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1. Introduction and main results

A concept of the separability was introduced in the fundamental paper [1]. The Sturm-
Liouville’s operator

Jy = −y′′ + q(x)y, x ∈ (a,+∞),

is called separable [1] in L2(a,+∞), if y, −y′′ + qy ∈ L2(a,+∞) imply −y′′, qy ∈
L2(a,+∞). From this it follows that the separability of J is equivalent to the existence
of the estimate

‖y′′‖L2(a,+∞) + ‖qy‖L2(a,+∞) ≤ c
(

‖Jy‖L2(a,+∞) + ‖y‖L2(a,+∞)

)

, y ∈ D(J), (1.1)

where D(J) is the domain of J . In [1] (see also [2, 3]) some criteria of the separability
depended on a behavior q and its derivatives has been obtained for J. Moreover, an
example of non-separable operator J with non-smooth potential q was shown in this
papers. Without differentiability condition on function q the sufficient conditions for
the separability of J has been obtained in [4, 5]. In [6,7] so-called Localization Principle
of the proof for the separability of higher order binomial elliptic operators was developed
in Hilbert space. In [8,9] it was shown that local integrability and semiboundedness
from below of q are enough for separability of J in L1(−∞,+∞). Valuation method of
Green’s functions [1-3,8,9] (see also [10]), parametrix method [4,5], as well as method
of local estimates for the resolvents of some regular operators [6, 7] have been used in
these works.

Sufficient conditions of the separability for the Sturm-Liouville’s operator

y′′ +Q(x)y

have been obtained in [11-15], where Q is an operator. A number of works were devoted
to the separation problem for the general elliptic, hyperbolic and mixed-type operators.

An application of the separability estimate (1.1) in the spectral theory of J has
been shown in [15-18], and it allows us to prove an existence and a smoothness of
solutions of nonlinear differential equations in unbounded domains [11, 17-20]. Brown
[21] has shown that certain properties of positive solutions of disconjugate second
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order differential expressions imply the separation. The connection of separation with
concrete physical problems has been noted in [22].

We denote L2 := L2(R), R = (−∞,+∞), the space of square integrable functions.
Let l is a closure in L2 of the expression l0y = −y′′ + r(x)y′ + s(x)ȳ′ defined in the set
C∞

0 (R) of all infinitely differentiable and compactly sapported functions. Here r and s
are complex - valued functions, and ȳ is the complex conjugate to y.

In this report we investigate some problems for the operator l. Although the operator
l, similarly to the Sturm-Liouville operator J , is a singular differential operator of
second order, their properties are different. The theory of the Sturm-Liouville operator
J , in contrast to the operator l, developing a long time, while the idea of research is
often based on the positivity of the potential q(x) (see, eg, [1-20]). Because of the
coefficients r and s, are the methods developed for the Sturm-Liouville problems are
often not applicable to the study of the operator l. The spectral properties for self-
adjoint singular differential operators of second order, without the free term, have been
to a certain extent investigated; a review of literature can be found in [23, 24]. Note
that the differential operator l is used, in particular, in the oscillatory processes in the
medium with resistance depended on velocity [25, pp. 111-116].

The operator l is said to be separable in L2 if the following estimate holds:

‖y′′‖2 + ‖ry′‖2 + ‖sȳ′‖2 ≤ c (‖ly‖2 + ‖y‖2) , y ∈ D(l),

where ‖·‖2 is the L2- norm. In the present communication the sufficient conditions for
the invertibility and separability of the differential operator l are obtained. Moreover,
spectral and approximate results for the inverse operator l−1 are achieved. Using a sep-
aration theorem, which is obtained for the linear case, the solvability of the degenerate
nonlinear second order differential equation −y′′ + r(x, y)y′ = F (x ∈ R) is proved.

