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Abstract

In this work, we are mainly concerned with the existence of stationary solutions for the gen-
eralized Kadomtsev-Petviashvili equation in bounded domain in R

n

8

<

:

∂3

∂x3
u(x, y) +

∂

∂x
f(u(x, y)) = D

−1

x ∆yu(x, y), in Ω,

D
−1

x u|∂Ω = 0, u|∂Ω = 0,

where Ω ∈ R
n is a bounded domain with smooth boundary ∂Ω. We utilize critical point theory

to establish our main results.
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1 Introduction

In this work, we shall investigate the stationary solutions for the generalized Kadomtsev-Petviashvili

equation in bounded domain in R
n











∂3

∂x3
u(x, y) +

∂

∂x
f(u(x, y)) = D−1

x ∆yu(x, y), in Ω,

D−1
x u|∂Ω = 0, u|∂Ω = 0,

(1.1)

where D−1
x h(x, y) :=

∫ x

−∞ h(s, y)ds denotes the inverse operator, (x, y) := (x, y1, . . . , yn−1) ∈ R ×

R
n−1, n ≥ 2, ∆y := ∂2

∂y2

1

+ ∂2

∂y2

2

+ · · · + ∂2

∂y2

n−1

. In this paper, we utilize variational methods and some

critical point theroems to study the stationary solutions for the generalized Kadomtsev-Petviashvili

equation (1.1).
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Kadomtsev-Petviashvili equation and its generalization appear in many physical progress, for ex-

ample, see [1–11] and references therein. Generally, it reads

∂

∂t
w(t, x, y) +

∂3

∂x3
w(t, x, y) +

∂

∂x
f(w(t, x, y)) = D−1

x ∆yw(t, x, y), (1.2)

where (t, x, y) := (t, x, y1, . . . , yn−1) ∈ R
+ × R × R

n−1, n ≥ 2, D−1
x and ∆y are as in (1.1). A solitary

wave is a solution of the form

w(t, x, y) = u(x − ct, y),

where c > 0 is fixed. Substituting in (1.2), we have,

−cux + uxxx + (f(u))x = D−1
x ∆yu,

or

(−uxx + D−2
x uyy + cu − f(u))x = 0. (1.3)

In [1] and [2], by virtue of the constrained minimization method, De Bouard and Saut obtained the

existence and nonexistence of solitary waves in the cases where power nonlinearities f(u) = up, p =

m/n, m, n are relatively prime, n is odd. In [3, 4], Zou et al. established the existence of nontrivial

solitary waves of problem (1.3) by a linking theorem. Wang and Willem [5] obtained multiple solitary

waves for the generalized Kadomtsev-Petviashvili equation (1.2) in one-dimensional spaces by the

Lyusternik-Schnirelman category theory. In [6], Liang and Su considered that the case that the non-

constant weight function for generalized Kadomtsev-Petviashvili equation, see [6, the problem (P)

and the assumption (Q)]. In [7–9], Xuan dealt with the case where N ≥ 2 and f(u) satisfies some

superlinear conditions. Their main tool in [6–9] is the famous mountain pass theorem.

We also note Fountain and Dual Fountain theorems were established by Bartsch and Willem

[12, 13], and both theorems are effective tools for studying the existence of infinitely many large

energy solutions and small energy solutions. For more details of recent development in the direction,

we refer the reader to [14–19] and references cited therein. Meanwhile, Zou [20] established some

variant fountain theorems and many people utilized these theorems to study nonlinear problems, for

instance, see [21–27] and references therein.

It should be remarked that Chen and Tang [14] investigated the fractional boundary value problem

of the following form











d

dt

(

1

2
0D

−β
t u′(t) +

1

2
tD

−β
T u′(t)

)

+ ∇F (t, u(t)) = 0, a.e. t ∈ [0, T ],

u(0) = u(T ) = 0.
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In this paper, they adopted Fountain and Dual Fountain theorems to obtain the existence of infi-

nite solutions under some adequate conditions. It is no doubt that the results in the literature are

significantly improved.

In [21], by virtue of the variant fountain theorem established in [20], Sun considered the sublinear

Schrödinger-Maxwell equations

{

−∆u + V (x)u + φu = f(x, u), in R
3,

−∆φ = u2, lim|x|→+∞ φ(x) = 0, in R
3.

(1.4)

In that paper, his aim is to study the existence of infinitely many solutions for (1.4) when f(x, u)

satisfies sublinear in u at infinity, see [21, (H2) of Theorem 1.1]. Motivated by paper [21], we also

utilize the variant fountain theorem by [20] to investigate that the existence of infinitely many solutions

for (1.1) with the nonlinearity f growing sublinearly in u, see Theorem 3.4 in Section 3.

2 Preliminaries

For Ω ∈ R
n is a bounded domain with smooth boundary ∂Ω on Y := {gx : g ∈ C∞

0 (Ω)}, we define

the inner product

(u, v) :=

∫

Ω

[

uxvx + D−1
x ∇yu · D−1

x ∇yv
]

dV, (2.1)

where ∇y :=
(

∂
∂y1

, . . . , ∂
∂yn−1

)

, dV = dxdy, and the corresponding norm

‖u‖ :=

(
∫

Ω

[

u2
x + |D−1

x ∇yu|2
]

dV

)
1

2

. (2.2)

A function u : Ω → R belongs to X , if there exists {um}∞m=1 ⊂ Y such that

(1) um → u a.e. on Ω, (2) ‖uj − uk‖ → 0, as j, k → ∞.

