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Abstract

In this paper, by using Mawhin’s continuation theorem of coincidence degree theory,
sufficient conditions for the existence of positive almost periodic solutions are obtained
for the predator-prey Lotka-Volterra competition system with delays















dui(t)

dt
= ui(t)

[

ai(t) −
n
∑

l=1

ail(t)ul(t − σil(t)) −
m
∑

j=1
bij(t)vj(t − τij(t))

]

, i = 1, . . . , n,

dvj(t)

dt
= vj(t)

[

− rj(t) +
n
∑

l=1

djl(t)ul(t − δjl(t)) −
m
∑

h=1

ejh(t)vh(t − θjh(t))

]

, j = 1, . . . ,m,

where ai, rj , ail, bij , djl, ejh ∈ C(R, (0,∞)), σil , τij, δjl, θjh ∈ C(R, R)(i, l = 1, . . . , n, j, h =
1, . . . ,m) are almost periodic functions.
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1 Introduction

Proposed by Lotka [1] and Volterra [2], the well-known Lotka-Volterra models concern-
ing ecological population modeling have been extensively investigated in the literature. In
recent years, it has also been found with successful and interesting applications in epidemi-
ology, physics, chemistry, economics, biological science and other areas (see [3-5]). Owing
to their theoretical and practical significance, the Lotka-Volterra systems have been studied
extensively [6-17].

∗This work is supported by the National Natural Sciences Foundation of People’s Republic of China under
Grant 10971183.
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Since biological and environmental parameters are naturally subject to fluctuation in time,
the effects of a periodically or almost periodically varying environment are considered as
important selective forces on systems in a fluctuating environment. Therefore, on the one
hand, models should take into account both the seasonality of the periodically changing
environment and the effects of time delays [6-11, 13, 14, 17-27]. However, on the other hand,
in fact, it is more realistic to consider almost periodic system than periodic system.

There are many works on the study of the Lotka-Volterra type periodic systems that have
been developed in [6-9, 11, 17, 19, 21, 24]. But, relatively few papers have been published on
the existence of almost periodic solutions for the Lotka-Volterra type almost periodic systems.
Recently, by using the definition of almost periodic function, the contraction mapping, fixed
point theory, appropriate Lyapunov functionals and almost periodic functional hull theory
some authors have done many good works in theory on almost periodic systems [10, 26, 28-
30]. Motivated by above, in this paper, we are concerned with the following predator-prey
Lotka-Volterra system with delays















dui(t)

dt
= ui(t)

[

ai(t) −
n
∑

l=1

ail(t)ul(t− σil(t)) −
m
∑

j=1

bij(t)vj(t− τij(t))

]

, i = 1, . . . , n,

dvj(t)

dt
= vj(t)

[

− rj(t) +
n
∑

l=1

djl(t)ul(t− δjl(t)) −
m
∑

h=1

ejh(t)vh(t− θjh(t))

]

, j = 1, . . . , m,

(1.1)

where ai, rj, ail, bij , djl, ejh ∈ C(R, (0,∞)), σil, τij , δjl, θjh ∈ C(R,R)(i, l = 1, . . . , n, j, h =
1, . . . , m) are almost periodic functions.

Our main purpose of this paper is by using the coincidence degree theory [30] to study
the existence of positive almost periodic solutions of (1.1). Our result obtained in this paper
is completely new and our methods used in this paper can be used to study the existence of
positive almost periodic solutions to other types of Lotka-Volterra systems with delays.

2 Preliminaries

Let X, Y be normed vector spaces, L : DomL ⊂ X → Y be a linear mapping and
N : X → Y be a continuous mapping. The mapping L will be called a Fredholm mapping
of index zero if dimKerL = codimImL < +∞ and ImL is closed in Y . If L is a Fredholm
mapping of index zero and there exists continuous projectors P : X → X and Q : Y → Y

such that ImL = KerL, KerQ = ImL = Im (I−Q), it follows that the mapping LDomL∩KerP :
(I − P )X → ImL is invertible. We denote the inverse of that mapping by KP . If Ω is an
open bounded subset of X, then the mapping N will be called L-compact on Ω̄ if QN(Ω̄) is
bounded and KP (I − Q)N : Ω̄ → X is compact. Since ImQ is isomorphic to KerL, there
exists an isomorphism J : ImQ→ KerL.

We introduce the Mawhin’s continuation theorem [30] as follows.

