
Electronic Journal of Qualitative Theory of Differential Equations

Proc. 7th Coll. QTDE, 2004, No. 10 1-11;
http://www.math.u-szeged.hu/ejqtde/

ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF SOME
FUNCTIONAL DIFFERENTIAL EQUATIONS BY

SCHAUDER’S THEOREM
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ABSTRACT. In a series of papers (Burton-Furumochi [1-4]) we have studied
stability properties of functional differential equations by means of fixed point
theory. Here we obtain new stability and boundedness results for half-linear
equations and integro-differential equations by using Schauder’s first theorem
and a weighted norm, and show some examples.

1. INTRODUCTION

In Part I of Burton-Furumochi [4], we studied asymptotic stability in half-
linear equations by using Schauder’s first theorem, Ascoli-Arzela like lemma
with the concept of equi-convergence, and the uniform norm. In this paper,
we generalize the stability results in [4], and obtain boundedness results for
some functional differential equations by using Schauder’s first theorem and a
weighted norm instead of the uniform norm.

Let r0 be a fixed nonnegative constant and let h : [−r0,∞) → [1,∞) be any
strictly increasing and continuous function with

h(−r0) = 1

and
h(t) → ∞ as t → ∞.

For any t0 ∈ R+ := [0,∞) let Ct0 be the space of continuous functions
φ : [t0 − r0,∞) → R := (−∞,∞) with

‖φ‖h := sup

{

|φ(t)|

h(t− t0)
: t ≥ t0 − r0

}

<∞.

Then, ‖ · ‖h is a norm on Ct0 , and (Ct0 , ‖ · ‖h) is a Banach space.

1This paper is in final form and no version of it will be submitted for publication elsewhere,
and partly supported in part by Grant-in-Aid for Scientific Research (C), No. 14540158, Japan
Society for the Promotion of Science.
1991 Mathematics Subject Classfication. 34D20, 34K20, 47H10.
Key words and phrases. Stability, boundedness, Schauder’s theorem.

EJQTDE, Proc. 7th Coll. QTDE, 2004 No. 10, p. 1



First we state a lemma without proof (see Burton [5; p. 169]).

Lemma. If the set {φk(t)} of R-valued functions on [t0−r0,∞) is uniformly
bounded and equi-continuous, then there is a bounded and continuous function
φ and a subsequence {φkj

} such that

‖φkj
− φ‖

h
→ 0 as j → ∞.

2. STABILITY IN HALF-LINEAR EQUATIONS

Consider the scalar half-linear equation

x′(t) = −a(t)x(t) − b(t)g
(

x(t− r(t))
)

, t ∈ R+, (1)

where a, b : R+ → R, g : R → R and r : R+ → R+ are continuous. Let α be
any fixed positive number. We assume that there are constants β > 0, γ > 0
and r0 ≥ 0 so that

|g(x)| ≤ β|x| for x ∈ R with |x| ≤ α, (2)

sup

{

e

∫

t

τ
(a(s)−βγ|b(s)|)ds

: t ∈ R+

}

≤ γ, (3)

where τ = τ(t) := max
(

0, t− r(t)
)

,

t− r(t) ≥ −r0, (4)

σ = σ(t0) := sup

{
∫ t

t0

(

βγ|b(s)| − a(s)
)

ds : t ≥ t0

}

<∞, (5)

and define a number η = η(t0) by

η := αe−σ . (6)

Corresponding to Eq. (1), consider the scalar linear equation

q′ =
(

βγ|b(t)| − a(t)
)

q, t ∈ R+. (7)
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Let q : [t0 − r0,∞) → R+ be a continuous function such that

q(t) = η on [t0 − r0, t0],

and that q(t) is the unique solution of the initial value problem

q′ =
(

βγ|b(t)| − a(t)
)

q, q(t0) = η, t ≥ t0.

Then q(t) can be expressed in two ways as

q(t) = ηe
−

∫

t

t0
a(s)ds

+ βγ

∫ t

t0

e
−

∫

t

s
a(u)du

|b(s)|q(s)ds

= ηe

∫

t

t0

(

βγ|b(s)|−a(s)
)

ds
, t ≥ t0, (8)

which together with (5) and (6), implies

0 < q(t) ≤ ηeσ = α, t ≥ t0. (9)

Concerning the stability of the zero solution of Eq. (1), we have the following
theorem.