Note that the space X with inner product (2.1) and norm (2.2) is a Hilbert space, see [6, Defi-

nition] and [7, P12 and P13]. We know the exponent p := 2(2n−1)
2n−3 > 2 is as critical as the critical

Sobolev exponent p∗ := np
n−p

, i.e., there exists a constant C > 0 such that the estimate

‖u‖Lp(Rn) ≤ C

(
∫

Rn

[

u2
x + |D−1

x ∇yu|2
]

dV

)
1

2

(2.3)

holds for all u ∈ C∞
0 (Rn).

From the interpolation theorem, the boundedness of Ω and estimate (2.3), there is an embedding

theorem about X as follows

Lemma 2.1(see [7, Lemma 1]) The embedding from the space (X, ‖ · ‖) into the space (Lp(Ω), ‖ · ‖p)

is compact for 1 ≤ p < p.
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By Lemma 2.1, there exists τp > 0 such that

‖u‖p ≤ τp‖u‖, p ∈ [1, p), ∀u ∈ X, (2.4)

where ‖u‖p :=
(∫

Ω
|u|pdV

)
1

p .

In what follows, we shall establish the energy functional for problem (1.1). Note that we can

rewrite (1.1) in the following form (see [7, (3) of Page 12]):











−
∂2

∂x2
u(x, y) + D−2

x ∆yu(x, y) = f(u(x, y)), in Ω,

D−1
x u|∂Ω = 0, u|∂Ω = 0.

(2.5)

For each v ∈ X , multiply the both sides of the above equation in (2.5) by v(x, y) and integrate over

Ω to obtain

∫

Ω

(

−
∂2

∂x2
u(x, y)

)

v(x, y)dV +

∫

Ω

(

D−2
x ∆yu(x, y)

)

v(x, y)dV =

∫

Ω

f(u(x, y))v(x, y)dV,

and then we obtain by Green formula and integration by parts,

∫

Ω

∂

∂x
u(x, y) ·

∂

∂x
v(x, y)dV +

∫

Ω

D−1
x ∇yu(x, y) · D−1

x ∇yv(x, y)dV =

∫

Ω

f(u(x, y))v(x, y)dV.

Therefore, on X , define a functional ϕ as

ϕ(u) :=
1

2

∫

Ω

[

u2
x + |D−1

x ∇yu|2
]

dV −

∫

Ω

F (u)dV =
1

2
‖u‖2 − Ψ(u), (2.6)

where F (u) :=
∫ u

0
f(s)ds, Ψ(u) :=

∫

Ω
F (u)dV .

For the nonlinearity f , we always assume that it satisfies the following conditions:

(H1) f ∈ C(R, R), f(0) = 0, and for some 1 < p < p = 2(2n−1)
2n−3 , c0 > 0, there holds

|f(u)| ≤ c0(1 + |u|p−1). (2.7)

Lemma 2.2 Let (H1) holds. Then ϕ ∈ C1(X, R). Moreover,

(Ψ′(u), v) =

∫

Ω

f(u)vdV, (2.8)

(ϕ′(u), v) = (u, v) − (Ψ′(u), v) = (u, v) −

∫

Ω

f(u)vdV, (2.9)

for all u, v ∈ X , and critical points of ϕ on X are weak solutions of (1.1).

Proof. We first verify (2.8) by definition. For any given u ∈ X , define an associated linear operator

J(u) : X → R as follows:

(J(u), v) =

∫

Ω

f(u)vdV, ∀v ∈ X.
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Note that (H1) leads to f ∈ Lq(Ω), where p−1 + q−1 = 1. Indeed, for any u ∈ X , Lemma 2.1 enables

us to find u ∈ Lp(Ω), i.e.,
∫

Ω
|u|pdV < ∞. Hence,

∫

Ω

|f |qdV ≤

∫

Ω

|c0(1 + |u|p−1)|
p

p−1 dV ≤ (2cp
0)

1

p−1

∫

Ω

(1 + |u|p)dV < ∞. (2.10)

By (H1), (2.10), Lemma 2.1 and the Hölder inequality, there holds

|(J(u), v)| ≤

∫

Ω

|f(u)v|dV ≤

(
∫

Ω

|f |qdV

)
1

q
(

∫

Ω

|v|pdV

)
1

p

≤ τp

(
∫

Ω

|f |qdV

)
1

q

‖v‖ < ∞, ∀v ∈ X.

This shows that J(u) is bounded. Combining (H1), (2.6), (2.8), Lemma 2.1 and the mean value

theorem, by Hölder inequality, we have,

|Ψ(u + v) − Ψ(u) − (J(u), v)| =

∣

∣

∣

∣

∫

Ω

[F (u + v) − F (u) − f(u)v]dV

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω

[f(u + θv) − f(u)]vdV

∣

∣

∣

∣

≤

(
∫

Ω

|f(u + θv) − f(u)|qdV

)
1

q
(

∫

Ω

|v|pdV

)
1

p

≤ τp

(
∫

Ω

|f(u + θv) − f(u)|qdV

)
1

q

‖v‖,

(2.11)

where θ = θ(x, y) ∈ (0, 1). Note that

(
∫

Ω

|f(u + θv) − f(u)|qdV

)
1

q

≤

(
∫

Ω

[|f(u + θv)|q + |f(u)|q]dV

)
1

q

< ∞, ∀u, v ∈ X (2.12)

by (H1) and (2.10). Together with (2.11) and (2.12), Lebesgue’s dominated convergence theorem

implies that

|Ψ(u + v) − Ψ(u) − (J(u), v)|

‖v‖
→ 0, as v → 0.