Let’s consider the degenerate differential equation

ly = −y′′ + r(x)y′ + s(x)ȳ′ = f. (1.2)

The function y ∈ L2 is called a solution of (1.2) if there exists a sequence {yn}+∞
n=1 such

that ‖yn − y‖2 → 0, ‖lyn − f‖2 → 0 as n → +∞. If the operator l is separable, then
the solution y of (1.2) belongs to the weighted Sobolev space W 2

2 (R, |r|+ |s|) with the
norm ‖y′′‖2 + ‖(|r| + |s|)y′‖2. So, the study of the qualitative behavior of solutions of
(1.2) and spectral and approximative properties of l can be reduced to the investigation
of embedding W 2

2 (R, |r| + |s|) →֒ L2.

We denote

αg,h(t) = ‖g‖L2(0,t) ‖1/h‖L2(t,+∞) (t > 0), βg,h(τ) = ‖g‖L2(τ,0) ‖1/h‖L2(−∞,τ) (τ < 0),

γg,h = max

(

sup
t>0

αg,h(t), sup
τ<0

βg,h(τ)

)

,

where g and h are given functions. By C
(1)
loc (R) we denote the set of functions f such

that ψf ∈ C(1)(R) for all ψ ∈ C∞
0 (R).

Theorem 1. Let functions r and s satisfy the conditions

r, s ∈ C
(1)
loc (R), Re r − |s| ≥ δ > 0, γ1,Re r <∞. (1.3)
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Then l is invertible and l−1 is defined in all L2.

Theorem 2. Assume that functions r and s satisfy the conditions











r, s ∈ C
(1)
loc (R), Re r − ρ[|Im r| + |s|] ≥ δ > 0, γ1,Re r <∞, 1 < ρ < 2,

c−1 ≤ Re r(x)
Re r(η)

≤ c at |x− η| ≤ 1, c > 1.

(1.4)

Then for y ∈ D(l) the estimate

‖y′′‖2 + ‖ry′‖2 + ‖sȳ′‖2 ≤ cl ‖ly‖2 (1.5)

holds, i.e. the operator l is separable in L2.

We use the statement of Theorem 2 for proof of the following Theorems 3-5.

Theorem 3. Assume that functions r and s satisfy (1.4) and let lim
t→+∞

α1,Re r(t) = 0,

lim
τ→−∞

β1,Re r(τ) = 0. Then l−1 is completely continuous in L2.

We assume that the conditions of Theorem 3 hold, and consider a set

M = {y ∈ L2 : ‖ly‖2 ≤ 1} .
Let

dk = inf
Σk⊂{Σk}

sup
y∈M

inf
w∈Σk

‖y − w‖2 (k = 0, 1, 2, ...)

be the Kolmogorov’s widths of the set M in L2. Here {Σk} is a set of all subspaces
Σk of L2 whose dimensions are not greater than k. Through N2(λ) denote the number
of widths dk which are not smaller than a given positive number λ. Estimates of the
width’s distribution function N2(λ) are important in the approximation problems of
solutions of the equation ly = f . The following statement holds.

Theorem 4. Assume that the conditions of Theorem 3 be fulfilled, and let a function
q satisfy γq,Re r <∞. Then the following estimates hold:

c1λ
−2µ

{

x : |q(x)| ≤ c−1
2 λ−1

}

≤ N2(λ) ≤ c3λ
−2µ

{

x : |q(x)| ≤ c2λ
−1

}

,

where µ is a Lebesgue measure.

Example. Assume that r = (1 + x2)β (β > 0) and let s = 0. Then the conditions of
Theorem 2 are satisfied if β ≥ 1/2. If β > 1/2, then the conditions of Theorem 4 are
satisfied and the following estimates hold:

c4λ
−2β+3
2(2β−1) ≤ N2(λ) ≤ c5λ

−2β+3
2(2β−1) .

Consider the following nonlinear equation

Ly = −y′′ + [r(x, y)]y′ = f(x), (1.6)

where x ∈ R, r is a real-valued function and f ∈ L2.

