
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Integrating by parts and noting cos 2f = 2 cos2 f − 1, we obtain

∫ 1

0
(A(p−2)/2fr)r(frζ

2)rdr

=
∫ 1

0
A(p−2)/2(frζ

2)r[(
1

2r2 + b2−1
2 f2

r ) sin 2f − r−1fr]dr

+ 2
εp

∫ 1

0 (b2 cos2 f)f2
r ζ

2dr − 1
εp

∫ 1

0 f
2
r ζ

2dr.

Denote I =
∫ 1−R

R
ζ2(A(p−2)/2f2

rr + (p − 2)A(p−4)/2f2
r f

2
rr)dr. Then for any δ ∈

(0, 1), there holds

I ≤ δI + C(δ)

∫ 1−R

R

Ap/2ζ2
r dr +

2

εp

∫ 1−R

R

(b2 cos2 f)f2
r ζ

2dr (5.4)

by using Young inequality. Noticing that (5.2) implies sin f > 0 as r ∈ [R, 1−R],

from (5.1) we can see that

2
εp (cos f)2 = 4r−1 cot f [−(A(p−2)/2fr)r − r−1A(p−2)/2fr

+A(p−2)/2( 1
2r + r(b2−1)

2 f2
r ) sin 2f ].

Substituting it into the last term of the right hand side of (5.4) and applying

Young inequality again we obtain that for any δ ∈ (0, 1),

2

εp

∫ 1−R

R

(cos2 f)f2
r ζ

2dr ≤ δI + C(δ)

∫ 1−R

R

A(p+2)/2ζ2dr.

Combining this with (5.4) and choosing δ sufficiently small, we have

I ≤ C

∫ 1−R

R

Ap/2ζ2
r dr + C

∫ 1−R

R

A(p+2)/2ζ2dr. (5.5)

To estimate the second term of the right hand side of (5.5), we take φ =

ζ2/q |fr|
(p+2)/q in the interpolation inequality (Ch II, Theorem 2.1 in [6])

‖φ‖Lq ≤ C‖φr‖
1−1/q
L1 ‖φ‖

1/q
L1 , q ∈ (1 +

2

p
, 2). (5.6)

We derive by applying Young inequality that for any δ ∈ (0, 1),

∫ 1−R

R |fr|p+2ζ2dr ≤ C(
∫ 1−R

R ζ2/q |fr|(p+2)/qdr)

·(
∫ 1−R

R
ζ2/q−1|ζr||fr|(p+2)/q + ζ2/q |fr|(p+2)/q−1|frr|dr)q−1

≤ C(
∫ 1−R

R
ζ2/q |fr|(p+2)/qdr)(

∫ 1−R

R
ζ2/q−1|ζr||fr|(p+2)/q

+δI + C(δ)
∫ 1−R

R
A

p+2
q

− p
2 ζ4/q−2dr)q−1.

(5.7)
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Noting q ∈ (1 + 2
p , 2), we may using Holder inequality to the right hand side of

(5.7). Thus, by virtue of (5.3),

∫ 1−R

R

|fr|
p+2ζ2dr ≤ δI + C(δ).

Substituting this into (5.5) and choosing δ sufficiently small, we obtain

∫ 1−R

R

A(p−2)/2f2
rrζ

2dr ≤ C,

which, together with (5.3), implies that ‖Ap/4ζ‖H1(R,1−R) ≤ C. Noticing ζ = 1

on K, we have ‖Ap/4‖H1(K) ≤ C. Using embedding theorem we can see that

for any α ≤ 1/2, there holds ‖Ap/4‖Cα(K) ≤ C. From this it is not difficult to

prove our proposition.

Applying the idea above, we also have the estimate near the boundary point

r = 1.

Proposition 5.3 Denote f τ
ε = f(r). Then for any closed subset K ⊂ (0, 1],

there exists C > 0 which is independent of ε, τ such that

‖f‖C1,α(K,R) ≤ C, ∀α ≤ 1/2.

Proof. Without loss of the generality, we assume d = 1. Let g(r) = f(r+1)−1.

Define
g̃(r) = g(r), as − 1 < r ≤ 0;

g̃(r) = −g(−r) as 0 < r ≤ 1
2 .

