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Abstract

In this paper, existence criteria for single and multiple positive solutions of periodic
boundary value problems for first order difference equations of the form

{

△x(k) + f(k, x(k + 1)) = 0, k ∈ [0, T ] ,
x(0) = x(T + 1),

are established by using the fixed point theorem in cones. An example is also given to
illustrate the main results.
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1 Introduction

Due to the wide application in many fields such as science, economics, neural network,
ecology, cybernetics, etc., the theory of nonlinear difference equations has been widely studied
since 70’s of last century, see, for example, [1, 2, 19, 20]. At the same time, Boundary value
problems (BVPs) of difference equations have received much attention from many authors, see
[3-12, 14-18, 21, 22, 24-29] and the references therein. However, to the best our knowledge,
few papers can be found in the literature for periodic boundary value problems (PBVPs) of
difference equations [9, 10, 22, 24, 29].

In this paper, we are concerned with the existence of single and multiple positive solutions
of PBVP for first order difference equation

{

△x(k) + f(k, x(k + 1)) = 0, k ∈ [0, T ] ,
x(0) = x(T + 1),

(1.1)

where T is a fixed positive integer, △ denotes the forward difference operator with stepsize 1,
and [a, b] = {a, a + 1, · · · , b − 1, b} ⊂ Z the set of all integers, and f : [0, T ] × R → R is
continuous.
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In [22], by using a fixed point theorem, Sun considered the existence of one positive solution
of the PBVP (1.1) when the following condition holds:

(A) There exists a positive number M > 1 such that

(M − 1)x − f(k, x) ≥ 0 for k ∈ [0, T ], x ∈ [0,+∞) .

In [24], Wang obtained the existence of multiple positive solutions of PBVP (1.1) by using
the Leggett-Williams multiple fixed point theorem and fixed point theorem of cone expansion
and compression when condition (A) holds.

Motivated by the results mentioned above, in this paper, we shall obtain existence criteria
for single and multiple positive solutions to the PBVP (1.1) by means of a fixed point theorem
in cones. It is worth noticing that our hypotheses on nonlinearity f in this paper are weaker
than condition (A) of [22, 24]. This paper’s ideas come from [23].

Theorem 1.1 ([13]). Let X be a Banach space and K is a cone in X. Assume Ω1,Ω2 are
open subsets of X with 0 ∈ Ω1, Ω1 ⊂ Ω2. Let

Φ : K ∩ (Ω2 \ Ω1) → K

be a continuous and completely continuous operator such that

(i) ‖Φx‖ ≤ ‖x‖ for x ∈ K ∩ ∂Ω1;

(ii) there exists e ∈ K\{0} such that x 6= Φx + λe for x ∈ K ∩ ∂Ω2 and λ > 0.

Then Φ has a fixed point in K ∩ (Ω2 \ Ω1).

Remark 1.1. In Theorem 1.1, if (i) and (ii) are replaced by

(i) ‖Φx‖ ≤ ‖x‖ for x ∈ K ∩ ∂Ω2;

(ii) there exists e ∈ K\{0} such that x 6= Φx + λe for x ∈ K ∩ ∂Ω1 and λ > 0, then Φ has
also a fixed point in K ∩ (Ω2 \ Ω1).

2 Preliminaries

Let C = {x : [0, T ] → R}. For σ ∈ C, we first consider the following linear PBVP :

{

△x(k) + (M − 1)x(k + 1) = σ(k), k ∈ [0, T ] ,
x(0) = x(T + 1),

(2.1)

where M > 1 is a constant.

Let

G(k, s) =

{

M−(k−s)

1−M−(T+1) , 0 ≤ s ≤ k − 1,
M−(T+1+k−s)

1−M−(T+1) , k ≤ s ≤ T.

Then we have

M−(T+1)

1 − M−(T+1)
≤ G(k, s) ≤

1

1 − M−(T+1)
, (k, s) ∈ [0, T + 1] × [0, T ]. (2.2)

It is easy to see that the following lemma holds.

EJQTDE, 2012 No. 52, p. 2



Lemma 2.1. Suppose M > 1. Then for any σ ∈ C, PBVP (2.1) has a unique solution:

x(k) =

T
∑

s=0

G(k, s)σ(s), k ∈ [0, T + 1].

In addition, if we choose σ(k) ≡ 1, then we know

T
∑

s=0

G(k, s) =
1

M − 1
.

Let E = {x : [0, T + 1] → R} be equipped with the norm ‖x‖ = maxk∈[0,T+1] |x(k)| , then E

is a Banach space.
Let

K = {x ∈ E : x(k) ≥ 0, min
0≤k≤T+1

x(k) ≥ δ ‖x‖},

where δ = M−(T+1) < 1, one may readily verify that K is a cone in E.

