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This paper is dedicated to Prof. László Hatvani on the occasion of his 60th birthday.

Abstract

In this paper we give a sufficient condition to imply global asymptotic stability of a
delayed cellular neural network of the form

ẋi(t) = −dixi(t) +

n
∑

j=1

aijf(xj(t)) +

n
∑

j=1

bijf(xj(t− τij)) + ui, t ≥ 0, i = 1, . . . , n,

where f(t) = 1
2
(|t+1|− |t−1|). In order to prove this stability result we need a sufficient

condition which guarantees that the trivial solution of the linear delay system

żi(t) =

n
∑

j=1

aijzj(t) +

n
∑

j=1

bijzj(t− τij), t ≥ 0, i = 1, . . . , n

is asymptotically stable independently of the delays τij .

keywords: delayed cellular neural networks, global asymptotic stability, M-matrix

1 Introduction

The notion of cellular neural networks (CNNs) was introduced by Chua and Yang ([5]), and
since then, CNN models have been used in many engineering applications, e.g., in signal
processing and especially in static image treatment [6]. As a generalization of CNNs, cellular
neural networks with delays (DCNNs) were introduced by Roska and Chua [14].

In this paper we study the asymptotic stability of the DCNN model described by the
system of nonlinear delay differential equations

ẋi(t) = −dixi(t)+
n

∑

j=1

aijf(xj(t))+
n

∑

j=1

bijf(xj(t− τij))+ui, t ≥ 0, i = 1, . . . , n. (1.1)
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Here n is the number of cells; xi(t) denotes the potential of the ith cell at time t; di represents
the rate with which the ith unit resets its potential to the resting state when it is isolated
from other cells and inputs; aij and bij denote the strengths of the jth unit on the ith unit
at time t and t− τij, respectively; τij corresponds to transmission delay between the ith and
jth cells; f denotes an output function; ui is an external input to the ith cell.

The stability of (1.1) and more general classes of DCNNs has been intensively studied,
see, e.g., [2]–[4], [11]–[13], [15]–[18], and the references therein. We will assume throughout
this paper that the output function f : R → R is defined by

f(t) =
1

2
(|t+ 1| − |t− 1|) =







1, t > 1,
t, −1 ≤ t ≤ 1,
−1, t < −1.

(1.2)

This function is widely used in CNN and DCNN models.
In a recent paper Mohamad and Gopalsamy ([13]) have shown using fixed point method

that if f is defined by (1.2) and

di >

n
∑

j=1

(|aij | + |bij |), i = 1, 2, . . . , n, (1.3)

then (1.1) has a unique fixed point which is globally exponentially stable. In our Theorem 4
(see below) we show that the weaker assumption

di − aii >

n
∑

j=1,

j 6=i

|aij | +

n
∑

j=1

|bij |, i = 1, 2, . . . , n, (1.4)

together with another condition (see (3.11) below) implies the global asymptotic stability of
the unique equilibrium of (1.1). We also conjecture (see Conjecture 1 below) that assumption
(3.11) can be omitted, (1.4) itself, or even a weaker condition implies the global asymptotic
stability of the equilibrium.

We remark that condition (1.4) is equivalent to saying that the matrix K = (kij) with
elements

kij =

{

di − aii − |bii|, if i = j,

−|aij| − |bij| otherwise

is diagonally dominant and it has positive diagonal elements. We recall that an n×n matrix
K = (kij) is (row) diagonally dominant, if

|kii| >

n
∑

j=1,

j 6=i

|kij |, i = 1, . . . , n.

Our condition (1.4) is similar to that given by Takahashi in [15], where it was shown that
if d1 = d2 = · · · = dn = 1 and the n× n matrix W = (wij) with elements

wij =

{

aii − 1 − |bii|, if i = j,

−|aij| − |bij | otherwise
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is a nonsingular M-matrix (see definition below), then every solution of (1.1) tends to a
constant equilibrium, i.e., the system is completely stable. Clearly, condition (1.4) implies
that di−aii > |bii|, so in this case W can not be an M-matrix. Similarly, if W is an M-matrix,
then (1.4) can not hold, therefore the two conditions cover disjoint cases. We comment that
despite the similarities of the two conditions, the proof of our result requires a different
technique than that used in [15]. Our results were motivated by the monotone technique
we used in [9], where we studied the scalar version of (1.1) with f defined by (1.2), and
showed that the scalar version of (1.4) implies the global asymptotic stability of the unique
equilibrium.