Theorem 1. Suppose that the solutions of Eq. (1) are uniquely determined

by continuous initial functions, and that (2)-(5) hold. Then we have:

(i) The zero solution of Eq. (1) is stable.

(ii) If we have

σ∗ := sup
{

σ(t) : t ∈ R+
}

<∞,

then the zero solution of Eq. (1) is uniformly stable.

(iii) If we have

∫ t

0

(

a(s) − βγ|b(s)|
)

ds → ∞ as t→ ∞, (10)

then the zero solution of Eq. (1) is asymptotically stable.

(iv) In addition to σ∗ <∞, if we have

∫ t

t0

(

a(s) − βγ|b(s)|
)

ds → ∞ uniformly for t0 ∈ R+ as t→ ∞, (11)

then the zero solution of Eq. (1) is uniformly asymptotically stable.

Proof. (i) Assumption (5) implies that the zero solution of Eq. (7) is stable.
Thus, for any ε ∈ (0, α] and t0 ∈ R+, there is a δ = δ(ε, t0) ∈ (0, η] such that
for any q0 with |q0| ≤ δ, we have
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|q(t, t0, q0)| < ε for all t ≥ t0.

For the t0, let (Ct0 , ‖ · ‖h) be the Banach space of continuous functions φ :
[t0 − r0,∞) → R with the weighted norm ‖ · ‖h. For a continuous function
ψ : [t0 − r0,∞) → R+ with

sup
{

|ψ(θ)| : −r0 ≤ θ ≤ 0
}

≤ δ,

let S be a set of continuous functions φ : [t0 − r0,∞) → R such that

φ(t) = ψ(t− t0) for t0 − r0 ≤ t ≤ t0,

|φ(t)| ≤ q(t) for t ≥ t0,

and

|φ(t1) − φ(t2)| ≤ L|t1 − t2| for t1, t2 ∈ R+ with t0 ≤ τ1 ≤ t1, t2 ≤ τ2,

where q(t) is defined by (8) with η = δ, and where L : R+ × R+ → R+ is
defined by

L = L(τ1, τ2) := max
{

(|a(t)| + βγ|b(t)|)α : τ1 ≤ t ≤ τ2
}

. (12)

Since we have (9), we obtain

|q′(t)| ≤ (|a(t)| + βγ|b(t)|)α, t ≥ t0.

Thus the function ξ(t) defined by

ξ(t) :=







ψ(t− t0), t0 − r0 ≤ t ≤ t0,

ψ(0)q(t)
δ

, t > t0,

is an element of S, and from Lemma, S is a compact convex nonempty subset
of Ct0 .

Define a mapping P on S by (Pφ)(t) := ψ(t− t0) for t0 − r0 ≤ t ≤ t0, and

(Pφ)(t) := ψ(0)e
−

∫

t

t0
a(s)ds

−

∫ t

t0

e
−

∫

t

s
a(u)du

b(s)g
(

φ(s− r(s))
)

ds, t > t0,

where φ ∈ S. Then we have

(Pφ)(t) = ψ(t− t0) for t0 − r0 ≤ t ≤ t0,

and from (2) and (8) we obtain
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|(Pφ)(t)| ≤ δe
−

∫

t

t0
a(s)ds

+ β

∫ t

t0

e
−

∫

t

s
a(u)du

|b(s)|q
(

s− r(s)
)

ds

≤ δe
−

∫

t

t0
a(s)ds

+ βγ

∫ t

t0

e
−

∫

t

s
a(u)du

|b(s)|q(s)ds = q(t), t ≥ t0.

Moreover, we have

(Pφ)′(t) = −a(t)(Pφ)(t) − b(t)g
(

φ(t− r(t)
)

, t > t0,

which implies
|(Pφ)′(t)| ≤ |a(t)|q(t) + β|b(t)|q

(

t− r(t)
)

≤ (|a(t)| + βγ|b(t)|)q(t) ≤ (|a(t)| + βγ|b(t)|)α, t > t0,

and hence, P maps S into S. In addition, P is continuous. Thus, by Schauder’s
first theorem, P has a fixed point φ in S and that is the solution x(t, t0, ψ) of
Eq. (1) which satisfies

|x(t, t0, ψ)| ≤ q(t) = q(t, t0, δ) < ε, t ≥ t0,

and hence, the zero solution of Eq. (1) is stable.
(ii)-(iv) If σ∗ < ∞, then the zero solution of Eq. (7) is uniformly stable.