Lemma 2.1 ([30]). Let Ω ⊂ X be an open bounded set and let N : X → Y be a continuous
operator which is L-compact on Ω̄. Assume that

(1) Ly 6= λNy for every y ∈ ∂Ω ∩ DomL and λ ∈ (0, 1);
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(2) QNy 6= 0 for every y ∈ ∂Ω ∩ KerL;

(3) deg{JQN,Ω ∩ KerL, 0} 6= 0.

Then Ly = Ny has at least one solution in DomL ∩ Ω̄.

For convenience, we denote AP (R,Rn) is the set of all vector valued, almost periodic
functions on R and for f ∈ AP (R,Rn) we denote by

Λ(f) =

{

λ ∈ R : lim
T→∞

1

T

∫ T

0

f(s)e−iλs ds 6= 0

}

and

mod(f) =

{ m
∑

j=1

njλj : nj ∈ Z, m ∈ N, λj ∈ Λ(f), j = 1, 2, . . . , m

}

the set of Fourier exponents and the module of f , respectively. Suppose that f(t, φ) is almost
periodic in t, uniformly with respect to φ ∈ S. E{f, ε, S} denotes the set of ε-almost periods
for f with respect to S ⊂ C([−σ, 0],Rn), l(ε, S) denotes the length of the inclusion interval

and M(f) = lim
T→∞

1
T

∫ T

0
f(s) ds denotes the mean value of f .

The following lemma will paly an important role in the proof of our main result.

Lemma 2.2. If f ∈ C(R,R) is almost periodic, t0 ∈ R. For any ε > 0 and inclusion length
l(ε), ∀t1, t2 ∈ [t0, t0 + l(ε)]. Then for all t ∈ R, the following hold

f(t) ≤ f(t1) +

∫ t0+l(ε)

t0

|f
′

(s)| ds+ ε (2.1)

and

f(t) ≥ f(t2) −

∫ t0+l(ε)

t0

|f
′

(s)| ds− ε. (2.2)

Proof. For any t ∈ R, there exists τ ∈ E{f, ε} such that t ∈ [t0 − τ, t0 − τ + l(ε)]. Thus,
t+ τ ∈ [t0, t0 + l(ε)]. So we can obtain

f(t) − f(t1) =

∫ t

t1

f
′

(s) ds =

∫ t+τ

t1

f
′

(s)ds+

∫ t

t+τ

f
′

(s) ds

≤

∫ t+τ

t1

|f
′

(s)| ds+ |f(t+ τ) − f(t)|

≤

∫ t0+l(ε)

t0

|f
′

(s)| ds+ ε.

Hence, (2.1) holds.
Similarly, we also have

f(t) − f(t2) =

∫ t

t2

f
′

(s) ds =

∫ t+τ

t2

f
′

(s)ds+

∫ t

t+τ

f
′

(s) ds
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≥ −

∫ t+τ

t2

|f
′

(s)| ds− |f(t+ τ) − f(t)|

≥ −

∫ t0+l(ε)

t0

|f
′

(s)| ds− ε.

Thus, (2.2) holds. The proof is complete.

Set
X = Y = V1 ⊕ V2,

where

V1 =
{

z = (x1, . . . , xn, y1, . . . , ym)T ∈ AP (R,Rn) : mod(y) ⊂ mod(Π) ∀µ0 ∈ Λ(z)

satisfies |µ0| ≥ α
}

and

V2 =
{

z = (x1(t), . . . , xn(t), y1(t), . . . , ym(t))T ≡ (k1, . . . , kn+m)T , (k1, . . . , kn+m)T ∈ R
n
}

,

where Π = (Π1, . . . ,Πn+m)T ,

Πi(t, φ) = ai(t) −

n
∑

l=1

ail(t)e
ϕl(−σil(t)) −

m
∑

j=1

bij(t)e
ψj(−τij(t)), i = 1, 2, . . . , n,

Πn+j(t, φ) = −rj(t) +
n

∑

l=1

djl(t)e
ϕl(−δjl(t)) +

m
∑

h=1

ejh(t)e
ψh(−θjh(t)), j = 1, 2, . . . , m,

φ = (ϕ1, . . . , ϕn, ψ1, ψ2, . . . , ψn)
T ∈ C([−σ, 0],Rn), σ = max

1≤i,m≤n

1≤j,h≤m

sup
t∈R

{σil(t), τij(t), δjl(t), θjh(t)}

and α is a given positive constant. Define the norm

‖z‖ = sup
t∈R

|z(t)| = sup
t∈R

max
1≤i≤n

1≤j≤m

{|xi(t)|, |yj(t)|}, z ∈ X (or Y).

