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Abstract: By using a continuation theorem based on coincidence degree theory, some new

sufficient conditions are obtained for the existence of positive periodic solutions of the following

neutral delay predator-prey model with nonmonotonic functional response:











x′(t) = x(t)[r(t) − a(t)x(t− σ(t)) − b(t)x′(t− σ(t))] − g(x(t))y(t),

y′(t) = y(t)[−d(t) + µ(t)g(x(t − τ(t))].

Moreover, an example is employed to illustrate the main results.
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1 Introduction

In a classic study of population dynamics, the predator-prey models have been studied ex-

tensively. We refer the reader to [1−5] and the references cited therein. Up to the present,

most authors just studied systems with monotonic functional response, such as [6,7]. However,

the actual living environments of species are not always like this due to the ecological effects of
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human activities and industry, e.g., the location of manufacturing industries and pollution of

the atmosphere, rivers, and soil etc. In view of such kinds of situations, Fan and Quan [8] in-

vestigated the existence and uniqueness of limit cycle of such a type of predator-prey system, in

which the predator would decrease its grasping ability while the prey has group defence ability,

namely,










ẋ = Φ(x) − yΨ(x),

ẏ = y[µΨ(x) −D].

where

Φ(0) = 0, lim
x→∞

Φ(x) < 0, Ψ(x),Φ(x) ∈ C1[0,+∞), Ψ(0) = 0,

and

∃k > 0, such that (x− k)Ψ′(x) < 0 and lim
x→∞

Ψ(x) = 0,

µ,D are positive constants. For a special case of this system, in view of time delay effect, Ruan

[9] and Xiao [10] considered the bifurcation and stability of the following predator-prey model

with nonmonotonic functional response











x′(t) = x(t)[a− bx(t)] − cx(t)y(t)
m2+x2(t)

,

y′(t) = y(t)[−d+ µx(t−τ)
m2+x2(t−τ)

].

(1.1)

where x(t) and y(t) represent predator and prey densities respectively, a, b,m, µ and d are all

positive constants, and τ is a nonnegative constant. Furthermore, Fan and Wang [11] established

verifiable criteria for the global existence of positive periodic solutions of a more general delayed

predator-prey model with nonmonotonic functional response with periodic coefficients of the

form










x′(t) = x(t)[a(t) − b(t)x(t)] − g(x(t))y(t),

y′(t) = y(t)[−d(t) + µ(t)g(x(t− τ))].

(1.2)

In particular, Kuang [12] studied the local stability and oscillation of the following neutral delay

Gause-type predator-prey system:











x′(t) = rx(t)[1 − x(t−τ)+ρx′(t−τ)
K

] − y(t)p(x(t)),

y′(t) = y(t)[−α+ βp(x(t− σ))].

(1.3)
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Since the coefficients and delays in differential equations of population and ecology problems

are usually time-varying in the real world, the model (1.3) can be naturally extended to the

following neutral delay predator-prey model with nonmonotonic functional response:










x′(t) = x(t)[r(t) − a(t)x(t− σ(t)) − b(t)x′(t− σ(t))] − g(x(t))y(t),

y′(t) = y(t)[−d(t) + µ(t)g(x(t − τ(t))].

(1.4)

where x(t) and y(t) represent predator and prey densities respectively, r(t), a(t), b(t), d(t), and

µ(t) are all positive periodic continuous functions with period ω > 0, σ(t), τ(t) are ω-periodic

continuous functions, the function g satisfying the following conditions:

(i) g ∈ C1[0,+∞), g(0) = 0;

(ii) There exists a constant k > 0 such that (x− k)g′(x) < 0 for x 6= k;

(iii) lim
x→+∞

g(x) = 0,

where Cn is the nth order continuous function space, n = 1, 2.