Then by the definition of Fréchet derivatives, (2.8) holds.

Next we prove that Ψ′ is weakly continuous. Suppose that un ⇀ u0 in X , then f(un) → f(u0) in

Lq(Ω) by (H1), (2.10) and (2.12). By Hölder inequality and Lemma 2.1, we get,

‖Ψ′(un) − Ψ′(u0)‖X∗ = sup
‖v‖=1

‖(Ψ′(un) − Ψ′(u0), v)‖

≤ sup
‖v‖=1

(
∫

Ω

|f(un) − f(u0)|
qdV

)
1

q
(

∫

Ω

|v|pdV

)
1

p

≤ τp

(
∫

Ω

|f(un) − f(u0)|
qdV

)
1

q

→ 0, as n → ∞.

This shows that Ψ′ is weakly continuous. Consequently, Ψ′ is continuous. Therefore Ψ ∈ C1(X, R).

Due to the form of ϕ′ in (2.9), ϕ′ is also continuous and hence ϕ ∈ C1(X, R). Furthermore, Ψ′ is

compact by the weak continuity of Ψ′ since X is a Hilbert space.

As we have mentioned, we will utilize the critical point theory to prove our main results. Let us

collect some definitions and lemmas that will be used below. One can refer to [10, 28, 29] for more

details.
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Definition 2.1 Let X be a real Banach space, D an open subset of X . Suppose that a functional

ϕ : D → R is Fréchet differentiable on D. If u0 ∈ D and the Fréchet derivative satisfies ϕ′(u0) = 0,

then we say that u0 is a critical point of the functional ϕ and ϕ(u0) is a critical value of ϕ.

Let C1(X, R) denote the set of functionals that are Fréchet differentiable and their Fréchet deriva-

tives are continuous on X .

Definition 2.2 Let X be a real Banach space and ϕ ∈ C1(X, R). We say that ϕ satisfies the Palais-

Smale condition ((PS) condition for short) if for every sequence {um} ⊂ X such that ϕ(um) is bounded

and ϕ′(um) → 0 as m → ∞, there exists a subsequence of {um} which is convergent in X .

Definition 2.3 Let X be a real Banach space, ϕ ∈ C1(X, R) and c ∈ R. We say that ϕ satisfies (PS)c

condition if the existence of a sequence {um} ⊂ X such that ϕ(um) → c and ϕ′(um) → 0 as m → ∞

lead to c is a critical value of ϕ.

Remark 2.1 It is clear that the (PS) condition implies the (PS)c condition for each c ∈ R.

Lemma 2.3(see [28, Theorem 1.2]) Suppose X is a reflexive Banach space with norm ‖ · ‖, and

let M ⊂ X be a weakly closed subset of X . Assume ϕ : M → R ∪ {+∞} is coercive and weak

(sequentially) lower semi-continuous on M with respect to X , i.e., suppose the following conditions

are fulfilled:

(1) ϕ(u) → ∞ as ‖u‖ → ∞, u ∈ M .

(2) For any u ∈ M , any sequence {um} in M such that um ⇀ u weakly in X , there holds:

ϕ(u) ≤ lim inf
m→∞

ϕ(um).

Then ϕ is bounded from below on M and attains its infimum in M .

Lemma 2.4(see [29, Theorem 9.12]) Let X be an infinite dimensional real Banach space. Let ϕ ∈

C1(X, R) be an even functional which satisfies the (PS) condition, and ϕ(0) = 0. Suppose that

X = Q1

⊕

Q2, where Q1 is infinite dimensional, and ϕ satisfies that

(i) there exists α > 0 and ρ > 0 such that ϕ(u) ≥ α for all u ∈ Q2 with ‖u‖ = ρ,

(ii) For any finite dimensional subspace W ⊂ X , there is R = R(W ) such that ϕ(u) ≤ 0 on W\BR(W ).

Then ϕ has an unbounded sequence of critical values.

As X is a separable Hilbert space, there exist (see [30]) {en}
∞
n=1 ⊂ X and {fn}

∞
n=1 ⊂ X∗ such that

fn(em) = δn,m, X = span{en : n = 1, 2 . . .} and X∗ = spanW∗

{fn : n = 1, 2 . . .}. For j, k ∈ N, denote

Xj := span{ej}, Yk :=
⊕k

j=1 Xj and Zk :=
⊕∞

j=k+1 Xj. Clearly, X =
⊕

j∈N
Xj with dimXj < ∞ for

all j ∈ N.

Lemma 2.5(see [12]) Let X be defined above. Suppose that

(A1) ϕ ∈ C1(X, R) is an even functional.
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If for every k ∈ N, there exist ρk > rk > 0 such that

(A2) ak := maxu∈Yk,‖u‖=ρk
ϕ(u) ≤ 0.

(A3) bk := infu∈Zk,‖u‖=rk
ϕ(u) → ∞ as k → ∞.

(A4) ϕ satisfies the (PS)c condition for all c > 0.

Then ϕ has an unbounded sequence of critical values.