3 Main results

By making the substitution

ui(t) = exp{xi(t)}, vj(t) = exp{yj(t)}, i = 1, . . . , n, j = 1, . . . , m.

Eq.(1.1) is reformulated as














dxi(t)

dt
= ai(t) −

n
∑

l=1

ail(t)e
xl(t−σil(t)) −

m
∑

j=1

bij(t)e
yj(t−τij (t)), i = 1, . . . , n,

dyj(t)

dt
= −rj(t) +

n
∑

l=1

djl(t)e
xl(t−δjl(t)) −

m
∑

h=1

ejh(t)e
yh(t−θjh(t)), j = 1, . . . , m.

(3.1)
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Lemma 3.1. X and Y are Banach spaces endowed with the norm ‖ · ‖.

Proof. If {zn} ⊂ V1 and zn converges to z0, then it is easy to show that z0 ∈ AP (R,Rn) with
mod(z0) ⊂ mod(Π). Indeed, for all |λ| < α we have

lim
T→∞

1

T

∫ T

0

zn(s)e
−iλs ds = 0.

Thus

lim
T→∞

1

T

∫ T

0

z0e
−iλs ds = 0,

which implies that z0 ∈ V1. One can easily see that V1 is a Banach space endowed with the
norm ‖ · ‖. The same can be concluded for the spaces X and Y. The proof is complete.

Lemma 3.2. Let L : X → Y such that Lz = dz
dt
. Then L is a Fredholm mapping of index

zero.

Proof. Clearly, KerL = V2. It remains to prove that ImL = V1. Suppose that φ ∈ ImL ⊂ Y.

Then, there exist φV1
= (φ

(1)
1 , . . . , φ

(n+m)
1 )T ∈ V1 and φV2

= (φ
(1)
2 , . . . , φ

(n+m)
2 )T ∈ V2 such that

φ = φV1
+ φV2

.

From the definitions of φ(t) and φV1
(t), one can deduce that

∫ t
φ(s) ds and

∫ t
φV1

(s) ds are
almost periodic functions and thus φV2

(t) ≡ (0, 0, . . . , 0)T := 0, which implies that φ(t) ∈ V1.

Thus, ImL ⊂ V1. On the other hand, if ϕ(t) = (ϕ1(t), . . . , ϕn+m(t))T ∈ V1\{0} then we have
∫ t

0
ϕ(s) ds ∈ AP (R,Rn). Indeed, if λ 6= 0 then we obtain

lim
T→∞

1

T

∫ T

0

[
∫ t

0

ϕ(s) ds

]

e−iλt dt =
1

iλ
lim
T→∞

1

T

∫ T

0

ϕ(s)e−iλt ds.

It follows that

Λ

[
∫ t

0

ϕ(s) ds−M

(
∫ t

0

ϕ(s) ds

)]

= Λ(ϕ).

Thus
∫ t

0

ϕ(s) ds−M

(
∫ t

0

ϕ(s) ds

)

∈ V1 ⊂ X.

Note that
∫ t

0
ϕ(s) ds −M(

∫ t

0
ϕ(s) ds) is the primitive of ϕ(t) in X, so we have ϕ(t) ∈ ImL.

Hence, V1 ⊂ ImL, which completes the proof of our claim. Therefore, ImL = V1.

Furthermore, one can easily show that ImL is closed in Y and dimKerL = n = codimImL.

Therefore, L is a Fredholm mapping of index zero. The proof is complete.

Lemma 3.3. Let N : X → Y, P : X → X, Q : Y → Y such that

Nz = (E1z, . . . , En+mz)
T , z = (x1, . . . , xn, y1, . . . , ym)T ∈ X,

where (Ekz)(t) = Πk(t, z), t ∈ R, z ∈ X, k = 1, . . . , n+m and

Pz = M(z), z ∈ X, Qz = M(z), z ∈ Y.

Then N is L-compact on Ω̄, where Ω is any open bounded subset of X.
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Proof. The projections P and Q are continuous such that

ImP = KerL and ImL = KerQ.

It is clear that
(I −Q)V2 = {0} and (I −Q)V1 = V1.

Therefore
Im (I −Q) = V1 = ImL.