As pointed out by Kuang [13], it would be of interest to study the existence of periodic

solutions for periodic systems with time delay. The periodic solutions play the same role as

is played by the equilibria in autonomous systems. In addition, in view of the fact that many

predator-prey systems display sustained fluctuations, it is thus desirable to construct predator-

prey models capable of producing periodic solutions. To our knowledge, no such work has been

done on the global existence of positive periodic solutions of (1.4). Motivated by this, our aim

in this paper is, using the coincidence degree theory developed by Gaines and Mawhin [14], to

derive a set of easily verifiable sufficient conditions for the existence of positive periodic solutions

of system (1.4). For convenience, we will use the following notations

|f |0 = max
t∈[0,ω]

{|f(t)|}, f+ = max
t∈[0,ω]

{f(t)}, f− = min
t∈[0,ω]

{f(t)}, f =
1

ω

∫ ω

0
f(t)dt.

In this paper, we always make the following assumptions for system (1.4).

(H1) b ∈ C1(R, (0,+∞)), σ ∈ C2(R,R), 1 − σ′(t) > 0 and c(t) > 0, where

c(t) = a(t) −B′(t), B(t) =
b(t)

1 − σ′(t)
, t ∈ R.

(H2) 1 − τ ′(t) > 0, rLΛ− > C+d, max
t∈[0,ω]

{b+, B+}eβ1 < 1, where

C(t) =
c(ϕ(t))

1 − σ′(ϕ(t))
, Λ(t) =

µ(ψ(t))

1 − τ ′(ψ(t))
, L = min

x∈[β2,β1]
h(ex), h(x(t)) =

g(x(t))

x(t)
,
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t = ϕ(p) is the inverse function of p = t− σ(t), t = ψ(q) is the inverse function of q = t− τ(t),

and

β1 = ln
2r

C−
+B+ 2r

c−
+ 2rω, β2 = ln(

d

Λ+M
) −

2rω + |B′|0e
β1ω

1 −B+eβ1

.

(H3) g(k)µ > d.

(H4) For g(u1) = g(u2) = d
µ
, we have

0 < u1 <
r

a
< u2.

2 The existence of a positive periodic solution

In this section, we shall study the existence of at least one positive periodic solution of system

(1.4). The method to be used in this paper involves the applications of the continuation theorem

of the coincidence degree. For the readers’ convenience, we introduce some concepts and results

concerning the coincidence degree as follows.

Let X,Z be real Banach spaces, L : DomL ⊂ X → Z be a linear mapping, and N : X →

Z be a continuous mapping. The mapping L is called a Fredholm mapping of index zero if

dimKerL = CodimImL < +∞ and ImL is closed in Z.

If L is a Fredholm mapping of index zero and there exist continuous projectors P : X → X,

and Q : Z → Z such that ImP = KerL,KerQ = ImL = Im(I − Q). It follows that L |

DomL ∩KerP : (I − P )X → ImL is invertible. We denote the inverse of that map by KP .

If Ω be an open bounded subset of X, the mapping N will be called L-compact on Ω̄ if

QN(Ω̄) is bounded and KP (I −Q)N : Ω̄ → X is compact.

Since ImQ is isomorphic to KerL, there exists an isomorphism J : ImQ→ KerL.

Lemma 2.1 (Mawhin’s continuous theorem [14]). Let Ω ⊂ X be an open bounded set. Let L be

a Fredholm mapping of index zero and N be L-compact on Ω̄. Suppose further

(i) for each λ ∈ (0, 1), x ∈ ∂Ω ∩DomL,Lx 6= λNx;

(ii) for each x ∈ ∂Ω ∩KerL,QNx 6= 0;

(iii) deg{JQN,Ω ∩KerL, 0} 6= 0.

Then the operator equation Lx = Nx has at least one solution in Ω̄ ∩DomL.
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Lemma 2.2 (See [11]). Suppose (H3) holds, the algebraic equations











ru− au2 − h(u)v = 0,

−d+ µg(u) = 0

has a unique positive solution if and only if, there exist two positive constants u1 and u2 such

that

u1 <
r

a
< u2,

and

0 < u1 < u2, and g(u1) = g(u2) =
d

µ
.

