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1. Introduction

Impulsive differential equations have very good applications in economics, biology,

ecology and other fields(see[1-3]). Many authors are interested in the boundary value

problem of impulsive differential equations (see [4-23]). For example, in [6,7], R. P.

Agarwal and D. O’Regan studied the existence of solutions for the boundary value

problems

y′′(t) + φ(t)f(t, y(t)) = 0, t ∈ (0, 1) \ {t1, t2, · · · , tm},

∆y(tk) = Ik(y(t−k )), k = 1, 2, · · · , m,

∆y′(tk) = Jk(y(t−k )), k = 1, 2, · · · , m,

y(0) = y(1) = 0,

by using Krasnoselskii’s fixed point theorem and the Leggett Williams fixed point

theorem, respectively. Using the fixed point index theory, T. Jankowski ([23]) ob-

tained the existence of solutions for the boundary value problem

x′′(t) + α(t)f(x(α(t))) = 0, t ∈ (0, 1) \ {t1, t2, · · · , tm},
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∆y′(tk) = Qk(x(tk)), k = 1, 2, · · · , m,

x(0) = 0, βx(η) = x(1).

In paper [26], quite general impulsive boundary value problems

u′′(t) + p(t)u′(t) + q(t)u(t) + g(t)f(t, u(t)) = 0, t ∈ (0, 1), t 6= τ,

∆u(t=τ ) = I(u(τ)),

∆u′
(t=τ ) = N(u(τ)),

a1u(0) − b1u
′(0) = α[u], a2u(1) − b2u

′(1) = β[u].

are treated.

Motivated by the excellent results mentioned above and the methods used in [24],

in this paper, we examine the second order impulsive equation






























u′′(t) + φ(t)f(t, u(t)) = 0, t ∈ (0, 1) \ {t1, t2, · · · , tm},
∆u(tk) = Ik(u(tk)), k = 1, 2, · · · , m,

∆u′(tk) = Jk(u(tk)), k = 1, 2, · · · , m,

u(0) = αu(ξ), u′(1) = 0,

(1.1)

where α, ξ ∈ (0, 1), 0 < t1 < t2 < · · · < tm < 1, ξ 6= tk, k = 1, 2, · · · , m, ∆u(tk) =

u(t+k ) − u(t−k ), u(t+k ) (respectively u(t−k )) denotes the right limit (respectively left

limit) of u(t) at t = tk. Also ∆u′(tk) = u′(t+k ) − u′(t−k ). Our result complements

the results of [6,7,23] and it can solve the problems which cannot be solved by the

results of [26](see example 3.1).

We define the Banach space:

PC[0, 1] = {u : [0, 1] → R, there exists uk ∈ C[tk, tk+1] such that u(t) = uk(t)

for t ∈ (tk, tk+1], k = 0, 1, · · · , m, u(0) = u(0 + 0)},
with the norm

‖u‖ = sup{|u(t)| : t ∈ [0, 1] \ {t1, · · · , tm}},

where t0 = 0, tm+1 = 1.

A positive solution of the problem (1.1) means a function u ∈ PC[0, 1] which

satisfies (1.1) with u(t) > 0, t ∈ [0, 1].

In this paper, we will always suppose that the following conditions hold:

(C1) φ ∈ C(0, 1) with φ > 0 on (0, 1) and φ ∈ L1[0, 1].

(C2) f : [0, 1] × [0,∞) → [0,∞) is continuous.

(C3) Ik , Jk :[0,∞) → R are continuous for k = 1, 2, · · ·, m.
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(C4) There exists a function Ω : {u : u ∈ PC[0, 1], u ≥ 0} → [0, +∞) and a

constant 0 < c0 < 1 such that

c0Ω(u) ≤ ω0(t, u) ≤ Ω(u), (t, u) ∈ [0, 1] × {u : u ∈ PC[0, 1], u ≥ 0},

where

ω0(t, u) =
α

1 − α

∑

tk<ξ

[Ik(u(tk)) + (ξ − tk)Jk(u(tk))]

+
∑

tk<t

[

Ik(u(tk)) −
αξ + (1 − α)tk

1 − α
Jk(u(tk))

]

−
∑

t≤tk

αξ + (1 − α)t

1 − α
Jk(u(tk)).