In view of
ImP = KerL and ImL = KerQ = Im (I −Q),

we can conclude that the generalized inverse (of L) KP : ImL → KerP ∩ DomL exists and
is given by

KP (z) =

∫ t

0

z(s) ds−M

(
∫ t

0

z(s) ds

)

.

Thus
QNz = (F1z, . . . , Fn+mz)

T

and
KP (I −Q)Nz = G[z(t)] −QG[z(t)],

where G[z] is defined by

G[z(t)] =

∫ t

0

[Nz(s) −QNz(s)] ds

and

Fkz = M(Ekz) = M(Πk(t, z)), k = 1, . . . , n+m.

QN and (I − Q)N are obviously continuous. Now we claim that KP is also continuous.
By our hypothesis, for any ε < 1 and any compact set S ⊂ C([−σ, 0],Rn), where σ =
max

1≤i,l≤n

1≤j,h≤m

sup
t∈R

{σil(t), τij(t), δjl(t), θjh(t)}, let l(ε, S) be the inclusion interval of E{F, ε, S}. Sup-

pose that {zk(t)} ⊂ ImL = V1 and zk(t) uniformly converges to z0(t). Since
∫ t

0
zk(s) ds ∈

Y (n = 0, 1, 2, . . .), there exists ρ (0 < ρ < ε) such that E{F, ρ, S} ⊂ E{
∫ t

0
zn(s) ds, ε}. Let

l(ρ, S) be the inclusion interval of E{F, ρ, S} and l = max{l(ρ, S), l(ε, S)}. It is easy to see
that l is the inclusion interval of both E{Π, ε, S} and E{Π, ρ, S}. Hence, for all t 6∈ [0, l],
there exists τt ∈ E{F, ρ, S} ⊂ E{

∫ t

0
zk(s) ds, ε} such that t + τt ∈ [0, l]. Therefore, by the

definition of almost periodic functions we observe that

∥

∥

∥

∥

∫ t

0

zk(s) ds

∥

∥

∥

∥

= sup
t∈R

∣

∣

∣

∣

∫ t

0

zk(s) ds

∣

∣

∣

∣

≤ sup
t∈[0,l]

∣

∣

∣

∣

∫ t

0

zk(s) ds

∣

∣

∣

∣

+ sup
t6∈[0,l]

∣

∣

∣

∣

(
∫ t

0

zk(s) ds−

∫ t+τt

0

zk(s) ds

)

+

∫ t+τt

0

zk(s) ds

∣

∣

∣

∣
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≤ 2 sup
t∈[0,l]

∣

∣

∣

∣

∫ t

0

zk(s) ds

∣

∣

∣

∣

+ sup
t6∈[0,l]

∣

∣

∣

∣

∫ t

0

zk(s) ds−

∫ t+τt

0

zk(s) ds

∣

∣

∣

∣

≤ 2

∫ l

0

|zk(s)| ds+ ε. (3.2)

By applying (3.2), we conclude that
∫ t

0
z(s) ds (z ∈ ImL) is continuous and consequently KP

and KP (I −Q)Nz are also continuous.
From (3.2), we also have that

∫ t

0
z(s) ds and KP (I−Q)Nz are uniformly bounded in Ω̄. In

addition, we can easily conclude that QN(Ω̄) is bounded and KP (I−Q)Nz is equicontinuous
in Ω̄. Hence by the Arzelà-Ascoli theorem, we can immediately conclude that KP (I−Q)N(Ω̄)
is compact. Thus N is L-compact on Ω̄. The proof is complete.

Theorem 3.1. If the following condition is satisfied:

(H) The system of linear algebraic equations














M(ai) =
n
∑

l=1

M(ail)xl +
m
∑

j=1

M(bij)yj, i = 1, . . . , n,

M(rj) =
n
∑

l=1

M(djl)xl −
m
∑

h=1

M(ejh)yh, j = 1, . . . , m
(3.3)

has a unique solution (x∗1, . . . , x
∗
n, y

∗
1, . . . , y

∗
m)T ∈ R

n+m with x∗i > 0, y∗j > 0, i =
1, . . . , n, j = 1, . . . , m.

Then Eq.(1.1) has at least one positive almost periodic solution.