A function y ∈ L2 is called a solution of equation (1.6), if there exists a se-
quence of twice continuously differentiable functions {yn}∞n=1 such that ‖θ(yn − y)‖2 →
0, ‖θ(Lyn − f)‖2 → 0 as n→ ∞ for any θ ∈ C∞

0 (R).
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Theorem 5. Let the function r be continuously differentiable with respect to both
arguments and satisfy the following conditions

r ≥ δ0
√

1 + x2 (δ0 > 0), sup
x,η∈R: |x−η|≤1

sup
A>0

sup
|C1|≤A,|C2|≤A,|C1−C2|≤A

r(x, C1)

r(η, C2)
<∞.

(1.7)
Then there exists a solution y of (1.6), and

‖y′′‖2 + ‖[r(·, y)]y′‖2 <∞. (1.8)

2. Auxiliary statements

The next statement is a corollary of the well known Muckenhoupt’s inequality [26].

Lemma 2.1. Let functions g and h such that γg,h < ∞. Then for all y ∈ C∞
0 (R) the

following inequality holds:

∞̂

−∞

|g(x)y(x)|2dx ≤ C

∞̂

−∞

|h(x)y′(x)|2dx. (2.1)

Moreover, if C is a smallest constant for which estimate (2.1) holds, then γg,h ≤ C ≤
2γg,h.

The following lemma is a particular case of Theorem 2.2 [23].

Lemma 2.2. Let the given function h satisfy conditions

lim
x→+∞

√
x





∞̂

x

h−2(t)dt





1
2

= 0,

lim
x→−∞

√

|x|





x
ˆ

−∞

h−2(t)dt





1
2

= 0.

Then the set

FK =







y : y ∈ C∞
0 (R),

+∞
ˆ

−∞

|h(t)y′(t)|2dt ≤ K







, K > 0,

is a relatively compact in L2(R).

Denote by L a closure in L2-norm of the differential expression

L0z = −z′ + rz + sz̄ (2.2)

defined on the set C∞
0 (R).

Lemma 2.3. Assume that functions r and s satisfy condition (1.3). Then the operator
L is boundedly invertible in L2.
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Proof . Let Lλ = L + λE, where λ ≥ 0, and E be the identity map of L2 to itself.
Note that L is separable if and only if Lλ = L+ λE is separable for some λ. If z is a
continuously differentiate function with a compact support, then

(Lλz, z) = −
ˆ

R

z′z̄dx+

ˆ

R

[(r + λ)|z|2 + sz̄2]dx. (2.3)

But

T := −
ˆ

R

z′z̄dx =

ˆ

R

zz̄′dx = −T̄ .

Therefore ReT = 0 and from (2.3) it follows that

Re (Lλz, z) ≥ c

ˆ

R

[Re r + λ− |s|]|z|2dx. (2.4)

We estimate the left-hand side of inequality (2.4) by using the Holder’s inequality.
Then by (1.3) we have ‖Lλz‖2 ≥ δ ‖z‖2 . This estimate implies that Lλ is invertible.
Let us proof that L−1

λ is defined in all L2. Assume the contrary. Let R(Lλ) 6= L2. Then
there exists a non-zero element z0 ∈ L2 such that z0 ⊥ R(Lλ). According to operator’s
theory z0 satisfies the equality

L∗
λz0 := z

′

0 + (r̄ + λ)z0 + sz̄0 = 0, (2.5)

where L∗
λ is an adjoint operator.

Let θ ∈ C∞
0 (R) is a real function. Denote ψ = θz0. From (2.5) it follows that

z0 ∈W 1
2,loc(R), then ψ ∈ D(L∗

λ). Using (2.5), we get L∗
λψ = θ′z0. Hence

(L∗
λψ, ψ) =

ˆ

R

θ′θ|z0|2dx. (2.6)

On the other hand using the expression L∗
λψ we have

Re (L∗
λψ, ψ) =

ˆ

R

θ2[Re (r̄ + λ)|z0|2 +Re (sz̄2
0)]dx ≥

≥
ˆ

R

θ2[Re r̄ + λ− |s|]|z0|2dx.