2. Preliminaries

For y ∈ L[0, 1], let’s consider the following problem:






























u′′(t) + y(t) = 0, t ∈ (0, 1) \ {t1, t2, · · · , tm},
∆u(tk) = Ik(u(tk)), k = 1, 2, · · · , m,

∆u′(tk) = Jk(u(tk)), k = 1, 2, · · · , m,

u(0) = αu(ξ), u′(1) = 0.

(2.1)

Lemma 2.1 Let u ≥ 0. Then u is a solution of the problem (2.1) if and only if

it satisfies

u(t) =
∫ 1

0
G(t, s)y(s)ds + ω0(t, u), (2.2)

where

G(t, s) =
1

1 − α































s, s < ξ, s < t,

αs + (1 − α)t, t ≤ s ≤ ξ,

αξ + (1 − α)s, ξ ≤ s ≤ t,

αξ + (1 − α)t, ξ < s, t < s,

ω0(t, u) is the same as in condition (C4).

Proof. Let u be a solution of the problem (2.1), then

u′′(t) = −y(t). (2.3)

For t ∈ (0, t1], integrating (2.3) from 0 to t, we have

u′(t) = c1 −
∫ t

0
y(s)ds,

u(t) = c2 + c1t −
∫ t

0
(t − s)y(s)ds.

So, we have

u(t−1 ) = c1t1 −
∫ t1

0
(t1 − s)y(s)ds + c2, (2.4)
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u′(t−1 ) = c1 −
∫ t1

0
y(s))ds. (2.5)

For t ∈ (t1, t2], integrating (2.3) from t1 to t, we have

u(t) = b2 + b1(t − t1) −
∫ t

t1

(t − s)y(s)ds. (2.6)

By (2.1), (2.4), (2.5) and (2.6), we have

b2 = I1(u(t1)) + c1t1 −
∫ t1

0
(t1 − s)y(s)ds + c2,

b1 = J1(u(t1)) + c1 −
∫ t1

0
y(s)ds.

Thus,

u(t) = I1(u(t1)) + c1t −
∫ t

0
(t − s)y(s)ds + J1(u(t1))(t − t1) + c2.

For t ∈ (tk, tk+1], by the same way, we can get

u(t) = c1t + c2 −
∫ t

0
(t − s)y(s)ds +

k
∑

i=1

(t − ti)Ji(u(ti)) +
k

∑

i=1

Ii(u(ti)). (2.7)

By u′(1) = 0 and (2.7), we have

c1 =
∫ 1

0
y(s)ds−

m
∑

i=1

Ji(u(ti)).

It follows from (2.7) and u(0) = αu(ξ) that

c2 =
α

1 − α
[ξ

∫ 1

0
y(s)ds−

∫ ξ

0
(ξ − s)y(s)ds −

m
∑

k=1

ξJk(u(tk)) +
∑

tk<ξ

(ξ − tk)Jk(u(tk))

+
∑

tk<ξ

Ik(u(tk))].

So, we get

u(t) =
∫ 1

0
ty(s)ds +

αξ

1 − α

∫ 1

0
y(s)ds − α

1 − α

∫ ξ

0
(ξ − s)y(s)ds −

∫ t

0
(t − s)y(s)ds

+
α

1 − α

∑

tk<ξ

[Ik(u(tk)) + (ξ − tk)Jk(u(tk))] +
∑

tk<t

[

Ik(u(tk)) −
αξ + (1 − α)tk

1 − α
Jk(u(tk))

]

−
∑

t≤tk

αξ + (1 − α)t

1 − α
Jk(u(tk))

=
∫ 1

0
ty(s)ds +

αξ

1 − α

∫ 1

0
y(s)ds − α

1 − α

∫ ξ

0
(ξ − s)y(s)ds −

∫ t

0
(t − s)y(s)ds + ω0(t, u).

For t ≤ ξ, we obtain

u(t) =
∫ t

0

s

1 − α
y(s)ds +

∫ ξ

t

αs + (1 − α)t

1 − α
y(s)ds +

∫ 1

ξ

αξ + (1 − α)t

1 − α
y(s)ds + ω0(t, u).
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For t ≥ ξ, we have

u(t) =
∫ ξ

0

s

1 − α
y(s)ds +

∫ t

ξ

αξ + (1 − α)s

1 − α
y(s)ds +

∫ 1

t

αξ + (1 − α)t

1 − α
y(s)ds + ω0(t, u).