Proof. In order to apply Lemma 2.1, we set the Banach spaces X and Y the same as those in
Lemma 3.1 and the mappings L,N, P,Q the same as those defined in Lemmas 3.2 and 3.3,
respectively. Thus, we can obtain that L is a Fredholm mapping of index zero and N is a
continuous operator which is L-compact on Ω̄. It remains to search for an appropriate open
and bounded subset Ω.

Corresponding to the operator equation

Lz = λNz, λ ∈ (0, 1), where z = (x1, . . . , xn, y1, . . . , ym)T ,

we have














dxi(t)

dt
= λ

[

ai(t) −
n
∑

l=1

ail(t)e
xl(t−σil(t)) −

m
∑

j=1

bij(t)e
yj(t−τij (t))

]

, i = 1, . . . , n,

dyj(t)

dt
= λ

[

− rj(t) +
n
∑

l=1

djl(t)e
xl(t−δjl(t)) −

m
∑

h=1

ejh(t)e
yh(t−θjh(t))

]

, j = 1, . . . , m.

(3.4)

Suppose that z ∈ X is a solution of (3.4) for a certain λ ∈ (0, 1). For any t0 ∈ R, we can
choose a point τ̃ − t0 ∈ [l, 2l] ∩ E{Π, ρ, S), where ρ (0 < ρ < ε) satisfies E{Π, ρ} ⊂ E{z, ε}.
Integrating (3.4) from t0 to τ̃ , we get

λ

∫ τ̃

t0

[ n
∑

l=1

ail(s)e
xl(s−σil(s)) +

m
∑

j=1

bij(s)e
yj(s−τij(s))

]

ds
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≤ λ

∫ τ̃

t0

ai(s) ds+

∣

∣

∣

∣

∫ τ̃

t0

ẋi(s) ds

∣

∣

∣

∣

≤ λ

∫ τ̃

t0

ai(s) ds+ ε, i = 1, . . . , n, (3.5)

λ

∫ τ̃

t0

[ n
∑

l=1

djl(s)e
xl(s−δjl(s)) −

m
∑

h=1

ejh(s)e
yh(s−θjh(s))

]

ds

≤ λ

∫ τ̃

t0

rj(s) ds+

∣

∣

∣

∣

∫ τ̃

t0

ẏj(s) ds

∣

∣

∣

∣

≤ λ

∫ τ̃

t0

rj(s) ds+ ε, j = 1, . . . , m (3.6)

and

λ

∫ τ̃

t0

[ n
∑

l=1

djl(s)e
xl(s−δjl(s)) −

m
∑

h=1

ejh(s)e
yh(s−θjh(s))

]

ds

≥ λ

∫ τ̃

t0

rj(s) ds−

∣

∣

∣

∣

∫ τ̃

t0

ẏj(s) ds

∣

∣

∣

∣

≥ λ

∫ τ̃

t0

rj(s) ds− ε, j = 1, . . . , m. (3.7)

Hence, from (3.4) and (3.5), we obtain

∫ τ̃

t0

|ẋi(s)| ds ≤ λ

∫ τ̃

t0

ai(s) ds+ λ

∫ τ̃

t0

[ n
∑

l=1

ail(s)e
xl(s−σil(s)) +

m
∑

j=1

bij(s)e
yj(s−τij(s))

]

ds

≤ 2λ

∫ τ̃

t0

ai(s) ds+ ε ≤ 2

∫ τ̃

t0

ai(s) ds+ 1 := Ci, i = 1, . . . , n.

Therefore, for τ̃ ≥ t0 + l, we have

∫ t0+l

t0

|ẋi(t)| dt ≤ Ci, i = 1, . . . , n.

Similarly, from (3.4), (3.6) and (3.7), we can obtain

∫ τ̃

t0

|ẏj(s)| ds ≤ 2

∫ τ̃

t0

rj(s) ds+ 1 := Cn+j, j = 1, . . . , m.

Thus, since τ̃ ≥ t0 + l, one has

∫ t0+l

t0

|ẏj(t)| dt ≤ Cn+j, j = 1, . . . , m.

Denote
θ̄ = max

1≤i≤n
sup
t∈R

xi(t), θ = min
1≤i≤n

inf
t∈R

xi(t), i = 1, . . . , n.

In view of (3.4), we obtain

M(ai) = M

( n
∑

l=1

ail(t)e
xl(t−σil(t)) +

m
∑

j=1

bij(t)e
yj(t−τij (t))

)

, i = 1, . . . , n. (3.8)

EJQTDE, 2012 No. 65, p. 8



From (3.8), one has

M(ai) ≥

( n
∑

l=1

M(ail) +

m
∑

j=1

M(bij)

)

eθ, i = 1, . . . , n,

or

θ ≤ min
1≤i≤n

{

ln
M(ai)

n
∑

l=1

M(ail) +
m
∑

j=1

M(bij)

}

:= B.