Theorem 2.1. Assume that (H1) − (H4) hold. Then system (1.4) has at least one ω-periodic

solution with strictly positive components.

Proof. Consider the following system:











u′1(t) = r(t) − a(t)eu1(t−σ(t)) − b(t)eu1(t−σ(t))u′1(t− σ(t)) − h(eu1(t))eu2(t),

u′2(t) = −d(t) + µ(t)g(eu1(t−τ(t))).

(2.1)

where all functions are defined as ones in system (1.4). It is easy to see that if system (2.1)

has one ω-periodic solution (u∗1(t), u
∗

2(t))
T , then (x∗(t), y∗(t))T = (eu

∗
1
(t), eu

∗
2
(t))T is a positive

ω-periodic solution of system (1.4). Therefore, to complete the proof it suffices to show that

system (2.1) has one ω-periodic solution.

Take

X = Z = {u = (u1(t), u2(t))
T ∈ C1(R,R2) : ui(t+ ω) = ui(t), t ∈ R, i = 1, 2},

and define

|u|∞ = max
t∈[0,ω]

{|u1(t)| + |u2(t)|}, ‖u‖ = |u|∞ + |u′|∞.

Then X and Z are Banach spaces when they are endowed with the norms ‖ · ‖ and | · |∞,

respectively. Let L : X → Z and N : X → Z be

L(u1(t), u2(t))
T = (u′1(t), u

′

2(t))
T

and
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N





u1(t)

u2(t)



 =





r(t) − a(t)eu1(t−σ(t)) − b(t)eu1(t−σ(t))u′1(t− σ(t)) − h(eu1(t))eu2(t)

−d(t) + µ(t)g(eu1(t−τ(t)))





With these notations system (2.1) can be written in the form

Lu = Nu, u ∈ X.

Obviously, KerL = R2, ImL = {(u1, u2)
T ∈ Z :

∫ ω

0 ui(t)dt = 0, i = 1, 2} is closed in Z, and

dimKerL = codimImL = 2. Therefore L is a Fredholm mapping of index zero. Now define two

projectors P : X → X and Q : Z → Z as

P





u1(t)

u2(t)



 =





u1

u2



 ,





u1(t)

u2(t)



 ∈ X

and

Q





u1(t)

u2(t)



 =





u1

u2



 ,





u1(t)

u2(t)



 ∈ Z.

Then P and Q are continuous projectors such that

ImP = KerL,KerQ = ImL = Im(I −Q).

Furthermore, the generalized inverse (to L) KP : ImL → DomL ∩ KerP exists and has the

form

Kp(u) =

∫ t

0
u(s)ds−

1

ω

∫ ω

0

∫ t

0
u(s)dsdt.

Then QN : X → Z and KP (I −Q)N : X → X can be read as

(QN)u =









1

ω

∫ ω

0

[

r(t) − (a(t) −B′(t))eu1(t−σ(t))) − h(eu1(t))eu2(t)

]

dt

1

ω

∫ ω

0

[

− d(t) + µ(t)g(eu1(t−τ(t)))

]

dt









and

KP (I−Q)Nu =











∫ t

0

[

r(s) − c(s)eu1(s−σ(s)) − h(eu1(s))eu2(s)

]

ds− b(t)eu1(t−σ(t)) + b(0)eu1(−σ(0))

∫ t

0

[

− d(s) + µ(s)g(eu1(s−τ(s)))

]

ds
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−



















1

ω

∫ ω

0

∫ t

0

[

r(s) − c(s)eu1(s−σ(s))) − h(eu1(s))eu2(s)

]

dsdt

−
1

ω

∫ ω

0

[

b(t)eu1(t−σ(t)) + b(0)eu1(−σ(0))
]

dt

1

ω

∫ ω

0

∫ t

0

[

− d(s) + µ(s)g(eu1(s−τ(s)))

]

dsdt



















−









(
t

ω
−

1

2
)