So, we get

u(t) =
∫ 1

0
G(t, s)y(s)ds + ω0(t, u).

Conversely, if u(t) satisfies (2.2), it’s easy to get that u(t) is a solution of (2.1). 2

Lemma 2.2. The function G(t, s) is continuous on [0, 1] × [0, 1] and it satisfies

ρ0g(s) ≤ G(t, s) ≤ g(s), t, s ∈ [0, 1],

where g(s) =
s

1 − α
, ρ0 = αξ.

Proof. The proof of this lemma is easy. So, we omit it. 2

Now we define a cone P on PC[0, 1] and an operator T : P → PC[0, 1] as follows:

P = {u ∈ PC[0, 1] : u(t) ≥ 0, inf
t∈[0,1]

u(t) ≥ ρ‖u‖}, where ρ = min{c0, ρ0}.

Tu(t) =
∫ 1

0
G(t, s)φ(s)f(s, u(s))ds + ω0(t, u).

Obviously, if u ∈ P is a fixed point of T , it is a solution of the problem (1.1).

Lemma 2.3. Assume (C1) − (C4) hold. Then T : P → P is a completely

continuous operator.

Proof. By (C1), (C2) and (C4), we have Tu(t) ≥ 0, u ∈ P. By (C4) and Lemma

2.2, we can get

|Tu(t)| = |
∫ 1

0
G(t, s)φ(s)f(s, u(s))ds + ω0(t, u)|

≤
∫ 1

0
g(s)φ(s)f(s, u(s))ds + Ω(u),

and

inf
t∈[0,1]

Tu(t) = inf
t∈[0,1]

[
∫ 1

0
G(t, s)φ(s)f(s, u(s))ds + ω0(t, u)

]

≥ ρ0

∫ 1

0
g(s)φ(s)f(s, u(s))ds + c0Ω(u)

≥ ρ‖Tu‖.
This shows that T : P → P . By the continuity of f, Ik, Jk, k = 1, 2, · · · , m, we

can easily obtain that T : P → P is continuous. Let S ⊂ P be bounded. Obviously,

T (S) ⊂ P is bounded. For u ∈ S, t, t′ ∈ (tk, tk+1], we have

|Tu(t) − Tu(t′)| ≤ ∫ 1
0 |G(t, s) − G(t′, s)|φ(s)f(s, u(s))ds + |ω0(t, u) − ω0(t

′, u)|
≤ ∫ 1

0 |G(t, s) − G(t′, s)|φ(s)f(s, u(s))ds + |t − t′|
m
∑

k=1
|Jk(u(tk))|.
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By (C1), the uniform continuity of G on [0, 1]×[0, 1], the boundedness of f on [0, 1]×
S and the boundedness of Jk on S, we obtain that T (S) is quasi-equicontinuous on

[0,1]. By [1], T is a compact map. So, T : P → P is completely continuous. 2

In order to obtain our main results, we need the following definitions and theorem.

Definition 2.1. A map φ is said to be a non-negative, continuous and concave

functional on a cone P of a real Banach space E iff φ : P → R+ is continuous and

φ(tx + (1 − t)y) ≥ tφ(x) + (1 − t)φ(y),

for all x, y ∈ P and t ∈ [0, 1].

Definition 2.2. A map Φ is said to be a non-negative, continuous and convex

functional on a cone P of a real Banach space E iff Φ : P → R+is continuous and

Φ(tx + (1 − t)y) ≤ tΦ(x) + (1 − t)Φ(y),

for all x, y ∈ P and t ∈ [0, 1].

Let ϕ and Θ be non-negative, continuous and convex functional on P , Φ be a

non-negative, continuous and concave functional on P , and Ψ be a non-negative

continuous functional on P . Then, for positive numbers a, b, c and d, we define the

following sets:

P (ϕ, d) = {x ∈ P : ϕ(x) < d},

P (ϕ, Φ, b, d) = {x ∈ P : b ≤ Φ(x), ϕ(x) ≤ d},

P (ϕ, Θ, Φ, b, c, d) = {x ∈ P : b ≤ Φ(x), Θ(x) ≤ c, ϕ(x) ≤ d},

R(ϕ, Ψ, a, d) = {x ∈ P : a ≤ Ψ(x), ϕ(x) ≤ d}.