In the following, we shall introduce variant fountain theorems by Zou [20]. Let X and the subspace

Xk, Yk and Zk are defined above. Consider the following C1-functional ϕλ : X → R defined by

ϕλ(u) := A(u) − λB(u), λ ∈ [1, 2]. (2.13)

The following variant fountain theorem was established in [20].

Lemma 2.6 If the functional ϕλ satisfies

(T1) ϕλ maps bounded sets to bounded sets uniformly for λ ∈ [1, 2]. Moreover, ϕλ(−u) = ϕλ(u) for

all (λ, u) ∈ [1, 2] × X ,

(T2) B(u) ≥ 0; B(u) → ∞ as ‖u‖ → ∞ on any finite dimensional subspace of X ,

(T3) There exist ρk > rk > 0 such that

ak(λ) := inf
u∈Zk,‖u‖=ρk

ϕλ(u) ≥ 0 > bk(λ) := max
u∈Yk,‖u‖=rk

ϕλ(u), ∀λ ∈ [1, 2],

dk(λ) := inf
u∈Zk,‖u‖≤ρk

ϕλ(u) → 0 as k → ∞ uniformly for λ ∈ [1, 2].

Then there exist λn → 1, uλn
∈ Yn such that

ϕ′
λn

|Yn
(uλn

) = 0, ϕλn
(uλn

) → ck ∈ [dk(2), bk(1)] as n → ∞.

Particularly, if {uλn
} has a convergent subsequence for every k, then ϕ1 has infinitely many nontrivial

critical points {uk} ∈ X\{0} satisfying ϕ1(uk) → 0− as k → ∞.

3 Main Results

Theorem 3.1 Let p ∈ (1, 2) and (2.7) hold. Then (1.1) has a weak solution.

We adopt Lemma 2.3 to prove Theorem 3.1. We first offer a lemma involving weak lower semi-

continuity.

Lemma 3.1 Let (H1) hold. Then the functional ϕ determined by (2.6) is weak lower semi-continuous

on X .

Proof. We first prove ‖ · ‖ defined by (2.2) is weak lower semi-continuous on X . Indeed, if the claim

is false, there exists a sequence {un} such that

un ⇀ u, weakly in X, ‖u‖ > lim inf
n→∞

‖un‖. (3.1)
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Hence, there is a constant c such that ‖u‖ > c > lim infn→∞ ‖un‖. Consequently, there exists a

subsequence {unk
} ⊂ {un} such that c > ‖unk

‖, k = 1, 2, . . .. From Hahn-Banach theorem, we know

there exists f0 ∈ X∗(the dual space of X) such that ‖f0‖ = 1 and f0(u) = ‖u‖. Therefore,

f0(unk
) ≤ ‖f0‖‖unk

‖ = ‖unk
‖ < c, k = 1, 2, . . . , (3.2)

on the other hand, note that unk
⇀ u, and thus

‖u‖ = f0(u) = lim
k→∞

f0(unk
) ≤ c. (3.3)

That is a contradiction. Secondly, we will discuss Ψ. By Lemma 2.1, there exists u ∈ X such that

uk ⇀ u, weakly in X, uk → u, strongly in Lp(Ω), as k → ∞. (3.4)

By integral mean value theorem, there is a number ξ = ξ(um, u) between um and u, we have

|F (um) − F (u)| =

∣

∣

∣

∣

∫ um

0

f(s)ds −

∫ u

0

f(s)ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ um

u

f(s)ds

∣

∣

∣

∣

= |f(ξ)(um − u)|.

Combining this and Hölder inequality, note that (2.10), we arrive at

|Ψ(um) − Ψ(u)| ≤

∫

Ω

|F (um) − F (u)|dV =

∫

Ω

|f(ξ)(um − u)|dV

≤

(
∫

Ω

|f(ξ)|qdV

)
1

q
(

∫

Ω

|um − u|pdV

)
1

p

→ 0.

(3.5)

Therefore, Ψ(um) → Ψ(u) strongly in X . Hence,

lim inf
m→∞

ϕ(um) = lim inf
m→∞

(

1

2
‖um‖2 − Ψ(um)

)

≥
1

2
‖u‖2 − Ψ(u) = ϕ(u).

This completes the proof.

Proof of Theorem 3.1 The energy space X is a Hilbert space, so is reflexive. We easily verify the

assumptions of Lemma 2.3 are true with M = X . Lemma 3.1 leads to ϕ is weak lower semi-continuous

on X . Next, we will show ϕ is coercive on X . Indeed, by (2.7) and Lemma 2.1, there exists a constant

c1 such that

ϕ(u) =
1

2
‖u‖2 −

∫

Ω

F (u)dV ≥
1

2
‖u‖2 −

∫

Ω

(c0|u| + c1|u|
p)dV

≥
1

2
‖u‖2 − c0τp‖u‖ − c1τ

p
p ‖u‖

p

and thus ϕ(u) → ∞ as ‖u‖ → ∞. Lemma 2.3 implies ϕ can attain its infimum in X , i.e., (1.1) has at

least a weak solution. This completes the proof.

Theorem 3.2 Suppose that (H1) and the following two conditions are satisfied.

(H2) There exists α > 2 such that, for u ∈ R\{0}, there holds 0 < αF (u) ≤ uf(u).

(H3) f(u) is odd about u, i.e., f(u) + f(−u) = 0.
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Then (1.1) has infinitely many weak solutions.