∫ ω

0

[

r(s) − c(s)eu1(s−σ(s)) − h(eu1(s))eu2(s)

]

ds

(
t

ω
−

1

2
)

∫ ω

0

[

− d(s) + µ(s)g(eu1(s−τ(s)))

]

ds









Obviously, QN and KP (I−Q)N are continuous by the Lebesgue theorem, and it is not difficult

to show that KP (I −Q)N(Ω̄) is compact for any open bounded Ω ⊂ X by using Arzela-Ascoli

theorem. Moreover, QN(Ω̄) is clearly bounded. Thus, N is L−compact on Ω̄ for any open

bounded set Ω ⊂ X.

Now we reach the position to search for an appropriate open bounded subset Ω for the

application of Lemma 2.1. Corresponding to operator equation Lu = λNu, λ ∈ (0, 1), we have











u′1(t) = λ[r(t) − a(t)eu1(t−σ(t)) − b(t)eu1(t−σ(t))u′1(t− σ(t)) − h(eu1(t))eu2(t)],

u′2(t) = λ[−d(t) + µ(t)g(eu1(t−τ(t)))].

(2.2)

Suppose that (u1(t), u2(t))
T ∈ X is a solution of (2.2) for a certain λ ∈ (0, 1). Integrating (2.2)

over the interval [0, ω] leads to

∫ ω

0

[

r(t) − a(t)eu1(t−σ(t)) − b(t)eu1(t−σ(t))u′1(t− σ(t)) − h(eu1(t))eu2(t)
]

dt = 0 (2.3)

and
∫ ω

0
[−d(t) + µ(t)g(eu1(t−τ(t)))]dt = 0. (2.4)

Note that

∫ ω

0
b(t)eu1(t−σ(t))u′1(t− σ(t))dt =

∫ ω

0

b(t)

1 − σ′(t)
(eu1(t−σ(t)))′dt =

∫ ω

0
B(t)(eu1(t−σ(t)))′dt

=B(t)eu1(t−σ(t)) |ω0 −

∫ ω

0
B′(t)eu1(t−σ(t))dt = −

∫ ω

0
B′(t)eu1(t−σ(t))dt,

which, together with (2.3), implies

∫ ω

0
[c(t)eu1(t−σ(t)) + h(eu1(t))eu2(t)]dt = rω. (2.5)
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From (2.4), we have
∫ ω

0
µ(t)g(eu1(t−τ(t)))dt = dω. (2.6)

In view of (2.2),(2.5) and (H1), one can find

∫ ω

0

∣

∣

∣

d

dt
[u1(t) + λB(t)eu1(t−σ(t)) ]

∣

∣

∣
dt =λ

∫ ω

0

∣

∣

∣
r(t) − c(t)eu1(t−σ(t)) − h(eu1(t))eu2(t)

∣

∣

∣
dt

≤

∫ ω

0
r(t)dt +

∫ ω

0
[c(t)eu1(t−σ(t)) + h(eu1(t))eu2(t)]dt

=2rω.

(2.7)

Let t = ϕ(p) be the inverse function of p = t− σ(t). It is easy to see that c(ϕ(p)) and σ′(ϕ(p))

are all ω-periodic functions. Furthermore, it follows from (2.5) and (H1) that

rω ≥

∫ ω

0
c(t)eu1(t−σ(t))dt =

∫ ω−σ(ω)

−σ(0)
c(ϕ(p))eu1(p) 1

1 − σ′(ϕ(p))
dp

=

∫ ω

0

c(ϕ(p))

1 − σ′(ϕ(p))
eu1(p)dp =

∫ ω

0

c(ϕ(t))

1 − σ′(ϕ(t))
eu1(t)dt,

which yields
∫ ω

0

[ c(ϕ(t))

1 − σ′(ϕ(t))
eu1(t) + c(t)eu1(t−σ(t))

]

dt ≤ 2rω.