Hence by (2.6) the following estimate

δ

ˆ

R

θ2|z0|2dx ≤
ˆ

R

θ′θ|z0|2dx (2.7)

holds. Choose the function θ such that

θ(x) =











1, |x| ≤ ξ

0, |x| ≥ ξ + 1,
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0 ≤ θ ≤ 1, |θ′| ≤ C. Here ξ > 0. Then it follows from (2.7)

δ

ξ+1
ˆ

−ξ−1

θ2|z0|2dx ≤ C





−ξ
ˆ

−ξ−1

|z0|2dx+

ξ+1
ˆ

ξ

|z0|2dx



 .

Since z0 ∈ L2, passing to the limit as ξ → +∞ in the last inequality, we have ‖z0‖2 = 0.
Then z0 = 0. We obtain the contradiction, which gives that R(Lλ) = L2. The lemma
is proved. 2

Lemma 2.4. Assume that functions r and s satisfy condition (1.4). Then L is sepa-
rable in L2 and for z ∈ D(L) the following estimate holds:

‖z′‖2 + ‖rz‖2 + ‖sz̄‖2 ≤ c ‖Lz‖2 . (2.8)

Proof. From inequality (2.4) it follows that

∥

∥

∥

√

Re r(·) + λz
∥

∥

∥

2
≤ c1

∥

∥

∥

∥

∥

1
√

Re r(·) + λ
Lλz

∥

∥

∥

∥

∥

2

. (2.9)

It is easy to show that (2.9) holds for all z from D(Lλ).

Let ∆j = (j − 1, j + 1) (j ∈ Z) and let {ϕj}+∞
j=−∞ be a sequence of functions from

C∞
0 (∆j), such that

0 ≤ ϕj ≤ 1,
+∞
∑

j=−∞

ϕ2
j (x) = 1.

We continue r(x) and s(x) from ∆j to R so that its continuations rj(x) and sj(x) are
bounded and periodic functions with period 2. Denote by Lλ,j the closure in L2(R)
of the differential operator −z′ + [rj(x) + λ]z + sj(x)z̄ defined on C∞

0 (R). Using the
method which was applied for Lλ one can proof that Lλ,j are invertible and L−1

λ,j are
defined in all L2. In addition, the following inequality

∥

∥

∥
(Re rj + λ)

1
2z

∥

∥

∥

2
≤ c2

∥

∥

∥
(Re rj + λ)−

1
2Lλ,jz

∥

∥

∥

2
, z ∈ D(Lλ,j), (2.10)

holds. From estimate (2.10) by (1.4) it follows

‖Lλ,jz‖2 ≥ c3 sup
x∈∆j

[Re rj(x) + λ] ‖z‖2 , z ∈ D(Lλ,j). (2.11)

Let us introduce the operators Bλ and Mλ:

Bλf =

+∞
∑

j=−∞

ϕ′
j(x)L

−1
λ,jϕjf, Mλf =

+∞
∑

j=−∞

ϕj(x)L
−1
λ,jϕjf.

At any point x ∈ R the sums of the right-hand side in these terms contain no more
than two summands, therefore Bλ and Mλ is defined on all L2. It is easy to show that

LλMλ = E +Bλ. (2.12)

Using (2.11) and properties of ϕj (j ∈ Z) we find that lim
λ→+∞

‖Bλ‖ = 0, hence there

exists a number λ0 such that ‖Bλ‖ ≤ 0.5 for all λ ≥ λ0. Then it follows from (2.12)

L−1
λ = Mλ(E +Bλ)

−1, λ ≥ λ0. (2.13)
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Using (2.13) and properties of ϕj (j ∈ Z) we have
∥

∥(Re r + λ)L−1
λ f

∥

∥

2
≤ c4 sup

j∈Z

∥

∥(Re rj + λ)L−1
λ,j

∥

∥

L2→L2
‖f‖2 . (2.14)

Further, (1.4) and (2.11) imply that

sup
j∈Z

∥

∥(Re rj + λ)L−1
λ,jF

∥

∥

L2(R)
≤ c5

sup
x∈∆j

[Re r(x) + λ]

inf
t∈∆j

[Re r(t) + λ]
‖F‖L2(R) ≤

≤ c5 sup
x,z∈R:|x−z|≤2

Re r(x) + λ

Re r(z) + λ
‖F‖L2(R) ≤ c6 ‖F‖L2(R) .