If still denote f(r) = g̃(r−1)+1 on (0, 3
2 ), then f(r) solves (5.1) on (0, 3

2 ). Take

R < 1
4 sufficiently small, and set ζ ∈ C∞[0, 1], ζ = 1 as r ≥ 1 − R, ζ = 0 as

r ≤ 2R. Differentiating (5.1), multiplying with frζ
2 and integrating over [R, 1],

we have

−
∫ 1

R
(A(p−2)/2fr)rr(frζ

2)dr −
∫ 1

R
(r−1A(p−2)/2fr)r(frζ

2)dr

+
∫ 1

R
[( 1

2r2 + b2−1
2 f2

r )A(p−2)/2 sin 2f ]r(frζ
2)dr = 1

εp

∫ 1

R
(b2 cos 2f)f2

r ζ
2dr.

Integrating by parts yields

∫ 1

R(A(p−2)/2fr)r(frζ
2)rdr

≤ |
∫ 1

R[A(p−2)/2(( 1
2r2 + b2−1

2 f2
r ) sin 2f − r−1fr]r(frζ

2)dr|

+ 2
εp

∫ 1

R
(b2 cos2 f)f2

r ζ
2dr + |I(1) − I(R)|,
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where I(r) = −[(A(p−2)/2fr)r + 1
rA

(p−2)/2fr − 1
2r2A

(p−2)/2 sin 2f ]frζ
2. The

second term of the right hand side of the inequality above can be handled

similar to the proof of Proposition 5.2. Computing the first term of the right

hand side yields

|
∫ 1

R[A(p−2)/2(( 1
2r2 + b2−1

2 f2
r ) sin 2f − r−1fr]r(frζ

2)dr|

≤ δ
∫ 1

R
A(p−2)/2f2

rrζ
2dr + C(δ)

∫ 1

R
A(p+2)/2dr

with any δ ∈ (0, 1) by using Young inequality. In view of (5.1), we have I(r) =
1

2εp (sin 2f)frζ
2. Hence, I(1) = I(R) = 0 since sin 2f(1) = 0 and ζ(R) = 0.

Hence, we may also obtain the result as (5.5)

∫ 1

R

A(p−2)/2f2
rrζ

2dr ≤ C

∫ 1

R

(Ap/2 +A(p+2)/2ζ2)dr.

Now, if we take φ = ζ2/q |fr|(p+2)/q , then the interpolation inequality (5.6) is

invalid since φ 6= 0 near r = 1. Thus, we apply a new interpolation inequality

[6, (2.19) in Chapter 2]

‖φ‖Lq ≤ C(‖φr‖L1 + ‖φ‖L1)1−1/q‖φ‖
1/q
L1 , q ∈ (1 +

2

p
, 2).

Then it still follows the same result as (5.7). The rest of the proof is similar to

the proof of Proposition 5.2.

Proof of Theorem 1.4. For every compact subset K ⊂ B \ {0}, applying

Propositions 5.2 and 5.3 yields that for α ∈ (0, 1/2] one has

‖uτ
ε‖C1,α(K) ≤ C = C(K), (5.8)

where the constant does not depend on ε, τ .

Applying (5.8) and the embedding theorem we know that for any ε and

β1 < α, there exist w∗
ε ∈ C1,β1(K,E(b)) and a subsequence of τk of τ such that

as k → ∞,

uτk
ε → w∗

ε , in C1,β1(K,E(b)). (5.9)

Combining this with (1.4) we know that w∗
ε = ũε.

Applying (5.8) and the embedding theorem again we can see that for any

β2 < α, there exist w∗ ∈ C1,β2(K,E(b)) and a subsequence of τk which can be

denoted by τm such that as m→ ∞,

uτm
εm

→ w∗, in C1,β2(K,E(b)). (5.10)
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Noticing (1.2), we know that w∗ = (eidθ, 0). Denote γ = min(β1, β2). Then as

m→ ∞, we have

‖ũεm
− (eidθ, 0)‖C1,γ(K,E(b)) ≤ ‖ũεm

− uτm
εm

‖C1,γ(K,E(b))

+‖uτm
εm

− (eidθ, 0)‖C1,γ(K,E(b)) ≤ o(1)
(5.11)

by applying (5.9) and (5.10).

Noting the limit (eidθ, 0) is unique, we can see that the convergence (5.11)

holds not only for some subsequence but for all ũε. Theorem is proved.