According to the mean value theorem of differential calculus, we see that there exists ξ ∈ [0, ω]

such that

c(ϕ(ξ))

1 − σ′(ϕ(ξ))
eu1(ξ) + c(t)eu1(ξ−σ(ξ)) ≤ 2r.

This, together with (H1), yields

u1(ξ) ≤ ln
2r

C−

and

eu1(ξ−σ(ξ)) ≤
2r

c−
,

which, together with (2.7), imply that, for any t ∈ [0, ω],

u1(t) + λB(t)eu1(t−σ(t)) ≤u1(ξ) + λB(ξ)eu1(ξ−σ(ξ)) +

∫ ω

0

∣

∣

∣

d

dt
[u1(t) + λB(t)eu1(t−σ(t))]

∣

∣

∣
dt

≤ ln
2r

C−
+B+ 2r

c−
+ 2rω =: β1.

As λB(t)eu1(t−σ(t)) ≥ 0, one can find that

u1(t) ≤ β1, t ∈ [0, ω]. (2.8)
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Since (u1(t), u2(t))
T ∈ X, there exist ξi, ηi ∈ [0, ω] (i = 1, 2) such that

ui(ξi) = min
t∈[0,ω]

{ui(t)}, ui(ηi) = max
t∈[0,ω]

{ui(t)}, i = 1, 2. (2.9)

According to (2.2), (2.5) and (2.8), for any t ∈ [0, ω], we obtain

∫ ω

0
|u′1(t)|dt =λ

∫ ω

0
|r(t) − a(t)eu1(t−σ(t)) − b(t)eu1(t−σ(t))u′1(t− σ(t)) − h(eu1(t))eu2(t)|dt

≤

∫ ω

0
r(t)dt +

∫ ω

0
[c(t)eu1(t−σ(t)) + h(eu1(t))eu2(t)]dt +

∫ ω

0
|B′(eu1(t))eu1(t−σ(t)) |dt

+

∫ ω

0
|b(t)eu1(t−σ(t))u′1(t− σ(t))|dt

≤2rω + |B′|0e
β1ω +

∫ ω

0
|b(t)eu1(t−σ(t))u′1(t− σ(t))|dt.

In addition,

∫ ω

0
|b(t)eu1(t−σ(t))u′1(t− σ(t))|dt =

∫ ω−σ(ω)

−σ(0)
|b(ϕ(p))eu1(p)u′1(p)|

1

1 − σ′(ϕ(p))
dp

=

∫ ω−σ(ω)

−σ(0)
|

b(ϕ(p))

1 − σ′(ϕ(p))
eu1(p)u′1(p)|dp

=

∫ ω−σ(ω)

−σ(0)
|B(ϕ(p))eu1(p)u′1(p)|dp

≤B+eβ1

∫ ω−σ(ω)

−σ(0)
|u′1(p)|dp

=B+eβ1

∫ ω

0
|u′1(t)|dt

which implies that

∫ ω

0
|u′1(t)|dt ≤ 2rω + |B′|0e

β1ω +B+eβ1

∫ ω

0
|u′1(t)|dt. (2.10)

From (H2), we obtain
∫ ω

0
|u′1(t)|dt ≤

2rω + |B′|0e
β1ω

1 −B+eβ1

. (2.11)

Since

lim
x→0

h(x) = lim
x→0

g(x)

x
= g′(0) and lim

x→+∞

h(x) = 0,

there exists a constant M > 0 such that

h(x) ≤M, for x ∈ [0,+∞). (2.12)
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Let t = ψ(q) be the inverse function of q = t− τ(t). It is easy to see that µ(ψ(q)) and τ ′(ψ(q))

are all ω-periodic functions. By virtue of (2.6), (2.9), (2.12) and (H2), we have

dω =

∫ ω

0
µ(t)g(eu1(t−τ(t)))dt =

∫ ω

0

µ(ψ(t))

1 − τ ′(ψ(t))
g(eu1(t))dt ≤ Λ+Mωeu1(η1),

and so

u1(η1) ≥ ln(
d

Λ+M
).