In order to obtain that ϕ satisfies (PS) condition, we need the following lemma. Note that if ϕ

satisfies (PS) condition, then ϕ satisfies (PS)c condition for all c ∈ R by Remark 2.1.

Lemma 3.2 Assume that (H1) and (H2) hold. Then ϕ(u) satisfies (PS) condition.

Proof. Let {uk} be a sequence in X such that {ϕ(uk)} is bounded and ϕ(uk) → 0 as k → ∞. We

first prove {uk} is bounded. From the definition of functional ϕ, there exists C > 0 such that

C ≥ ϕ(uk) =
1

2

∫

Ω

[

u2
kx + |D−1

x ∇yuk|
2
]

dV −

∫

Ω

F (uk)dV

and

(ϕ′(uk), uk) =

∫

Ω

[

u2
kx + |D−1

x ∇yuk|
2
]

dV −

∫

Ω

f(uk)ukdV = o(1)‖uk‖.

Consequently, by (H2), there holds

C −
1

α
o(1)‖uk‖ ≥

(

1

2
−

1

α

)

‖uk‖
2 +

∫

Ω

(

1

α
f(uk)uk − F (uk)

)

dV ≥

(

1

2
−

1

α

)

‖uk‖
2,

which implies {uk} is bounded in X . Going if necessary to a subsequence, we can assume that there

exists u ∈ X such that

uk ⇀ u, weakly in X, uk → u, strongly in Lp(Ω), as k → ∞.

Hence, (ϕ′(uk) − ϕ′(u))(uk − u) → 0, and note that (H1) leads to f ∈ Lq(Ω) (see (2.10)), where

p−1 + q−1 = 1, hence, by Hölder inequality, we get

∫

Ω

(f(uk) − f(u))(uk − u)dV ≤

(
∫

Ω

|f(uk) − f(u)|qdV

)
1

q
(

∫

Ω

|uk − u|pdV

)
1

p

≤

(
∫

Ω

[|f(uk)|q + |f(u)|q]dV

)
1

q
(

∫

Ω

|uk − u|pdV

)
1

p

→ 0.

Therefore,

(ϕ′(uk) − ϕ′(u))(uk − u) = ‖uk − u‖2 −

∫

Ω

(f(uk) − f(u))(uk − u)dV.

So ‖uk − u‖ → 0 as k → ∞, i.e., {uk} converges strongly to u in X . Therefore, ϕ satisfies (PS)

condition.

Proof of Theorem 3.2 If (H2) is satisfied, then we know the following inequalities holds (see [31,

Lemma 3.2] and [32, Lemma 2.2]):

F (u) ≤ F

(

u

|u|

)

|u|α, if 0 < |u| ≤ 1, F (u) ≥ F

(

u

|u|

)

|u|α, if |u| ≥ 1.

It is easy to see that

F (u) ≤ M |u|α, if |u| ≤ 1, F (u) ≥ m|u|α, if |u| ≥ 1, (3.6)
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where M := max|u|=1 F (u) > 0, m := min|u|=1 F (u) > 0 by (H1). Since F (u) − m|u|α is continuous

on [−1, 1], there exists a constant C2 such that

F (u) ≥ m|u|α − C2, u ∈ [−1, 1]. (3.7)

Consequently, the second inequality of (3.6) and (3.7), we get

F (u) ≥ m|u|α − C2, u ∈ R. (3.8)

Choosing Q1 = Yk, Q2 = Zk in Lemma 2.4, we easily find X = Q1

⊕

Q2 and dimQ1 < ∞. In view of

(H1) and (H3), it is obvious ϕ(u) is even and ϕ(0) = 0. By Lemma 3.2, ϕ(u) satisfies (PS) condition.

We first prove ϕ satisfies (i) of Lemma 2.4. For any u ∈ X and ‖u‖ ≤ τ−1
p

α
√

meas(Ω) =⇒ |u| ≤ 1, we

have by the first inequality of (3.6) and Lemma 2.1

∫

Ω

F (u)dV ≤ M

∫

Ω

|u|αdV = M‖u‖α
α ≤ Mτα

p ‖u‖α.

Therefore,

ϕ(u) =
1

2
‖u‖2 −

∫

Ω

F (u)dV ≥
1

2
‖u‖2 − Mτα

p ‖u‖
α, ‖u‖ ≤ τ−1

p
α
√

meas(Ω).

Therefore, we can choose ρ > 0 small enough such that ϕ(u) ≥ β > 0 with ‖u‖ = ρ.

Finally, we show ϕ satisfies (ii) in Lemma 2.4. Let W ⊂ X is a finite dimensional subspace. For

every r ∈ R \ {0} and u ∈ W \ {0} with ‖u‖ = 1, we obtain by (3.8) and Lemma 2.1

ϕ(ru) =
r2

2
−

∫

Ω

F (ru)dV ≤
r2

2
−

∫

Ω

(m|ru|α − C2)dV ≤
r2

2
− mτα

p rα + C2meas(Ω).

Note α > 2, the above inequality leads to there exists r0 such that ‖ru‖ > ρ and ϕ(ru) < 0 for each

r ≥ r0 > 0. Since W is a finite dimensional subspace, there exists R(W ) > 0 such that ϕ(u) ≤ 0 on

W\BR(W ).

Lemma 2.4 yields that ϕ(u) has infinitely many critical points, i.e., (1.1) has infinitely many weak

solutions. This completes the proof.