6 Proof of Theorem 1.5

Without loss of the generality, we assume d = 1. Denote f = f τ
ε . Set ψ = cos f

εp .

Multiplying (5.1) by sin f we obtain

−(rA(p−2)/2(sin f)fr)r + r cos fA(p−2)/2(A− τ) = r(sin f)2ψ. (6.1)

Substituting ψr = − sin f
εp fr into (6.1) we have

εp(rA(p−2)/2ψr)r + r cos fA(p−2)/2(A− τ) = r(sin f)2ψ.

Suppose ψ(r) achieves its maximum at the point r0 inK, whereK is an arbitrary

open interval in any compact subset of (0, 1). Then ψr(r0) = 0, ψrr(r0) ≤ 0.

And (sin f)2 ≥ C1 > 0 with the constant C1 independent of ε and τ which is

implied by (5.2). Thus, it is deduced that, from Proposition 5.2,

ψ(r) ≤ ψ(r0) ≤
1

C1
A(p−2)/2(A− τ)|r=r0 ≤ C,

which implies supK | cos f | ≤ Cεp with the constant C > 0 independent of ε

and τ , where K is any compact subset of (0, 1). Letting τ → 0 and using (5.9)

we may see the conclusion

sup
K

| cos fε| ≤ Cεp.

To derive estimate near the boundary r = 1, we use the idea of Pohozaev’s

equality. Choose R ∈ (0, 1
4 ). Set ζ(r) ∈ C∞[0, 1], ζ = 0 as r ∈ [0, 2R], ζ = 1

as r ∈ [1 − R, 1]. Then ζr ≤ C(R). Multiplying (5.1) with frζ and integrating

over [R, T ] with T being an arbitrary constant in (1 −R, 1), we have

−
∫ T

R (rA(p−2)/2fr)rfrζdr +
∫ T

R A(p−2)/2(sin 2f)[ 1
2r + r(b2−1)

2 f2
r ]frζdr

= 1
2εp

∫ T

R rfr(sin 2f)ζdr.
(6.2)
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Integrating the right hand side of (6.2) by parts yields

1
2εp

∫ T

R rfr(sin 2f)ζdr = − 1
2εp

∫ T

R r(cos2 f)rζdr

= − 1
2εp r(cos f)2|r=T + 1

2εp

∫ T

R
(cos2 f)(rζ)rdr.

(6.3)

Similarly, the first term of the left hand side of (6.2) may be written as

−
∫ T

R (rA(p−2)/2fr)rfrζdr = −rA(p−2)/2f2
r |r=T

+
∫ T

R
rA(p−2)/2frfrrζdr +

∫ T

R
rA(p−2)/2f2

r ζrdr = Σ3
i=1.

(6.4)

Combining I2 with the second term of the left hand side of (6.2) we have

I2 +
∫ T

R A(p−2)/2 sin 2f
2r frζdr

=
∫ T

R rA(p−2)/2[frfrr + ( 1
2r2 + b2−1

2 f2
r )fr sin 2f)ζdr

= 1
2

∫ T

R
rA(p−2)/2ζ(A − τ)rdr + 1

2

∫ T

R
r−2A(p−2)/2ζ sin2 fdr

= 1
prA

p/2|r=T − 1
p

∫ T

R
Ap/2(rζ)rdr + 1

2

∫ T

R
r−2A(p−2)/2ζ sin2 fdr.

Substituting this and (6.3),(6.4) into (6.2) yields

1
2εp r(cos f)2|r=T + 1

prA
p/2|r=T +

∫ T

R rA(p−2)/2f2
r ζrdr

+ 1
2

∫ T

R
A(p−2)/2r−2(sin f)2ζdr

= 1
2εp

∫ T

R
(cos f)2(rζ)rdr + 1

p

∫ T

R
Ap/2(rζ)rdr + rA(p−2)/2f2

r |r=T .

Applying Proposition 5.3 and (5.3) we obtain 1
2εpT cos2 f(T ) ≤ C, with C > 0

independent of ε and τ . Letting τ → 0 and using (5.9) we derive

1

2εp
cos2 fε(T ) ≤ C.

By virtue of the arbitrary of the point T , it is not difficult to get our Theorem.
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