In Section 2 we give a sufficient condition which implies asymptotic stability of a linear
delay system for all delays. Such stability is called absolute stability in the engineering
literature. We extend a known result [3] for the case we use in Section 3 to prove our
stability results for (1.1). In Section 4 we give an example to illustrate the main result and
we formulate a conjecture to generalize the result.

First we introduce some notations. Let R+ be the set of positive real numbers. We use the
relation x ≤ y (x < y, respectively) for vectors x,y ∈ R

n, if xi ≤ yi (xi < yi, respectively)
for all i = 1, . . . , n, where x = (x1, . . . , xn)T and y = (y1, . . . , yn)T . We introduce the vectors
0 = (0, 0, . . . , 0)T ∈ R

n and 1 = (1, 1, . . . , 1)T ∈ R
n.

For an n× n matrix B the symbol |B| denotes the corresponding n× n matrix with ijth
element |bij |. Similarly, |u| = (|x1|, . . . , |xn|)

T .
We say that an n × n matrix K is an M-matrix, if all of its diagonal elements are non-

negative, and its off-diagonal elements are nonpositive, and all of its principal minors are
nonnegative (see, e.g., [1], [3] or [7]). It is known (see, e.g., [1]) that if K is a nonsingular
M-matrix, then x ≤ y implies K−1x ≤ K−1y.

Remark 1 Let K be a matrix such that the diagonal elements of K are all positive and the
off-diagonal elements are all nonpositive. Then it is known (see, e.g., Theorem 2.3 in [1]) that
if K is a diagonally dominant, then it is a nonsingular M-matrix, as well. Moreover, K is a
nonsingular M-matrix, if and only if, there exists a positive diagonal matrix D such that KD
is a diagonally dominant matrix. We note that there are 50 conditions listed in [1] which are
all equivalent to that a matrix is a nonsingular M-matrix.

2 Absolute Stability of a Linear System

Consider the autonomous linear delay system

żi(t) =

n
∑

j=1

aijzj(t) +

n
∑

j=1

bijzj(t− τij), t ≥ 0, i = 1, . . . , n, (2.1)

where τij ≥ 0 for i, j = 1, . . . , n.
We put the coefficients to the n× n matrices A = (aij) and B = (bij). For the matrix A

we associate the n×n diagonal matrix A0 = diag(a11, a22, . . . , ann), i.e., the diagonal part of
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A, and let A1 = A−A0 be the off-diagonal part of A. Then with this notation, which we use
throughout this paper, we can rewrite A as A = A0 + A1. Similarly, let B0 be the diagonal
part of B, and denote B1 = B −B0.

In the case when A1 = 0 and B0 = 0 the necessary and sufficient condition for the
stability and asymptotic stability of (2.1) for all selection of the delays τij was established in
[10]. Following the methods of [10] this result was extended in [3] for the special case when
only A1 = 0, i.e., A is a diagonal matrix in (2.1), and B is an arbitrary matrix.

Theorem 1 (see Theorem 2.6 in [3]) Suppose A = A0. Then the trivial solution of (2.1)
is asymptotically stable for all delays τij ≥ 0, if and only if −A − |B| is an M-matrix and
A+B is a nonsingular matrix.

Note that in the case when B is a nonnegative matrix, this result follows from a more
general theorem in [7], where such result was proved for quasilinear delay differential equa-
tions. In the case when B is a nonnegative matrix, Theorem 1 also follows from an other
generalization of it given in [8], where it was shown that if τk ≥ 0, (k = 1, . . . , p), Dk ≥ 0 are
diagonal matrices for k = 1, . . . , p such that

∑p
k=1Dk is invertible, B` are nonnegative n× n

matrices for ` = 1, . . . , r, and equation

u̇(t) = −

p
∑

k=1

Dku(t− τk)

has a positive fundamental solution, then the trivial solution of

ẋ(t) = −

p
∑

k=1

Dkx(t− τk) +

r
∑

`=1

B`x(t− σ`)

is asymptotically stable for all σ1, . . . , σ` ≥ 0, if and only if

p
∑

k=1

Dk −

r
∑

`=1

B`

is a nonsingular M-matrix.
We extend the sufficient part of Theorem 1 for the case which we will need later. We

assume A 6= A0 , i.e., there are nonzero off-diagonal parts of A. The proof follows that of
Theorem 1 (see [3]).