From the last inequalities and (2.14) we obtain ‖(Re r + λ)z‖2 ≤ c7 ‖Lλz‖2 , z ∈
D(Lλ), therefore it follows from condition (1.4)

‖z′‖2 + ‖(r + λ)z‖2 + ‖sz̄‖2 ≤ c8 ‖Lλz‖2 .

When λ = 0 from this inequality we have estimate (2.8). The lemma is proved. 2

Lemma 2.5. Assume that functions r and s satisfy condition (1.3). Then for y ∈ D(l)
the estimate

‖y′‖2 + ‖y‖2 ≤ c ‖ly‖2 . (2.15)

holds.

Proof. Let y ∈ C∞
0 (R). Integrating by parts, we have

(ly, y′) = −
ˆ

R

y′′ȳ′dx+

ˆ

R

[r(x)|y′|2 + s(x)(ȳ′)2]dx. (2.16)

Since

A := −
ˆ

R

y′′ȳ′dx =

ˆ

R

y′ȳ′′dx = −Ā,

we see Re A = 0. Therefore, it follows from (2.16)

Re (ly, y′) ≥
ˆ

R

[Re r − |s|]|y′|2dx ≥ δ ‖y′‖2 .

Hence, using the Holder’s inequality, the condition γ1,Re r < ∞ in (1.3) and Lemma
2.1 we obtain (2.15) for any y ∈ C∞

0 (R). If y is an arbitrary element of D(l), then
there exists a sequence {yn}∞n=1 ⊂ C∞

0 (R) such that ‖yn − y‖2 → 0, ‖lyn − ly‖2 → 0 as
n→ ∞. The estimate (2.15) holds for yn. From (2.15) passing to the limit as n→ ∞
we obtain the same estimate for y. The lemma is proved. 2

A function y ∈ L2 is called a solution of the equation

ly ≡ −y′′ + r(x)y′ + s(x)ȳ′ = f, f ∈ L2, (2.17)

if there exists a sequence {yn}∞n=1 ⊂ C∞
0 (R) such that ‖yn − y‖2 → 0, ‖lyn − f‖2 → 0,

n→ ∞.

Lemma 2.6. If junctions r and s satisfy condition (1.3), then the equation (2.17) has
a unique solution.
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Proof. From (2.15) it follows that the solution y of (2.17) is unique and belongs to
W 1

2 (R). Lemma 2.3 shows that L−1 is defined in all L2. Then by the construction
(2.17) is solvable. The proof is complete. 2

3. Proofs of Theorems 1-4

Proof of Theorem 1. From (1.3) and Lemma 2.6 we obtain that l is invertible and
l−1 is defined in all L2. 2

Proof of Theorem 2. From Lemma 2.4 it follows that L is separated in L2 under
condition (1.4). And consequently, by construction ly ≡ −y′′ + r(x)y′ + s(x)ȳ′ is
separated in L2 and the estimate (1.5) holds. The theorem is proved. 2

Proof of Theorem 3. The estimate (1.5) shows that l−1 maps L2 into space W̃ 2
2 (R)

with the norm ‖y′′‖2 + ‖ry′‖2 + ‖sȳ′‖2 + ‖y‖2. By condition of the theorem Lemma 2.2

implies that W̃ 2
2 (R) is compactly embedded into L2. The proof is complete. 2

Proof of Theorem 4. By Lemma 2.1 Theorem 2 implies that ‖y′′‖2 + ‖qy‖2 ≤
c ‖ly‖2 , y ∈ D(l). Then Theorem 1 [27] gives the estimates in Theorem 4. 2

Proof of Theorem 5. Let ǫ and A be positive numbers. We denote

SA =
{

z ∈W 1
2 (R) : ‖z‖W 1

2 (R) ≤ A
}

.