Theorem 3.3 Let p ∈ (2, p), (2.7), (H2) and (H3) hold. Moreover, the following two conditions are

satisfies:

(H4) there exists positive constants µ ∈ [p, p), ζ1 > 0 and c2 > 0 such that

F (u) ≤ ζ1|u|
µ + c2, ∀u ∈ R.

(H5) there exists positive constants µ′ ∈ (2, p], ζ2 > 0 and c3 > 0 such that

F (u) ≥ ζ2|u|
µ′

− c3, ∀u ∈ R.
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Then (1.1) has infinitely many weak solutions {un} on X for all positive integer n such that ‖un‖ → ∞

as n → ∞.

Proof. (H3), Lemma 2.2 and Lemma 3.2 enable us to obtain that (A1) and (A4) are satisfied.

For any u ∈ Yk, let

‖u‖∗ :=

(
∫

Ω

|u|µ
′

dV

)
1

µ′

(3.9)

and it is easy to verify that ‖ · ‖ defined by (3.9) is a norm of Yk. Since all the norms of a finite

dimensional normed space are equivalent, so there exists positive constant c4 such that c4‖u‖ ≤ ‖u‖∗.

In view of (H5),

ϕ(u) =
1

2
‖u‖2 −

∫

Ω

F (u)dV ≤
1

2
‖u‖2 −

∫

Ω

(ζ2|u|
µ′

− c3)dV

≤
1

2
‖u‖2 − ζ2c

µ′

4 ‖u‖µ′

+ c3 · measΩ.

Since µ′ > 2, then there exists positive constants dk such that

ϕ(u) ≤ 0, for each u ∈ Yk and ‖u‖ ≥ dk. (3.10)

For any u ∈ Zk, let

‖u‖µ :=

(
∫

Ω

|u|µdV

)
1

µ

and βk := sup
u∈Zk,‖u‖=1

‖u‖µ (3.11)

Since X is compactly embedded into Lµ(Ω), there holds (see [10, Lemma 3.8]), βk → 0, as k → ∞.

In view of (H4), we find

ϕ(u) =
1

2
‖u‖2 −

∫

Ω

F (u)dV ≥
1

2
‖u‖2 −

∫

Ω

(ζ1|u|
µ + c2)dV

≥
1

2
‖u‖2 − ζ1β

µ
k ‖u‖

µ − c2 · measΩ.

Choosing rk := 1/βk, we easily rk → ∞ as k → ∞, then

ϕ(u) ≥
1

2
r2
k − ζ1 − c2 · measΩ → ∞, as k → ∞.

Hence, bk := infu∈Zk,‖u‖=rk
ϕ(u) → ∞ as k → ∞. Combining this and (3.10), we can take ρk :=

max{dk, rk + 1}, and thus ak := maxu∈Yk,‖u‖=ρk
ϕ(u) ≤ 0.

Up until now, we have proved the functional ϕ satisfies all the conditions of Lemma 2.5, then ϕ has

an unbounded sequence of critical values cn = ϕ(un). We only need to show ‖un‖ → ∞ as n → ∞.

Indeed, going to a subsequence if necessary, we may assume that there is a constant M > 0 such that

‖un‖ ≤ M. By this, there exist ξn between un and 0, integral mean value theorem and the definition

of ϕ(un) enable us to obtain

F (un) =

∫ un

0

f(s)ds = f(ξn)un, (ϕ′(un), un) = (un, un) −

∫

Ω

f(un)undV = 0. (3.12)
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Consequently,

cn = ϕ(un) =
1

2
‖un‖

2 −

∫

Ω

F (un)dV =
1

2
‖un‖

2 −

∫

Ω

f(ξn)undV

=
1

2

∫

Ω

f(un)undV −

∫

Ω

f(ξn)undV.

Note Ω is a bounded domain, we easily know
∫

Ω f(un)undV and
∫

Ω f(ξn)undV are bounded from the

continuity of f and the boundedness of un and ξn. This contradicts the unboundness of cn. This

completes the proof.

In the following, we shall prove (1.1) has infinitely many weak solutions by variant fountain the-

orems by Zou [20]. To facilitate computations for the following proof, without loss of generality, we

only consider a special case of (H1), i.e., f satisfies the following condition:

(H6) f(u) = µ|u|µ−1, where 1 < µ < 2 is a constant.

Theorem 3.4 Let (H6) holds. Then (1.1) possesses infinitely many nontrivial solutions.

In order to apply Lemma 2.6 to prove the result, we first define the functionals A, B and ϕλ on

our working space X by

A(u) :=
1

2
‖u‖2, B(u) :=

∫

Ω

F (u)dV (3.13)

ϕλ(u) = A(u) − λB(u) =
1

2
‖u‖2 − λ

∫

Ω

F (u)dV (3.14)

for all u ∈ X and λ ∈ [1, 2]. By Lemma 2.2, we know ϕλ ∈ C1(X, R), ∀λ ∈ [1, 2]. Note ϕ1 = ϕ, where

ϕ is determined by (2.6).

The following three lemmas play some important roles in our Theorem 3.4.

Lemma 3.3 Let (H6) holds. Then B(u) ≥ 0. Furthermore, B(u) → ∞ as ‖u‖ → ∞ on any finite

dimensional subspace of X .

Proof. By simple computation, we have

F (u) =

∫ u

0

f(s)ds = |u|µ, ∀u ∈ X.