Theorem 2 Suppose −A0 − |A1| − |B| is a nonsingular M-matrix. Then the trivial solution
of (2.1) is asymptotically stable for all delays τij ≥ 0.
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Proof Finding the solution of (2.1) in the form eλtv (v 6= 0) leads to the characteristic
equation

det











a11 + b11e
−λτ11 − λ a12 + b12e

−λτ12 · · · a1n + b1ne
−λτ1n

a21 + b21e
−λτ21 a22 + b22e

−λτ22 − λ · · · a2n + b2ne
−λτ2n

...
...

...
an1 + bn1e

−λτn1 an2 + bn2e
−λτn2 · · · ann + bnne

−λτnn − λ











= 0 (2.2)

of (2.1). It is known that the asymptotic stability of the trivial solution of (2.1) is equivalent
to that all roots of (2.2) have negative real parts. Let λ be a root of (2.2), then λ is an
eigenvalue of the matrix

G(λ) =











a11 + b11e
−λτ11 a12 + b12e

−λτ12 · · · a1n + b1ne
−λτ1n

a21 + b21e
−λτ21 a22 + b22e

−λτ22 · · · a2n + b2ne
−λτ2n

...
...

...
an1 + bn1e

−λτn1 an2 + bn2e
−λτn2 · · · ann + bnne

−λτnn











.

Since −A0 − |A1| − |B| is a nonsingular M-matrix, it is known (see, e.g., Theorem 2.3 in [1])
there exist positive constants γ1, . . . , γn > 0 such that

(−aii − |bii|)γi >

n
∑

j=1,

j 6=i

(|aij | + |bij|)γj , i = 1, . . . , n. (2.3)

Let Γ = diag(γ1, . . . , γn). Then Γ is nonsingular, therefore λ is an eigenvalue of the matrix
Γ−1G(λ)Γ, as well. Therefore an application of Gersgorin’s theorem for the matrix Γ−1G(λ)Γ
yields

|λ− aii − biie
−λτii | ≤

n
∑

j=1,

j 6=i

γ−1
i (|aij | + |bij ||e

−λτij |)γj

for some i. Therefore for this fixed i

Re(λ) ≤ Re(aii + biie
−λτii) +

n
∑

j=1,

j 6=i

γ−1
i (|aij | + |bij |e

−(Re λ)τij )γj .

Suppose Re(λ) ≥ 0. Then (2.3) yields

Re(λ)γi ≤ (aii + |bii|)γi +
n

∑

j=1,

j 6=i

(|aij | + |bij |)γj < 0,

which contradicts to the assumption, therefore Re(λ) < 0 for all solutions of (2.2). �

The proof implies immediately the next technical result.
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Corollary 3 If −A0 − |A1| − |B| is a nonsingular M-matrix, then A+B is nonsingular, as
well.

Proof Let A and B satisfy the assumption, pick any τij ≥ 0 (i, j = 1, . . . , n), and consider
the corresponding system (2.1). The proof of Theorem 2 shows that v is a nonzero constant
solution of system (2.1) if and only if λ = 0 is a solution of (2.2). But under this assumption
all solutions of (2.2) satisfy Re(λ) < 0, therefore the only constant solution of (2.1) is the
zero solution. On the other hand, the constant v solutions of (2.1) satisfy (A + B)v = 0,
hence A+B is nonsingular. �

3 Stability of a Delayed Neural Network System

Suppose n is a fixed positive integer,

di > 0, τij ≥ 0, aij , bij , ui ∈ R (i, j = 1, . . . , n), and f(t) =
1

2
(|t+1| − |t− 1|). (3.1)

We introduce the notations D = diag(d1, . . . , dn), A = (aij), B = (bij), u = (u1, . . . , un)T .
As in the previous section, we use the notation A = A0 +A1, where A0 is the diagonal part,
A1 is the off-diagonal part of A.