Now for u ∈ K, we consider the following PBVP:

{

△x(k) + (M − 1)x(k + 1) = (M − 1)u(k + 1) − f(k, u(k + 1)), k ∈ [0, T ] ,
x(0) = x(T + 1).

(2.3)

It follows from Lemma 2.1 that PBVP (2.3) has a unique solution:

x(k) =

T
∑

s=0

G(k, s)[(M − 1)u(s + 1) − f(s, u(s + 1))], k ∈ [0, T + 1].

Define an operator Φ : K → E :

(Φx) (k) =
T

∑

s=0

G(k, s)[(M − 1)x(s + 1) − f(s, x(s + 1))], k ∈ [0, T + 1].

It is obviously that fixed points of Φ are solutions of PBVP (1.1) and Φ : K → E is continuous
and completely continuous.

3 Main results

In this section, by defining an appropriate cones, we impose the conditions on f which allow
us to apply the fixed point theorem in cones to establish the existence criteria for single and
multiple positive solutions of the PBVP (1.1).

Theorem 3.1. Suppose that there exist a positive number M > 1 and 0 < α < β such that

(M − 1)x − f(k, x) ≥ 0 for k ∈ [0, T ], x ∈ [δα, β].
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Then the PBVP (1.1) has at least one positive solution if one of the following two conditions
holds

(i)

f(k, x) ≤ 0 for k ∈ [0, T ], x ∈ [δα, α] ,

f(k, x) ≥ 0 for k ∈ [0, T ], x ∈ [δβ, β] ;

(ii)

f(k, x) ≥ 0 for k ∈ [0, T ], x ∈ [δα, α] ,

f(k, x) ≤ 0 for k ∈ [0, T ], x ∈ [δβ, β] .

Proof. Define the open sets

Ω1 = {x ∈ E : ‖x‖ < α},

Ω2 = {x ∈ E : ‖x‖ < β}.

Firstly, we claim that Φ : K ∩ (Ω2 \ Ω1) → K.

In fact, for any x ∈ K ∩ (Ω2 \ Ω1), we have δα ≤ x ≤ β, by (2.2)

‖Φx‖ ≤
1

1 − M−(T+1)

T
∑

s=0

[(M − 1)x(s + 1) − f(s, x(s + 1))]

and

(Φx) (k) =

T
∑

s=0

G(k, s)[(M − 1)x(s + 1) − f(s, x(s + 1))]

≥
M−(T+1)

1 − M−(T+1)

T
∑

s=0

[(M − 1)x(s + 1) − f(s, x(s + 1))].

So

(Φx) (k) ≥ M−(T+1) ‖Φx‖ = δ ‖Φx‖ , i.e., Φx ∈ K.

Therefore, Φ : K ∩ (Ω2 \ Ω1) → K.

Secondly, we prove the result provided conditions (i) holds.

By the first inequality of (i), we have

(M − 1)x − f(k, x) ≥ (M − 1)x, k ∈ [0, T ], x ∈ [δα, α] .

Let e ≡ 1, then e ∈ K. We assert that

x 6= Φx + λe for x ∈ K ∩ ∂Ω1 and λ > 0. (3.1)

If not, there would exist x0 ∈ K ∩ ∂Ω1 and λ0 > 0 such that x0 = Φx0 + λ0e.
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Since x0 ∈ K ∩ ∂Ω1, then δα = δ ‖x0‖ ≤ x0(k) ≤ α. Let µ = min0≤k≤T+1 x0(k), then for any
k ∈ [0, T + 1], we have

x0(k) = (Φx0) (k) + λ0

=

T
∑

s=0

G(k, s)[(M − 1)x0(s + 1) − f(s, x0(s + 1))] + λ0

≥

T
∑

s=0

G(k, s)(M − 1)x0(s + 1) + λ0

≥ µ

T
∑

s=0

G(k, s)(M − 1) + λ0

= µ + λ0.

This implies that µ ≥ µ + λ0, and this is a contradiction. Therefore (3.1) holds.

On the other hand, by using the second inequality of (i), we have

(M − 1)x − f(k, x) ≤ (M − 1)x, k ∈ [0, T ], x ∈ [δβ, β] .

We assert that

‖Φx‖ ≤ ‖x‖ for x ∈ K ∩ ∂Ω2. (3.2)

In fact, for any x ∈ K ∩ ∂Ω2, then δβ = δ ‖x‖ ≤ x(k) ≤ β, we have

(Φx) (k) =

T
∑

s=0

G(k, s)[(M − 1)x(s + 1) − f(s, x(s + 1))]

≤
T

∑

s=0

G(k, s)(M − 1)x(s + 1)

≤

T
∑

s=0

G(k, s)(M − 1) ‖x‖

= ‖x‖ .

Therefore, ‖Φx‖ ≤ ‖x‖ .

It follows from Remark 1.1, (3.1) and (3.2) that Φ has a fixed point x ∈ K ∩ (Ω2 \ Ω1).