We will use the following fixed point theorem of Avery and Peterson to study the

problem (1.1), (2.1).

Theorem 2.1[25]. Let P be a cone in a real Banach space E. Let ϕ and Θ be

non-negative, continuous and convex functionals on P , Φ be a non-negative, contin-

uous and concave functional on P , and Ψ be a non-negative continuous functional

on P satisfying Ψ(kx) ≤ kΨ(x) for 0 ≤ k ≤ 1, such that for some positive numbers

M and d,

Φ(x) ≤ Ψ(x) and ‖x‖ ≤ Mϕ(x)

for all x ∈ P (ϕ, d). Suppose that

T : P (ϕ, d) → P (ϕ, d)

is completely continuous and there exist positive numbers a, b, c with a < b, such

that the following conditions are satisfied:
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(S1) {x ∈ P (ϕ, Θ, Φ, b, c, d) : Φ(x) > b} 6= ∅ and Φ(Tx) > b for x ∈ P (ϕ, Θ, Φ, b, c, d);

(S2) Φ(Tx) > b for x ∈ P (ϕ, Φ, b, d) with Θ(Tx) > c;

(S3) 0 /∈ R(ϕ, Ψ, a, d) and Ψ(Tx) < a for x ∈ R(ϕ, Ψ, a, d) with Ψ(x) = a.

Then T has at least three fixed points x1, x2, x3 ∈ P (ϕ, d), such that

ϕ(xi) ≤ d, for i = 1, 2, 3,

and

b < Φ(x1), a < Ψ(x2), Φ(x2) < b,

Ψ(x3) < a.

3. Main results

We define a concave function Φ(x) = inf
t∈[0,1]

|x(t)| and convex functions Ψ(x) =

Θ(x) = ϕ(x) = ‖x‖.
Theorem 3.1. Suppose (C1) − (C4) hold. In additions, we assume that there

exist positive constants µ, L, a, b, c, d with a < b <
b

ρ
= c < d, µ > D1 + D2, 0 <

L < ρ(D1 + D3), where D1 =
∫ 1
0 g(s)φ(s)ds, D2, D3 ≥ 0, such that the following

conditions hold:

(A1) f(t, u) ≤ d

µ
, for (t, u) ∈ [0, 1]×[0, d], and ω0(t, u) ≤ D2

µ
d, for u ∈ P, ‖u‖ ≤ d;

(A2) f(t, u) ≥ b

L
, for (t, u) ∈ [0, 1] ×

[

b,
b

ρ

]

, and ω0(t, u) ≥ D3

L
b, for u ∈ P, b ≤

u(t) ≤ b

ρ
, t ∈ [0, 1];

(A3) f(t, u) ≤ a

µ
, for (t, u) ∈ [0, 1]×[0, a], and ω0(t, u) ≤ D2

µ
a, for u ∈ P, ‖u‖ ≤ a.

Then the problem (1.1) has at least two positive solutions when f(t, 0) ≡ 0, t ∈
[0, 1] and at least three positive solutions when f(t, 0) 6≡ 0, t ∈ [0, 1].

Proof. Take u ∈ P (ϕ, d). By assumption (A1), we have

ϕ(Tu) = ‖Tu‖ ≤
∫ 1

0
g(s)φ(s)f(s, u(s))ds +

D2

µ
d

≤ d

µ

∫ 1

0
g(s)φ(s)ds +

D2

µ
d =

D1

µ
d +

D2

µ
d < d.

Thus, T : P (ϕ, d) → P (ϕ, d).

Let’s prove that condition S1 holds.

Take u(t) =
b(ρ + 1)

2ρ
, t ∈ [0, 1]. By simple calculation, we can get that

‖u‖ =
b(ρ + 1)

2ρ
<

b

ρ
= c,
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and

Φ(u) = inf
t∈[0,1]

|u(t)| =
b(ρ + 1)

2ρ
> b.