Next, Assumption (10) implies that q(t) → 0 as t → ∞, and hence, the zero
solution of Eq. (7) is asymptoticaly stable. Moreover, Assumptions σ∗ < ∞
and (11) imply that the zero solution of Eq. (7) is uniformly asymptotically
stable. Thus, the uniform stability, the asymptotic stability and the uniform
asymptotic stability of the zero solution of Eq. (1) can be similarly proved as
in the proof of (i). So we omit the details.

Now we show two examples.

Example 1. Let g(x) ≡ x on R, and define functions a, b, r : R+ → R+

by
a(t) := 2 + |t sin t|, t ∈ R+,

b(t) :=
max(1, 1 + 2t sin t)

25
, t ∈ R+,

and

r(t) :=
1

t+ 1
, t ∈ R+.

Then, (2)-(5) hold with β = 1, γ = 25 and r0 = 1, and σ∗ = ∞. Thus,
concerning the stability of the zero solution of the equation
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x′(t) = −a(t)x(t) − b(t)x(t −
1

t+ 1
), t ∈ R+, (13)

Theorem 1 does not assure uniform stability, but assures stability.

Example 2. Let a : R+ → R be a 13-periodic function satisfying

a(t) :=







































−1, 0 ≤ t < 1,

6t− 7, 1 ≤ t < 2,

5, 2 ≤ t < 12,

77 − 6t, 12 ≤ t ≤ 13,

and let r(t) ≡ r (0 ≤ r ≤ (ln 2)/5), b(t) ≡ B (0 < B ≤ 53/26), (2) hold
with β = 1. Then (3)-(5) hold with β = 1, γ = 2 and r0 = r, and σ∗ < ∞.
Moreover, if 0 < B < 53/26, then (11) holds. Thus, by Theorem 1, the zero
solution of Eq. (1) is uniformly stable. Moreover, if 0 < B < 53/26, then the
zero solution of Eq. (1) is uniformly asymptotically stable.

If g(x) ≡ x on R and r(t) ≡ r on R+, then Eq. (1) becomes

x′(t) = −a(t)x(t) − b(t)x(t− r), t ∈ R+. (14)

In Hale [6; p. 108], under the assumption

a(t) ≥ δ > 0, |b(t)| ≤ θδ, θ < 1, (15)

where δ and θ are constants, the uniform asymptotic stability of the zero solution
of Eq. (14) is discussed by using a Liapunov functional.

On the other hand, in Burton-Furumochi [1], under the assumption

∫ t

0

e
−

∫

t

s
a(u)du

|b(s)|ds ≤ η < 1 on R+,

∫ t

0

a(s)ds→ ∞ as t→ ∞, (16)

where η is a constant, the asymptotic stability of the zero solution of Eq. (14)
is discussed by using the contraction principle.

But the functions a(t) and b(t) ≡ 1 in Example 2 satisfy neither (15) nor
(16).

Next consider the scalar integro-differential equation

x′(t) = −a(t)x(t) −

∫ t

t−r(t)

b(t, s)g
(

x(s)
)

ds, t ∈ R+, (17)

EJQTDE, Proc. 7th Coll. QTDE, 2004 No. 10, p. 6



where a, r : R+ → R, b : R+ ×R → R and g : R → R are continuous. Let α
be any fixed positive number. We assume that there are constants
β > 0, γ > 0 and r0 ≥ 0 so that (2) and (4) hold and

sup
t∈R+

{

sup
τ≤v≤t

e

∫

t

v
(a(s)−βγ

∫

s

s−r(s)
|b(s,u)|du)ds

}

≤ γ, (18)

where τ = τ(t) := max
(

0, t− r(t)
)

, and

σ = σ(t0) := sup
t∈R+

∫ t

t0

(

βγ

∫ s

s−r(s)

|b(s, u)|du− a(s)
)

ds <∞. (19)

For this σ, define a number δ = δ(t0) by δ := αe−σ.
Corresponding to Eq. (17), consider the scalar linear equation

q′ =
(

βγ

∫ t

t−r(t)

|b(t, s)|ds− a(t)
)

q, t ∈ R+. (20)

Let q : [t0 − r0,∞) → R be a continuous function such that

q(t) = δ on [t0 − r0, t0],

and that q(t) is the unique solution of the initial value problem

q′ =
(

βγ

∫ t

t−r(t)

|b(t, s)|ds− a(t)
)

q, q(t0) = δ, t ≥ t0.