Let ν be an arbitrary element of SA. Consider the following linear “perturbed” equation

l0,ν,ǫy ≡ −y′′ + [r(x, ν(x)) + ǫ(1 + x2)2]y′ = f(x). (3.1)

Denote by lν,ǫ the minimal closed operator in L2 generated by expression l0,ν,ǫy. Since

rǫ(x) := r(x, ν(x)) + ǫ(1 + x2)2 ≥ 1 + ǫ(1 + x2)2,

the function rǫ(x) satisfies condition (1.3). Further, if |x− η| ≤ 1 (x, z ∈ R), then for
ν ∈ SA we have

|ν(x) − ν(η)| ≤ |x− η| ‖ν ′‖p ≤ |x− η| ‖ν‖W 1
2 (R) ≤ A. (3.2)

It is easy to verify that

sup
x,η∈R:|x−η|≤1

(1 + x2)2

(1 + η2)2
≤ 9.

Now we assume that ν(x) = C1, ν(η) = C2. Then by (1.7) and (3.2) we obtain

sup
x,η∈R:|x−η|≤1

rǫ(x)

rǫ(η)
≤ sup

x,η∈R:|x−η|≤1

sup
A>0

sup
|C1|≤A, |C2|≤A,|C1−C2|≤A

r(x, C1)

r(η, C2)
+ 9ε <∞.

Thus the coefficient rǫ(x) in (3.1) satisfies the conditions of Theorem 2. Therefore,
(3.1) has a unique solution y and for y the estimate

‖y′′‖2 +
∥

∥[r(·, ν(·)) + ǫ(1 + x2)2]y′
∥

∥

2
≤ C3 ‖f‖2 (3.3)

holds (i.e. an operator lν,ǫ is separated). By (1.7) and (2.1)

‖y‖2 ≤ C0 ‖ry′‖2 ,
∥

∥(1 + x2)y
∥

∥

2
≤ C4

∥

∥(1 + x2)2y′
∥

∥

2
. (3.4)
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Taking into account (3.4) from (3.3) we have

‖y′′‖2 +
1

2

∥

∥(1 + x2)2y′
∥

∥

2
+

1

2C0
‖y‖2 +

ǫ

C4

∥

∥(1 + x2)y
∥

∥

2
≤ C3 ‖f‖2 .

Then for some C5 > 0 the following estimate

‖y‖W := ‖y′′‖2 +
∥

∥(1 + x2)2y′
∥

∥

2
+

∥

∥[1 + ǫ(1 + x2)]y
∥

∥

2
≤ C5 ‖f‖2 (3.5)

holds. We choose A = C5 ‖f‖2, and denote P (ν, ǫ) := L−1
ν,ǫf . From estimate (3.5) it

follows that the operator P (ν, ǫ) maps SA ⊂ W 1
2 (R) to itself. Moreover, P (ν, ǫ) maps

SA into the set

QA = {y : ‖y′′‖2 +
∥

∥(1 + x2)2y′
∥

∥

2
+

∥

∥[1 + ǫ(1 + x2)]y
∥

∥

2
≤ C5 ‖f‖2}.

QA is the compact in Sobolcv’s space W 1
2 (R). Indeed, if y ∈ QA, h 6= 0 and N > 0,

then the following relations hold:

‖y(· + h) − y(·)‖2
W 1

2 (R) =

+∞
ˆ

−∞

[|y′(t+ h) − y′(t)|2 + |y(t+ h) − y(t)|2]dt =

=

+∞
ˆ

−∞







∣

∣

∣

∣

∣

∣

t+h
ˆ

t

y′′(η)dη

∣

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

∣

t+h
ˆ

t

y′(η)dη

∣

∣

∣

∣

∣

∣

2





dt ≤

≤ |h|
+∞
ˆ

−∞





t+h
ˆ

t

|y′′(η)|2dη +

t+h
ˆ

t

|y′(η)|2dη



 dt =

= |h|2
+∞
ˆ

−∞

[

|y′′(η)|2 + |y′(η)|2
]

dη ≤ C6 ‖f‖2
2 |h|2, (3.6)