In a similar way, we can prove the result by Theorem 1.1 if condition (ii) holds.

Theorem 3.2. Suppose that there exist a positive number M > 1 and 0 < α < ρ < β such
that

(M − 1)x − f(k, x) ≥ 0 for k ∈ [0, T ], x ∈ [δα, β].

Then the PBVP (1.1) has at least two positive solutions if one of the following two conditions
holds

EJQTDE, 2012 No. 52, p. 5



(i)

f(k, x) ≤ 0 for k ∈ [0, T ], x ∈ [δα, α] ,

f(k, x) > 0 for k ∈ [0, T ], x ∈ [δρ, ρ] ,

f(k, x) ≤ 0 for k ∈ [0, T ], x ∈ [δβ, β] ;

(ii)

f(k, x) ≥ 0 for k ∈ [0, T ], x ∈ [δα, α] ,

f(k, x) < 0 for k ∈ [0, T ], x ∈ [δρ, ρ] ,

f(k, x) ≥ 0 for k ∈ [0, T ], x ∈ [δβ, β] .

Proof. We only prove the result when condition (i) holds. In a similar way we can obtain
the result if condition (ii) holds.

Define Ω1, Ω2 as in Theorem 3.1 and define

Ω3 = {x ∈ E : ‖x‖ < ρ}.

Similar to the proof of Theorem 3.1, we can prove that

x 6= Φx + λe for x ∈ K ∩ ∂Ω1 and λ > 0, (3.3)

x 6= Φx + λe for x ∈ K ∩ ∂Ω2 and λ > 0, (3.4)

where e ≡ 1 ∈ K, and

‖Φx‖ < ‖x‖ for x ∈ K ∩ ∂Ω3. (3.5)

Thus we can obtain the existence of two positive solutions x1 and x2 by using Theorem 1.1
and Remark 1.1, respectively. It is easy to see that α ≤ ‖x1‖ < ρ < ‖x2‖ ≤ β.

Theorem 3.3. Suppose that there exist a positive number M > 1 and 0 < α1 < β1 < α2 <

β2 < · · · < αn < βn such that

(M − 1)x − f(k, x) ≥ 0 for k ∈ [0, T ], x ∈ [δα1, βn].

Then the PBVP (1.1) has at least n multiple positive solutions xi (1 ≤ i ≤ n) satisfying
αi ≤ ‖xi‖ < βi , 1 ≤ i ≤ n, if one of the following two conditions holds

(i)

f(k, x) ≤ 0 for k ∈ [0, T ], x ∈ [δαi, αi] , 1 ≤ i ≤ n,

f(k, x) ≥ 0 for k ∈ [0, T ], x ∈ [δβi, βi] , 1 ≤ i ≤ n;

(ii)

f(k, x) ≥ 0 for k ∈ [0, T ], x ∈ [δαi, αi] , 1 ≤ i ≤ n,

f(k, x) ≤ 0 for k ∈ [0, T ], x ∈ [δβi, βi] , 1 ≤ i ≤ n.
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Remark 3.1. In theorem 3.3, if (i) and (ii) are replaced by

(iii)

f(k, x) < 0 for k ∈ [0, T ], x ∈ [δαi, αi] , 1 ≤ i ≤ n,

f(k, x) > 0 for k ∈ [0, T ], x ∈ [δβi, βi] , 1 ≤ i ≤ n;

(iv)

f(k, x) > 0 for k ∈ [0, T ], x ∈ [δαi, αi] , 1 ≤ i ≤ n,

f(k, x) < 0 for k ∈ [0, T ], x ∈ [δβi, βi] , 1 ≤ i ≤ n.

Then the PBVP (1.1) has at least 2n − 1 multiple positive solutions.

4 Examples

Example 4.1. Consider the following PBVP:

{

△x(k) + f(k, x(k + 1)) = 0, k ∈ [0, 3] ,
x(0) = x(4),

(4.1)

where T = 3 and f(k, x) = x − x
1
2 + 7

64 .

Then the PBVP (4.1) has at least three nonnegative solutions.

Proof. Choose M = 2, then δ = M−(T+1) = 2−4 = 1
16 . Let α = 1

4 , β = 32, then it is not
difficult to show that

(M − 1)x − f(k, x) = x
1
2 −

7

64
≥

1

8
−

7

64
=

1

64
> 0, x ∈ [

1

64
, 32] = [δα, β];

f(k, x) = x − x
1
2 +

7

64
≤

1

64
−

1

8
+

7

64
= 0, x ∈ [

1

64
,
1

4
] = [δα, α] ;

f(k, x) = x − x
1
2 +

7

64
> 0, x ∈ [2, 32] = [δβ, β].

By Theorem 3.1, the PBVP (4.1) has at least one positive solutions.

Acknowledgment: The authors thankful to the anonymous referee for his/her helpful
suggestions for the improvement of this article.
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