Then q(t) can be expressed as

q(t) = δe

∫

t

t0

(

βγ
∫

s

s−r(s)
|b(s,u)|du−a(s)

)

ds
, t ≥ t0,

which together with (19), implies (9) with η = δ.
Concerning the stability of the zero solution of Eq. (17), we have the follow-

ing theorem.

Theorem 2. Suppose that the solutions of Eq. (17) are uniquely determined

by continuous initial functions, and that (2), (4), (18) and (19) hold. Then we

have:

(i) The zero solution of Eq. (17) is stable.

(ii) If σ∗ := sup{σ(t) : t ∈ R+} < ∞, then the zero solution of Eq. (17) is

uniformly stable.

(iii) If we have

∫ t

0

(

a(s) − βγ

∫ s

s−r(s)

|b(s, u)|du
)

ds→ ∞ as t→ ∞, (21)

then the zero solution of Eq. (17) is asymptotically stable.
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(iv) In addition to σ∗ <∞, if we have

∫ t

t0

(

a(s) − βγ

∫ s

s−r(s)

|b(s, u)|du
)

ds→ ∞

uniformly for t0 ∈ R+ as t→ ∞, (22)

then the zero solution of Eq. (17) is uniformly asymptotically stable.

This theorem can be easily proved by taking the set S in the proof of The-
orem 1 for the above function q(t) and a function L = L(τ1, τ2) with

(

|a(t)| + βγ

∫ t

t−r(t)

|b(t, s)|ds
)

α ≤ L for τ1 ≤ t ≤ τ2,

and by defining a mapping P on S by (Pφ)(t) := ψ(t− t0) for t0 − r0 ≤ t ≤ t0,
and

(Pφ)(t) := ψ(0)e
−

∫

t

t0
a(s)ds

+

∫ t

t0

e
−

∫

t

s
a(u)du

∫ s

s−r(s)

b(s, u)g
(

φ(u)
)

duds

for t > t0, where φ ∈ S. So we omit the details of the proof.

Now we show an example.

Example 3. Let a : R+ → R be the function defined in Example 2, and let
r(t) ≡ r (r > 0), b(t, s) ≡ B (0 < B ≤ 53/(26r), (5−2Br)r ≤ ln 2), and β = 1.
Then (2), (4), (18) and (19) hold with β = 1, r0 = r and γ = 2, and σ∗ < ∞.
Moreover, if 0 < B < 53/(26r), then (22) holds. Thus, by Theorem 2, the zero
solution of Eq. (17) is uniformly stable. Moreover, if 0 < B < 53/(26r), then
the zero solution of Eq. (17) is uniformly asymptotically stable.

In Burton-Furumochi [1], under the assumption

there is an η < 1 with

∫ t

0

e
−

∫

t

s
a(u)du

∫ s

s−r(s)

|b(s, u)|duds ≤ η, (23)

the asymptotic stability of the zero solution of Eq. (17) is discussed by using
the contraction principle. But the functions a(t) and b(t, s) ≡ B in Example 3
do not satisfy (23) if Br = 2.

3. BOUNDEDNESS IN HALF-LINEAR EQUATIONS

First we discuss the boundedness of solutions of Eq. (1). In order to do so,
we replace Assumption (2) by
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|g(x)| ≤ β|x| for x ∈ R. (2∗)

Then, concerning the boundedness of the solutions of Eq. (1), we have the
following theorem.

Theorem 3. Suppose that the solutions of Eq. (1) are uniquely determined

by continuous initial functions, and that (2∗) and (3)-(5) hold. Then we have:

(i) The solutions of Eq. (1) are equi-bounded.

(ii) If σ∗ <∞, then the solutions of Eq. (1) are uniformly bounded.

(iii) If we have (10), then the solutions of Eq. (1) are equi-ultimately bounded

for any bound A > 0.
(iv) If σ∗ < ∞, and if we have (11), then the solutions of Eq. (1) are

uniformly ultimately bounded for any bound A > 0.

Proof. (i) Assumption (5) implies that the solutions of Eq. (7) are equi-
bounded. Thus, for any α > 0 and t0 ∈ R+, there is an A = A(α, t0) > 0 such
that for any q0 with |q0| ≤ α, we have

|q(t, t0, q0)| < A for all t ≥ t0.