‖y‖2
W 1

2 (R\[−N,N ]) =

ˆ

|η|≥N

[

|y′(η)|2 + |y(η)|2
]

dη ≤

≤
ˆ

|η|≥N

(1 + η2)−1
[

|y′′(η)|2 + (1 + η2)2|y′(η)|2 + (1 + η2)|y(η)|2
]

dη ≤

≤ C7 ‖f‖2
2 (1 +N2)−1. (3.7)

Expressions in the right-hand side of (3.6) and (3.7) tend to zero as h → 0 and as
N → +∞, respectively. Then by Kolmogorov-Frechct’s criterion the set QA is compact
in W 1

2 (R). Hence P (ν, ǫ) is a compact operator.
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Let us show that P (ν, ǫ) is continuous with respect to ν in SA. Let {νn} ⊂ SA

be a sequence such that ‖νn − ν‖W 1
2 (R) → 0 as n → ∞, and yn and y such that

Lν,ǫy = f, Lνn,ǫyn = f . Then it is enough to show that the sequence {yn} converges
to y in W 1

2 (R) - norm as n→ ∞. We have

P (νn, ǫ) − P (ν, ǫ) = yn − y = L−1
νn,ǫ[r(x, νn(x)) − r(x, ν(x))]y′n.

The functions ν(x) and νn(x) (n = 1, 2, ...) are continuous. Then by conditions of the
theorem the difference r(x, νn(x)) − r(x, ν(x)) is also continuous with respect to x.
Hence for each finite interval [−a, a], a > 0, we have

‖yn − y‖W 1
2 (−a,a) ≤ c max

x∈[−a,a]
|r(x, νn(x)) − r(x, ν)| · ‖y′n‖L2(−a,a) → 0 (3.8)

as n→ ∞. On the other hand, from Theorem 2 it follows that {yn} ∈ QA, ‖yn‖W ≤
A, y ∈ QA, ‖y‖W ≤ A. Since the set QA is compact in W 1

2 (R), {yn} converges in the
W 1

2 (R) - norm. Let z be the limit of {yn}. By properties of W 1
2 (R)

lim
|x|→∞

y(x) = 0, lim
|x|→∞

z(x) = 0. (3.9)

Since L−1
ν,ǫ is the closed operator, from (3.8) and (3.9) we obtain y = z. Then

‖P (νn, ǫ) − P (ν, ǫ)‖W 1
2 (R) → 0, as n→ ∞.

Summing up, we have that P (ν, ǫ) is the completely continuous operator in W 1
2 (R)

and maps SA to itself. Then by Schauder’s theorem P (ν, ǫ) has a fixed point
y (P (y, ǫ) = y) in SA. And consequently, y is a solution of the equation

Lǫy := −y′′ +
[

r(x, y) + ǫ(1 + x2)2
]

y′ = f(x).

By (3.3) for y the estimate

‖y′′‖2 +
∥

∥

[

r(·, y) + ǫ(1 + x2)2
]

y′
∥

∥

2
≤ C3 ‖f‖2

holds.

Now, suppose that {ǫj}∞j=1 is a sequence of positive numbers converged to zero. The
fixed point yj ∈ SA of P (ν, ǫj) is a solution of the equation

Lǫj
yj := −y′′j +

[

r(x, yj) + ǫj(1 + x2)2
]

y′j = f(x).

For yj the estimate
∥

∥y′′j
∥

∥

2
+

∥

∥

[

r(·, yj(·)) + ǫ(1 + x2)2
]

y′j
∥

∥

2
≤ C3 ‖f‖2 (3.10)

holds.

Suppose (a, b) is an arbitrary finite interval. From {yj}∞j=1 ⊂W 2
2 (a, b) one can select

a subsequence
{

yǫj

}∞

j=1
such that

∥

∥yǫj
− y

∥

∥

L2[a,b]
→ 0 as j → ∞. A direct verification

shows that y is a solution of (1.6). In (3.10) passing to the limit as j → ∞ we obtain
(1.8). The theorem is proved. 2
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