Consequently, by Lemma 2.2, for any ε > 0, there exist ξiε and ζjε such that

xi(t) ≤ xi(ξ
i
ε) +

∫ t0+l

t0

|ẋi(t)| dt < (θ + ε) + Ci

< B + 1 + Ci, i = 1, . . . , n (3.9)

and

yj(t) ≤ yj(ζ
i
ε) +

∫ t0+l

t0

|ẏj(t)| dt < (θ + ε) + Cn+j

< B + 1 + Cn+j, j = 1, . . . , m. (3.10)

Similarly, we get

M(ai) ≤

( n
∑

l=1

M(ail) +
m

∑

j=1

M(bij)

)

eθ̄, i = 1, . . . , n,

so

θ̄ ≥ max
1≤i≤n

{

ln
M(ai)

n
∑

l=1

M(ail) +
m
∑

j=1

M(bij)

}

:= C.

By Lemma 2.2, for any ε > 0, there exist ηiε and ςjε such that

xi(t) ≥ xi(η
i
ε) −

∫ t0+l

t0

|ẋ1(t)| dt > (θ̄ − ε) − Ci

≥ C − Ci − 1, i = 1, . . . , n (3.11)

and

yj(t) ≥ yj(ς
i
ε) −

∫ t0+l

t0

|ẏj(t)| dt > (θ̄ − ε) − Cn+j

≥ C − Cn+j − 1, j = 1, . . . , m. (3.12)

It follows from (3.9)-(3.12) that

||z|| ≤ max
1≤k≤n+m

{

|B + (Ck + 1)|, |C − (Ck + 1)|
}

:= D.
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Clearly, D is independent of the choice of λ. Take M = D + K, where K > 0 is taken
sufficiently large such that the unique solution (x∗1, . . . , y

∗
1, . . . , y

∗
n)
T of system (3.3) satisfies

‖(x∗1, . . . , y
∗
1, . . . , y

∗
n)
T‖ < M . Next, take

Ω =
{

z = (x1, . . . , xn, y1, . . . , ym)T ∈ X : ‖z‖ < M
}

,

then it is clear that Ω satisfies the condition (1) of Lemma 2.1. When z ∈ ∂Ω ∩ KerL, then
z is a constant vector with ‖z‖ = M. Hence

QNz = (F1z, . . . , Fn+my)
T 6= 0,

which implies that condition (2) of Lemma 2.1 is satisfied. Furthermore, take J : ImQ →
KerL such that J(z) = z for z ∈ Y. In view of (H), by a straightforward computation, we
find

deg{JQN,Ω ∩ KerL, 0} 6= 0.

Therefore, condition (3) of Lemma 2.1 holds. Hence, Lz = Nz has at least one solution in
DomL ∩ Ω̄. In other words, Eq.(3.1) has at least one almost periodic solution z(t), that is,
Eq.(1.1) has at least one positive almost periodic solution (u1(t), . . . , un(t), v1(t), . . . , vm(t))T .
The proof is complete.

Remark 3.1. Suppose that (1.1) is an ω-periodic system. Take X = Y = {z ∈ C(R,Rn+m) :
z(t + ω) = z(t), t ∈ R} with the suprem norm, then X, Y are Banach spaces. Similar to the
proof of Theorem 2.1 in [6] and using the similar priori estimate method used in the proof of
Theorem 3.1, one can easily get that

If the system of linear algebraic equations














āi =
n
∑

l=1

āilxl +
m
∑

j=1

b̄ijyj, i = 1, . . . , n,

r̄j =
n
∑

l=1

d̄jlxl −
m
∑

h=1

ējhyh, j = 1, . . . , m

has a unique solution (x∗1, . . . , x
∗
n, y

∗
1, . . . , y

∗
m)T ∈ R

n+m with x∗i > 0, y∗j > 0, i = 1, . . . , n, j =
1, . . . , m, where for a continuous ω-periodic function f , we denote f = 1

ω

∫ ω

0
f(t)dt. Then

(1.1) has at least one positive ω-periodic solution.
To the best of the author’s knowledge, this result is also a new one.
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