Then

u1(t) ≥ u1(η1) −

∫ ω

0
|u′1(t)|dt ≥ ln(

d

Λ+M
) −

2rω + |B′|0e
β1ω

1 −B+eβ1

=: β2. (2.13)

It follows from (2.8) and (2.13) that

max
t∈[0,ω]

|u1(t)| ≤ max{|β1|, |β2|} =: D1. (2.14)

From (2.5) and (H2), one can find that

u2(ξ2) ≤ ln(
r

L
). (2.15)

In view of (2.6)

dω =

∫ ω

0
µ(t)g(eu1(t−τ(t)))dt ≥ L

∫ ω

0
µ(t)eu1(t−τ(t))dt = L

∫ ω

0

µ(ψ(t))

1 − τ ′(ψ(t))
eu1(t)dt ≥ LΛ−

∫ ω

0
eu1(t)dt,

This implies that
∫ ω

0
eu1(t)dt ≤

dω

LΛ−
.

Notice that
∫ ω

0
h(eu1(t))eu2(t)dt ≤M

∫ ω

0
eu2(t)dt,

∫ ω

0
c(t)eu1(t−σ(t))dt ≤

∫ ω

0

c(ϕ(t))

1 − σ′(ϕ(t))
eu1(t)dt ≤ C+

∫ ω

0
eu1(t)dt,

we can get from (2.5) and (H2) that

eu2(η2)ω ≥

∫ ω

0
eu2(t)dt ≥

rω − C+
∫ ω

0 eu1(t)dt

M
≥
rLΛ−ω − C+dω

LMΛ−
(2.16)

i.e.

u2(η2) ≥ ln
(rLΛ− − C+d

LMΛ−

)

. (2.17)
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In addition, it follows from (2.2), (2.6) that, for any t ∈ [0, ω],

∫ ω

0
|u′2(t)|dt = λ

∫ ω

0

∣

∣

∣
− d(t) + µ(t)g(eu1(t−τ(t)))

∣

∣

∣
dt ≤

∫ ω

0
d(t)dt+

∫ ω

0
µ(t)g(eu1(t−τ(t)))dt = 2dω,

which, together with (2.15) and (2.17), implies that for t ∈ [0, ω],

u2(t) ≤ u2(ξ2) +

∫ ω

0
|u′2(t)|dt ≤ ln(

r

L
) + 2dω =: β3

and

u2(t) ≥ u2(η2) −

∫ ω

0
|u′2(t)|dt ≥ ln

(rLΛ− − C+d

LMΛ−

)

− 2dω =: β4.

Hence

max
t∈[0,ω]

|u2(t)| ≤ max{|β3|, |β4|} =: D2. (2.18)

From (2.2), (2.8), (2.12) and (2.18), one can find that for any t ∈ [0, ω],

|u′1(t)| =
∣

∣

∣
λ
[

r(t) − a(t)eu1(t−σ(t)) − b(t)eu1(t−σ(t))u′1(t− σ(t)) − h(eu1(t))eu2(t)
]
∣

∣

∣

≤r+ + a+eβ1 + b+eβ1|u′1|0 +MeD2

and

|u′2(t)| =
∣

∣

∣
λ
[

− d(t) + µ(t)g(eu1(t−τ(t)))
]∣

∣

∣
≤ d+ + µ+Meβ1 .

These, together with (H2), yield

|u′1|0 ≤
r+ + a+eβ1 +MeD2

1 − b+eβ1

=: D3, (2.19)

and

|u′2|0 ≤ d+ + µ+Meβ1 =: D4. (2.20)

From (2.14), (2.18)-(2.20), we have

‖u‖ = |u|∞ + |u′|∞ ≤ D1 +D2 +D3 +D4.