It yields B(u) ≥ 0. We will prove there exists ε > 0 such that

meas(|u|µ ≥ ε‖u‖µ) ≥ ε, ∀u ∈ X \{0}, ∀X ⊂ X and dimX < ∞. (3.15)

There exists otherwise a sequence {un}n∈N ⊂ X \{0} such that

meas

(

|un|
µ ≥

‖un‖
µ

n

)

<
1

n
, ∀n ∈ N. (3.16)

For each n ∈ N, let vn := un

‖un‖ ∈ X =⇒ ‖vn‖ = 1, ∀n ∈ N and

meas

(

|vn|
µ ≥

1

n

)

<
1

n
, ∀n ∈ N. (3.17)
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Passing to a subsequence if necessary, we may assume vn → v0 in X for some v0 ∈ X since X is of

finite dimension. We easily find ‖v0‖ = 1. Consequently, there exists a constant σ0 > 0 such that

meas(|v0|
µ ≥ σ0) ≥ σ0. (3.18)

Indeed, if not, then we have

meas

(

|v0|
µ ≥

1

n

)

= 0, ∀n ∈ N, (3.19)

which implies

0 ≤

∫

Ω

|v0|
µ+2dV ≤

‖v0‖
2
2

n
≤

τ2
p ‖v0‖

2

n
=

τ2
p

n
→ 0, as n → ∞.

This leads to v0 = 0, contradicting to ‖v0‖ = 1. In view of Lemma 2.1 and the equivalence of any two

norms on X , we have
∫

Ω

|vn − v0|
2dV → 0, as n → ∞. (3.20)

For every n ∈ N, denote

N :=

{

|vn|
µ <

1

n

}

and N
c :=

{

|vn|
µ ≥

1

n

}

,

and N0 := {|v0|
µ ≥ σ0}, where σ0 is defined by (3.18). Then for n large enough, by (3.18), we see

meas(N ∩ N0) ≥ meas(N0) − meas(N c) ≥ σ0 −
1

n
≥

σ0

2
.

Consequently, for n large enough, we arrive at immediately

∫

Ω

|vn − v0|
µdV ≥

∫

N ∩N0

|vn − v0|
µdV

≥
1

2µ

∫

N ∩N0

|v0|
µdV −

∫

N ∩N0

|vn|
µdV

≥

(

σ0

2µ
−

1

n

)

meas(N ∩ N0) ≥
σ2

0

2µ+2
> 0.

This contradicts to (3.20). Therefore, (3.15) holds. For the ε given in (3.15), we let

Nu := {|u|µ ≥ ε‖u‖µ}, ∀u ∈ X \{0}.

Then by (3.15), we find

meas(Nu) ≥ ε, ∀u ∈ X \{0}. (3.21)

Consequently, for any u ∈ X \{0}, we see

B(u) =

∫

Ω

|u|µdV ≥

∫

Nu

ε‖u‖µdV ≥ ε2‖u‖µ,

which implies B(u) → ∞ as ‖u‖ → ∞ on any finite dimensional subspace X ⊂ X .
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Lemma 3.4 Let (H6) holds. Then there exists a sequence ρk → 0+ as k → ∞ such that

ak(λ) := inf
u∈Zk,‖u‖=ρk

ϕλ(u) > 0, ∀k ∈ N,

dk(λ) := inf
u∈Zk,‖u‖≤ρk

ϕλ(u) → 0 as k → ∞ uniformly for λ ∈ [1, 2],

where Zk :=
⊕∞

j=k Xj = span{ek, . . .} for any k ∈ N.

Proof. By the definition of ϕλ and λ ∈ [1, 2], we have

ϕλ(u) ≥
1

2
‖u‖2 − 2

∫

Ω

|u|µdV =
1

2
‖u‖2 − 2‖u‖µ

µ, ∀(λ, u) ∈ [1, 2]× X. (3.22)

Let

lk := sup
u∈Zk,‖u‖=1

‖u‖µ, ∀k ∈ N. (3.23)

Since X is compactly embedded into Lµ(Ω), there holds (see [10, Lemma 3.8]),

lk → 0, as k → ∞.

Combining (3.22) and (3.23), we get

ϕλ(u) ≥
1

2
‖u‖2 − 2‖u‖µ

µ ≥
1

2
‖u‖2 − 2lµk‖u‖

µ, ∀(λ, u) ∈ [1, 2]× Zk. (3.24)

For every k ∈ N, we can choose

ρk := 8
1

2−µ l
µ

2−µ

k ,

then ρk → 0+, as k → ∞. Since µ ∈ (1, 2), we have by direct computation

ak(λ) := inf
u∈Zk,‖u‖=ρk

ϕλ(u) ≥
ρ2

k

4
> 0, ∀k ∈ N.

Besides, for each k ∈ N, (3.24) enables us to obtain

ϕλ(u) ≥ −2lµkρµ
k , ∀λ ∈ [1, 2] and u ∈ Zk with ‖u‖ ≤ ρk.

Therefore,

−2lµkρµ
k ≤ inf

u∈Zk,‖u‖≤ρk

ϕλ(u) ≤ 0, ∀λ ∈ [1, 2] and k ∈ N.

Since lk → 0, ρk → 0+, as k → ∞, we find

dk(λ) := inf
u∈Zk,‖u‖≤ρk

ϕλ(u) → 0 as k → ∞ uniformly for λ ∈ [1, 2].