Consider the DCNN model equations

ẋi(t) = −dixi(t) +
n

∑

j=1

aijf(xj(t)) +
n

∑

j=1

bijf(xj(t− τij)) + ui, t ≥ 0, i = 1, . . . , n (3.2)

with the initial conditions

xi(t) = ϕi(t), t ∈ [−r, 0], i = 1, . . . , n, (3.3)

where r = max{τij : i, j = 1, . . . , n}.

To (3.2) we associate an auxiliary system. For a given c > 0 and ψi : [−r, 0] → R+

(i = 1, . . . , n) consider the system

ẏi(t) = −diyi(t)+aiif(yi(t))+

n
∑

j=1,

j 6=i

|aij |f(yj(t))+

n
∑

j=1

|bij|f(yj(t−τij))+ci, t ≥ 0, i = 1, . . . , n

(3.4)
associated to (3.2), and the initial condition

yi(t) = ψi(t) t ∈ [−r, 0], i = 1, . . . , n. (3.5)
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Lemma 1 Suppose (3.1). Let ψi : [−r, 0] → R+ (i = 1, . . . , n), c > 0, and let y1, . . . , yn be
the corresponding solution of (3.4)-(3.5). Then there exists M > 0 such that

0 < yi(t) < M, t ≥ 0, i = 1, . . . , n.

Proof Since yi(0) > 0 and yi is continuous on [0,∞) for all i = 1, . . . , n, yi(t) > 0 for small
enough t ≥ 0. Suppose there exists i and T > 0 such that

yj(t) > 0 for t ∈ [−r, T ), j = 1, . . . , n, and yi(T ) = 0.

Then ẏi(T−) ≤ 0. On the other hand, (3.4) implies

ẏi(T ) =

n
∑

j=1,

j 6=i

|aij |f(yj(T )) +

n
∑

j=1

|bij |f(yj(T − τij)) + ci > 0,

which is a contradiction. Therefore yi(t) > 0 for all t > 0 and i = 1, . . . , n.
Fix i. To prove that yi is bounded from above, assume that lim supt→∞ yi(t) = ∞. Then

there exists a monotone increasing sequence tn such that

lim
n→∞

tn = ∞, lim
n→∞

yi(tn) = ∞, and yi(tn) = max{yi(t) : t ∈ [−r, tn]}.

Then ẏi(tn−) ≥ 0, which contradicts to the relations

ẏi(tn) = −diyi(tn) + aiif(yi(tn)) +

n
∑

j=1,

j 6=i

|aij |f(yj(T )) +

n
∑

j=1

|bij |f(yj(tn − τi)) + ci

≤ −diyi(tn) +

n
∑

j=1

|aij | +

n
∑

j=1

|bij | + ci

< 0

for large enough n. �

Remark 2 It is easy to check that the matrix D−A0 − |A1| − |B| is a diagonally dominant
matrix with positive diagonal elements, if and only if

0 < (D −A0 − |A1| − |B|)1.

Lemma 3 Assume (3.1), D −A0 − |A1| − |B| is a diagonally dominant matrix, and

0 < c < (D −A0 − |A1| − |B|)1. (3.6)

Let ψi : [−r, 0] → R+ (i = 1, . . . , n), and let y(t) = (y1(t), . . . , yn(t))T be the corresponding
solution of (3.4)-(3.5). Then

lim
t→∞

y(t) = (D −A0 − |A1| − |B|)−1c < 1. (3.7)
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Proof It follows from Lemma 1 that

Mi = lim sup
t→∞

yi(t) mi = lim inf
t→∞

yi(t)

are finite and mi ≥ 0. For a fixed i there exists a sequence tn such that

tn → ∞ as n→ ∞, ẏi(tn) ≥ 0, n = 1, 2 . . . , and lim
n→∞

yi(tn) = Mi.

We may also assume that

lim
n→∞

yj(tn) = m∗
j and lim

n→∞
yj(tn − τij) = m∗∗

ij

for all j = 1, . . . , n for some m∗
j ,m

∗∗
ij ∈ [mj ,Mj ], since otherwise we can select a subsequence

of tn with this property. Then

0 ≤ lim
n→∞

ẏi(tn)

= lim
n→∞

(

−diyi(tn) + aiif(yi(tn)) +

n
∑

j=1,

j 6=i

|aij |f(yj(tn)) +

n
∑

j=1

|bij |f(yi(tn − τij)) + ci

)

= −diMi + aiif(Mi) +

n
∑

j=1,

j 6=i

|aij |f(m∗
j) +

n
∑

j=1

|bij|f(m∗∗
ij ) + ci

≤ −diMi + aiif(Mi) +

n
∑

j=1,

j 6=i

|aij |f(Mj) +

n
∑

j=1

|bij |f(Mj) + ci.