For the t0, let (Ct0 , ‖ · ‖h) be the Banach space as in the proof of Theorem 1(i).
For a continuous function ψ : [−r0, 0] → R with sup{|ψ(θ)| : −r0 ≤ θ ≤ 0} ≤ α,
let S be a set of continuous functions φ : [t0 − r0,∞) → R such that

φ(t) = ψ(t− t0) for t0 − r0 ≤ t ≤ t0,

|φ(t)| ≤ q(t) for t ≥ t0,

and

|φ(t1) − φ(t2)| ≤ L|t1 − t2| for t1, t2 with t0 ≤ τ1 ≤ t1, t2 ≤ τ2,

where q(t) is defined by (8) with η = α, and where L = L(τ1, τ2) is a function
given in (12) with α = A. Then q(t) satisfies

0 < q(t) < A for all t ≥ t0.

As in the proof of Theorem 1, S is a compact convex nonempty subset of Ct0 .
Let P be the mapping defined in the proof of Theorem 1. Then P maps S into
S continuously. Thus, by Schauder’s first theorem, P has a fixed point φ and
that is the solution x(t, t0, ψ) of Eq. (1) which satisfies

|x(t, t0, ψ)| ≤ q(t) = q(t, t0, α) < A, t ≥ t0,
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and hence, the solutions of Eq. (1) are equi-bounded.

(ii)-(iv) Under the assumptions in (ii)-(iv), the solutions of Eq. (7) are
uniformly bounded, equi-bounded and equi-ultimately bounded for any bound
A > 0, and uniformly bounded and uniformly ultimately bounded for any bound
A > 0, respectively. Thus, the uniform boundedness, the equi-ultimate bound-
edness for any bound A > 0 and the uniform ultimate boundedness for any
bound A > 0 of the solutions of Eq. (1) can be similarly proved as in the proof
of (i). So, we omit the details.

Now we revisit Examples 1 and 2.

Example 1∗. Let α = ∞. Then, (2∗) and (3)-(5) hold with β = 1, γ = 25
and r0 = 1, and σ∗ = ∞. Thus, concerning the boundedness of the solutions of
Eq. (13), Theorem 3 does not assure uniform boundedness, but assures equi-
boundedness.

Example 2∗. Let α = ∞. Then, (2∗) and (3)-(5) hold with β = 1, γ = 2
and r0 = 1, and σ∗ < ∞. Moreover, if 0 < B < 53/26, then (11) holds. Thus,
by Theorem 3, the solutions of Eq. (1) are uniformly bounded. Moreover, if
0 < B < 53/26, then the solutions of Eq. (1) are uniformly ultimately bounded
for any bound A > 0.

Next we revisit the scalar integro-differential equation

x′(t) = −a(t)x(t) −

∫ t

t−r(t)

b(t, s)g
(

x(s)
)

ds, t ∈ R+, (17)

where we assume (2∗) instead of (2). Concerning the boundedness of the solu-
tions of Eq. (17), we have the following theorem.

Theorem 4. Suppose that the solutions of Eq. (17) are uniquely determined

by continuous initial functions, and that (2∗), (4), (18) and (19) hold. Then

we have:

(i) The solutions of Eq. (17) are equi-bounded.

(ii) If σ∗ <∞, then the solutions of Eq. (17) are uniformly bounded.

(iii) If we have (21), then the solutions of Eq. (17) are equi-ultimately

bounded for any bound A > 0.
(iv) If we have σ∗ < ∞ and (22), then the solutions of Eq. (17) are

uniformly ultimately bounded for any bound A > 0.

Since this theorem can be proved by a similar method used in the proof of
Theorem 3, we omit the proof.
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Finally we revisit Example 3.

Example 3∗. Let a : R+ → R be the function defined in Example 2, and
let r(t) ≡ r (r > 0) and b(t, s) ≡ B (0 < B ≤ 53/(26r), (5− 2Br)r ≤ ln 2), and
β = 1. Then (2∗), (4), (18) and (19) hold with β = 1, r0 = r and γ = 2, and
σ∗ <∞. Moreover, if 0 < B < 53/(26r), then (22) holds. Thus, by Theorem 4,
the solutions of Eq. (17) are uniformly bounded. Moreover, if 0 < B < 53/(26r),
then the solutions of Eq. (17) are uniformly ultimately bounded for any bound
A > 0.
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