Lemma 3.5 Let (H6) holds. Then for the sequence {ρk}k∈N obtained in Lemma 2.5, there exists

0 < rk < ρk for each k ∈ N such that

bk(λ) := max
u∈Yk,‖u‖=rk

ϕλ(u) < 0, ∀λ ∈ [1, 2], k ∈ N,
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where Yk :=
⊕k

j=1 Xj = span{e1, . . . , ek}.

Proof. Note Yk is finite dimensional for all k ∈ N. Then by (3.15), there exists a constant εk > 0

such that

meas(N k
u ) ≥ εk, ∀u ∈ Yk\{0}, (3.25)

where N k
u := {|u|µ ≥ εk‖u‖

µ}, ∀k ∈ N and u ∈ Yk\{0}. Combining this, we have

ϕλ(u) ≤
1

2
‖u‖2 −

∫

Ω

|u|µdV ≤
1

2
‖u‖2 −

∫

N k
u

εk‖u‖
µdV

≤
1

2
‖u‖2 − εk‖u‖

µ · meas(N k
u ) ≤

1

2
‖u‖2 − ε2

k‖u‖
µ ≤ −

1

2
‖u‖2

(3.26)

for all u ∈ Yk with ‖u‖ ≤ ε
2

2−µ

k . If we take

0 < rk < min{ρk, ε
2

2−µ

k }, ∀k ∈ N,

(3.26) leads to

bk(λ) := max
u∈Yk,‖u‖=rk

ϕλ(u) ≤ −
r2
k

2
< 0, ∀λ ∈ [1, 2], k ∈ N.

Proof of Theorem 3.4 Clearly, ϕλ(u) maps bounded sets to bounded sets uniformly for λ ∈ [1, 2]

and ϕλ(−u) = ϕλ(u). Thus (T1) of Lemma 2.6 holds. Lemma 3.3-Lemma 3.5 imply (T2) and (T3)

of Lemma 2.6 are satisfied. Therefore, by Lemma 2.6, for each k ∈ N, there exists λn → 1, uλn
∈ Yn

such that

ϕ′
λn

|Yn
(uλn

) = 0, ϕλn
(uλn

) → ck ∈ [dk(2), bk(1)] as n → ∞. (3.27)

We claim {uλn
} obtained in (3.27) has a strong convergent subsequence in X . For the sake of notational

simplicity, in what follows, we always set un = uλn
. Indeed,

‖un‖
2 = 2ϕλn

(un) + 2λn

∫

Ω

|un|
µdV ≤ C0 + 4‖u‖µ

µ ≤ C0 + 4τµ
p ‖u‖

µ

for some C0 > 0. This implies {un} is bounded in X since µ ∈ (1, 2). Next, We show {un} has a

strong convergent subsequence in X . Consequently, without loss of generality, we may assume

un ⇀ u0, as n → ∞ (3.28)

for some u0 ∈ X . In view of Lemma 2.1, un → u0 in Lµ(Ω). By (2.6) and (3.14), we find

‖un − u0‖
2 = (ϕ′

λn
(un) − ϕ′

1(u0), un − u0) +

∫

Ω

(λnf(un) − f(u0))(un − u0)dV.

It is clear that

(ϕ′
λn

(un) − ϕ′
1(u0), un − u0) → 0, as n → ∞.
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On the other hand, Hölder inequality and un → u0 in Lµ(Ω) enable us to find

∫

Ω

(λnf(un) − f(u0))(un − u0)dV ≤ µ

∫

Ω

(λn|un|
µ−1 + |u0|

µ−1)|un − u0|dV

≤ µ

[

2

(
∫

Ω

|un|
µdV

)

µ−1

µ

+

(
∫

Ω

|u0|
µdV

)

µ−1

µ

]

(
∫

Ω

|un − u0|
µdV

)
1

µ

→ 0, as n → ∞.

Hence un → u0 in X . Therefore, the claim above is true.

Nowadays, from the last assertion of Lemma 2.6, we know ϕ = ϕ1 has infinitely many nontrivial

critical points. Therefore, (1.1) has infinitely many nontrivial solutions.

Acknowledgments. Thank you for the referee’s useful comments and suggestions for our manuscript.

We are grateful to Prof. Zhilin Yang for his careful reading and for helpful remarks.

References

[1] De Bouard, A., & Saut, J. C., Sur les ondes solitarires des equations de Kadomtsev-Petviashvili,

C. R. Acad. Sciences Paris, 320 (1995) 315-328.

[2] De Bouard, A., & Saut, J. C., Solitary waves of generalized Kadomtsev-Petviashvili equations,

Ann. Inst. H. Poincare Anal. Non Lineaire, 14 (1997) 211-236.

[3] X. He, W. Zou, Nontrivial solitary waves to the generalized Kadomtsev-Petviashvili equations,

Appl. Math. Comput. 197 (2008) 858-863.

[4] W. Zou, Solitary waves of the generalized Kadomtsev-Petviashvili equations, Appl. Math. Lett.

15 (2002) 35-39.

[5] Z. Wang, M. Willem, A multiplicity result for the generaligned Kadomtsev-Petviashvili equation,

Topol. Methods Nonlinear Anal. 7 (1996) 261-270.

[6] Z. Liang, J. Su, Existence of solitary waves to a generalized Kadomtsev-Petviashvili equation,

Acta Mathematica Scientia 2012, 32B(3): 1149-1156.

[7] B. Xuan, Multiple stationary solutions to GKP equation in a bounded domain, Bolet́ın de
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