Therefore for all i = 1, . . . , n

ci ≥ diMi − aiif(Mi) −
n

∑

j=1,

j 6=i

|aij |f(Mj) −
n

∑

j=1

|bij |f(Mj)

≥ diMi − aiif(Mi) −

n
∑

j=1,

j 6=i

|aij | −

n
∑

j=1

|bij |. (3.8)

Suppose Mi ≥ 1 for some i. Then (3.8) implies

ci ≥ di − aii −

n
∑

j=1,

j 6=i

|aij | −

n
∑

j=1

|bij |

which contradicts to assumption (3.6), which yields

0 < ci < di − aii −

n
∑

j=1,

j 6=i

|aij | −

n
∑

j=1

|bij |.
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Therefore 0 ≤Mi < 1 for all i = 1, . . . , n. This means there exists t1 > 0 such that for t ≥ t1
(3.4) is equivalent to the linear system

ẏi(t) = (−di + aii)yi(t) +
n

∑

j=1,

j 6=i

|aij |yj(t) +
n

∑

j=1

|bij |yj(t− τij) + ci, t ≥ t1. (3.9)

Define
e = (D −A0 − |A1| − |B|)−1c.

Then e = (e1, . . . , en)T is the unique equilibrium of the system (3.9), and it follows from (3.6)
that 0 ≤ ei ≤Mi < 1, so 0 ≤ e < 1. Introducing z(t) = y(t) − e we can rewrite (3.9) as

żi(t) = (−di + aii)zi(t) +
n

∑

j=1,

j 6=i

|aij |zj(t) +
n

∑

j=1

|bij |zj(t− τij), t ≥ t1. (3.10)

Since D − A0 − |A1| − |B| is a nonsingular M-matrix by Remark 1, Theorem 2 yields the
trivial solution of (3.10) is asymptotically stable (independently of the size of the delays),
therefore (3.7) holds. �

Theorem 4 Assume (3.1), D−A0−|A1|−|B| is a diagonally dominant matrix with positive
diagonal elements, and u is such that

|u| < (D −A0 − |A1| − |B|)1. (3.11)

Then any solution x of (3.2)-(3.3) satisfies

lim
t→∞

x(t) = (D −A−B)−1u. (3.12)

Proof Fix any initial functions ψi : [−r, 0] → R+ such that

ψi(s) > |ϕi(s)|, s ∈ [−r, 0], i = 1, . . . , n,

and let c > |u| be such that c < (D − A0 − |A1| − |B|)1. Let y denote the solution of the
corresponding IVP (3.4)-(3.5). Since y(0) > |x(0)|, relation |x(t)| < y(t) holds for sufficiently
small t > 0. Suppose there exists i and T > 0 such that

|xj(t)| < yj(t), t ∈ [−τ, T ), j = 1, . . . , n, and |xi(T )| = yi(T ). (3.13)

It follows from Lemma 1 that |xi(T )| = yi(T ) 6= 0, therefore d
dt
|xi(t)| exists at T , and

d
dt

(|xi(t)|)|t=T = ẋi(T ) sign xi(T ). Hence

d

dt
(|xi(t)|)|t=T

=
(

−dixi(T ) +

n
∑

j=1

aijf(xj(T )) +

n
∑

j=1

bijf(xj(T − τij)) + ui

)

signxi(T )
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= −di|xi(T )| + aiif(|xi(T )|) +

n
∑

j=1,

j 6=i

aijf(xj(T )) sign xi(T )

+

n
∑

j=1

bijf(xj(T − τij)) sign xi(T ) + ui signxi(T )

< −di|xi(T )| + aiif(|xi(T )|) +
n

∑

j=1,

j 6=i

|aij |f(|xj(T )|) +
n

∑

j=1

|bij |f(|xj(T − τij)|) + ci

≤ −diyi(T ) + aiif(yi(T )) +
n

∑

j=1,

j 6=i

|aij |f(yj(T )) +
n

∑

j=1

|bij |f(yj(T − τij)) + ci

= ẏi(T ).