Therefore,

{u ∈ P (ϕ, Θ, Φ, b, c, d) : b < Φ(u)} 6= ∅.

u ∈ P (ϕ, Θ, Φ, b, c, d) means that b ≤ u(t) ≤ b

ρ
, t ∈ [0, 1]. By (A2), we get

Φ(Tu) = inf
t∈[0,1]

|Tu(t)| ≥ ρ

[

∫ 1

0
g(s)φ(s)f(s, u(s))ds +

b

L
D3

]

≥ ρ
b

L
(D1 + D3) > b.

So, condition S1 holds.

Now we will show that condition S2 holds.

Take u ∈ P (ϕ, Φ, b, d) and ‖Tu‖ >
b

ρ
= c. Considering Tu ∈ P , we get

Φ(Tu) = inf
t∈[0,1]

|Tu(t)| ≥ ρ‖Tu‖ > ρ · b

ρ
= b,

This shows that condition S2 is satisfied.

In the following we will show that the condition S3 is satisfied. Since Ψ(0) =

0, 0 < a, 0 /∈ R(ϕ, Ψ, a, d). Assume that u ∈ R(ϕ, Ψ, a, d) with Ψ(u) = ‖u‖ = a.

Then, by (A3), we have

Ψ(Tu) = ‖Tu(t)‖ ≤
∫ 1

0
g(s)φ(s)f(s, u(s))ds +

a

µ
D2 ≤

a

µ
(D1 + D2) < a.

Thus, condition S3 is satisfied. By Theorem 2.1, we get that the problem (1.1) has

at least three solutions u1, u2, u3 ∈ P satisfying

‖ui‖ ≤ d, i = 1, 2, 3 , and b < inf
t∈[0,1]

|u1(t)|,

a ≤ ‖u2‖, inf
t∈[0,1]

|u2(t)| < b, ‖u3‖ < a.

Obviously, u1(t) > 0, u2(t) > 0, t ∈ [0, 1]. If f(t, 0) 6≡ 0, t ∈ [0, 1], then u = 0

is not a solution of (1.1). So, u3 6= 0. This, together with u3 ∈ P , means that

u3(t) > 0, t ∈ [0, 1]. 2

Example 3.1. Consider the following boundary value problem































u′′(t) + f(t, u(t)) = 0, t ∈ (0, 1) \ {1
8
},

∆u(1
8
) = I1(u(1

8
)),

∆u′(1
8
) = J1(u(1

8
)),

u(0) = 1
4
u(1

4
), u′(1) = 0,

(3.1)
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where

f(t, u) =







































1

4
u2t, t ∈ [0, 1], u ∈

[

0, 1
2

]

,

1

2
u2t(1 − u) + (60 + 2

√
ut)(u − 1

2
), t ∈ [0, 1], u ∈ [1

2
, 1],

30 +
√

ut, t ∈ [0, 1], u ∈ [1, 16],

30 + 4t, t ∈ [0, 1], u ∈ [16,∞).

Corresponding to Theorem 3.1, we take α = ξ =
1

4
, c0 =

1

6
, ρ =

1

16
, µ = 2, D1 =

∫ 1

0
g(s)ds =

2

3
, D2 =

1

3
, D3 = 0, L =

1

30
, I1(ω) =

1

64

√
ω, J1(ω) =

−√
ω

64
, Ω(u) =

3
√

u(1
8
)

128
, and

ω0(t, u) =























3
√

u(1
8
)

128
, t >

1

8
,

(
3

8
+ t)

1

64

√

u(
1

8
), t ≤ 1

8
.

It is easy to check that
1

6
Ω(u) ≤ ω0(t, u) ≤ Ω(u). Let a =

1

2
, b = 1, d = 68. By

simple calculation, we can get that the conditions of Theorem 3.1 are satisfied. So,

the problem (3.1) has at least three solutions u1, u2, u3 ∈ P satisfying

‖ui‖ ≤ 68, i = 1, 2, 3 ,

and

1 < Φ(u1),
1

2
< ‖u2‖, Φ(u2) < 1, ‖u3‖ <

1

2
,

where u1, u2 are positive solutions of (3.1).

Remark. Corresponding to the condition (C3) in [26], we get (d1I + e1N)(ω) =
9

512

√
ω, (d2I + e2N)(ω) =

1

64

√
ω. The problem (3.1) cannot be solved by the The-

orems in [26] because the condition (C3) in [26] is not satisfied. So, our result may

be considered as a complementary result of [26].
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