Furthermore, it follows from (H4) and Lemma 2.2 that the algebraic equations











r − au− h(u)v = 0,

−d+ µg(u) = 0.
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has a unique solution (u∗, v∗)T ∈ R2
+ with u∗, v∗ > 0. Denote D = D1 +D2 +D3 +D4 +D0,

where D > 0 is taken sufficiently large such that

‖(ln{u∗}, ln{v∗)‖ = max{| ln{u∗}|, | ln{v∗)|} < D0.

We now take

Ω = {x(t) ∈ X : ‖x‖ < D}.

This satisfies condition(i) in Lemma 2.1. When (u1(t), u2(t))
T ∈ ∂Ω∩KerL = ∂Ω∩R2, (u1(t), u2(t))

T

is a constant vector in R2 with |u1| + |u2| = D. Thus, we have

QN







u1

u2






=





r − aeu1 − h(eu1)eu2

−d+ µg(eu1)



 6=







0

0







This proves that condition (ii) in Lemma 2.1 is satisfied.

Taking J = I : ImQ→ KerL, (u1, u2)
T → (u1, u2)

T , in view of the assumptions in Theorem

2.1, a direct computation gives

deg{JQN,Ω ∩KerL, 0} 6= 0.

By now we have proved that Ω satisfies all the requirements in Lemma 2.1. Hence, (2.1) has

at least one ω-periodic solution. Accordingly, system (1.4) has at least one ω-periodic solution

with strictly positive components. The proof of Theorem 2.1 is complete. �

Remark 2.1. It is easy to see that (H3) is also the necessary condition for the existence of

positive ω-periodic solutions of system (1.4).

Remark 2.2. The time delays σ(t) and τ(t) have influence on the existence of positive periodic

solutions to system (1.4).

Remark 2.3. If σ(t) ≡ σ, τ(t) ≡ τ are positive constant, the result is still holds. But the priori

bounds of all positive periodic solutions are different, The C(t) = c(ϕ(t))
1−σ′(ϕ(t)) ,Λ(t) = µ(ψ(t))

1−ψ′(ϕ(t))

should be replaced by B(t) = b(t+ σ), C(t) = c(t+ σ),Λ(t) = µ(t+ τ).
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3 An Example

In this section, we give an example to illustrate the results obtained in previous sections.

Example 3.1. Consider the following system:



























x′(t) = x(t)
[

(3 + 2 sin(20πt)) − (1
2 − 1

4 cos(20πt))x(t − 1
20π sin(20πt))

− 1
100x

′(t− 1
20π sin(20πt))

]

− x(t)y(t)
9+x2(t)

,

y′(t) = y(t)
[

− 1
200 (1 − 1

3 cos(20πt) +
x(t− 1

60π
sin(20πt))

9+x2(t)

]

.

(3.1)

A straightforward calculation shows that

r = 3, a =
1

2
, d =

1

200
, µ = 1, a− =

1

4
, b+ =

3

200
, k = 3, ω =

1

10

and

B(t) =
1

100
, C(t) =

1

2
, Λ(t) = 1, c(t) = a(t) =

1

2
−

1

4
cos(20πt),

Further,

β1 = ln 12 + 0.84, β2 = −2.1276, L = min
t∈[β2,β1]

h(ex) = 0.0013,

Hence,

g(k)µ =
1

6
>

1

200
.

In addition,

max
t∈[0,ω]

{b+, B+}eβ1 =
3

200
× 12 × e0.84 = 0.4170 < 1

and

rLΛ− = 3 × 0.0013 × 1 = 0.0039 > C+d =
1

2
×

1

200
= 0.0025.

Consequently, all the conditions in Theorem 2.1 hold. Therefore, system 3.1 has at least one

1
10 -periodic solution with strictly positive components.

Remark 3.1. To the best of our knowledge, few authors have considered the problems of

periodic solutions of neutral delay predator-prey model with nonmonotonic functional response.

One can easily see that all the results in [15-17] and the references therein cannot be applicable

to Eq. (3.1) to obtain the existence of 1
10 -periodic solutions. This implies that the results of this

paper are new.
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