This contradicts to assumption (3.13), therefore |xi(t)| < yi(t) holds for all t > 0 and i =
1, . . . , n. Moreover, Lemma 3 yields

lim
t→∞

y(t) = (D −A0 − |A1| − |B|)−1c < 1

holds, therefore there exists t1 > 0 such that |x(t)| < 1 for t ≥ t1. Then (3.2) is equivalent to

ẋi(t) = −dixi(t) +
n

∑

j=1

aijxj(t) +
n

∑

j=1

bijxj(t− τij) + ui, t ≥ t1.

This implies (3.12) using an argument similar to that in the proof of Lemma 3. �

4 Examples

To illustrate our results consider the two-dimensional DCNN model equations

ẋ1(t) = −x1(t) − 6f(x1(t)) + f(x2(t)) − 3f(x1(t− 1)) + f(x2(t− 2)) + u1 (4.1)

ẋ2(t) = −x2(t) − f(x1(t)) − 3f(x2(t)) − f(x1(t− 1)) + f(x2(t− 2)) + u2, (4.2)

where f is defined by (1.2). It is easy to see that

D −A0 − |A1| − |B| =

(

4 −2
−2 3

)

is a diagonally dominant matrix. Therefore Theorem 4 yields that if |u1| < 2 and |u2| < 1
then the trivial solution of this system is asymptotically stable. In Figure 1 we have plotted
the two components of the solutions corresponding to u1 = −1 and u2 = 0.5 and to the initial
functions

(

ϕ1(t)
ϕ2(t)

)

=

(

t+ 1
−t

)

,

(

sin 2t
t2 − 1

)

,

(

cos t+ 1
t+ 2

)

and

(

t3 − 2
−2 cos t

)

, (4.3)

respectively.
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Figure 1. Case (u1, u2) = (−1, 0.5).

We can observe that all solutions tend to the unique equilibrium (−0.058824, 0.20588)T .
Note that the condition of Mohamad and Gopalsamy (1.3) is not satisfied for (4.1)-(4.2),

and also the condition of Takahashi gives the matrix

W =

(

−7 −2
−2 −4

)

,

which is not an M-matrix. Therefore none of this two conditions can be applied for system
(4.1)-(4.2).

By checking other input values outside the region |u1| < 2 and |u2| < 1 we observed in
every cases we tried all solutions tended to the unique equilibrium (v1, v2)

T of the system (not
necessary satisfying |v1|, |v2| < 1). In Figure 2 we can see the graphs of solutions of (4.1)-(4.2)
corresponding to (u1, u2) = (3, 5) and to the initial functions (4.3). We can observe that all
solutions tend to the unique equilibrium (0.5, 2)T .
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x2(t)
Figure 2. Case (u1, u2) = (3, 5).

Next we plotted the solutions corresponding to (u1, u2) = (−8.5,−5.5) and to the initial
functions (4.3) in Figure 3. Again, all solutions tend to the unique equilibrium (−1.5,−1.5)T .
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Figure 3. Case (u1, u2) = (−8.5,−5.5).

Now change the coefficient of f(x2(t− 2)) in (4.1) to 4, i.e., consider the system

ẋ1(t) = −x1(t) − 6f(x1(t)) + f(x2(t)) − 3f(x1(t− 1)) + 4f(x2(t− 2)) + u1 (4.4)

ẋ2(t) = −x2(t) − f(x1(t)) − 3f(x2(t)) − f(x1(t− 1)) + f(x2(t− 2)) + u2. (4.5)

We plotted the solutions corresponding to (u1, u2) = (−6, 4) and to the initial functions
(4.3) in Figure 4. As before, all solutions tend to the unique equilibrium, which is (−0.1, 2.2)T

in this case. On the other hand,

D −A0 − |A1| − |B| =

(

4 −5
−2 3

)

is no longer a diagonally dominant matrix, but it is a nonsingular M-matrix.
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Figure 4. Case (u1, u2) = (−6, 4).

Therefore our numerical experiments on these and other systems suggest the following
conjecture.

Conjecture 1 Assume (3.1) and D − A0 − |A1| − |B| is a nonsingular M-matrix. Then
(3.2) has a unique equilibrium for any input vector u, and any solution of (3.2) tends to this
equilibrium.
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