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Abstract. We extend the analysis of the global dynamics for a special class of
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we determine uniform asymptotic bounds for the fluctuating price, and give sufficient
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1. Introduction

Bélair and Mackey introduced a class of integrodifferential equations with delays
of the form

dP

Pdt
= f(D(PD), S(PS)),

to study the dynamics of price adjustment of a single commodity [1, 2]. Here P (t) is
the market price of that particular commodity at time t, f is the relative price change
function, D and S refer to the demand and supply functions. Time delays occur due
to production lags and storage policies. They determined the stability of equilibria
under some conditions, and studied the destabilizing effect of the consumer memory
on the equilibrium price. Later several variants of this equation were studied in
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[4, 5, 6, 7]. Farahani and Grove [3] considered the special case

(1.1)
P ′(t)

P (t)
=

a

b+ P n(t)
− cPm(t− τ)

d+ Pm(t− τ)

with initial condition

P (θ) = ϕ(θ) > 0, θ ∈ [−τ, 0], ϕ ∈ C([−τ, 0], R)

where a, b, c, d,m, τ > 0, n ≥ 1, and C = C([−τ, 0], R) is the Banach space of con-
tinuous real valued functions on the interval [−τ, 0] with the usual supremum norm.
They showed in [3] the existence, uniqueness, and boundedness of a positive solution
P (t) for all t ≥ −τ from each positive initial function, and provided conditions to
ensure that all positive solutions oscillate about a positive equilibrium. By a solu-
tion of (1.1) we mean a continuous function P : [−τ,∞) → R which is differentiable
on (0,∞), satisfies (1.1) on (0,∞), and satisfies the initial condition P (θ) = ϕ(θ)

on [−τ, 0]. In this paper we extend the analysis of Equation (1.1). In particular, we
estimate the uniform asymptotic bounds of solutions, and give sufficient conditions
for the convergence of P (t) to a positive equilibrium by Lyapunov’s direct method.

The economic interpretation of (1.1) is the following (see [2] for a more general
case). The price of a single commodity at time t is denoted by P (t), and we assume
that the relative variation dP

Pdt
of the price is governed by simple demand and supply

functions. Demand increases the price while supply decreases. The demand function
a

b+Pn is monotone decreasing because higher price leads to less buying, while the
supply function cPm

d+Pm is monotone increasing as industry reacts to higher prices by
increasing production. The time delay τ in the supply term is due to the time lag
in production, because some time has to elapse after a decision is made to increase
production. This time lag can be affected by natural constraints for example in the
case of agricultural commodities. On the other hand, the demand term does not
have a time lag, since consumers base their buying decisions on the current market
price.

2. Explicit bounds and uniform asymptotic bounds of solutions

Let f(x) = a
b+xn

and g(x) = cxm

d+xm
, then from f(0) = a

b
> g(0) = 0 and

0 = lim
x→∞

f(x) < lim
x→∞

g(x) = c
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it follows that there exists a positive P∗ such that f(P∗) = g(P∗). Given that f is
a monotone decreasing and g is a monotone increasing function for x ≥ 0, this P∗

is a unique positive equilibrium of equation (1.1), moreover f(x) > g(x) for x < P∗

and f(x) < g(x) for x > P∗. Also, g(x) − f(x) is monotone increasing. These
monotonicity properties imply the following:

(2.1) if z > P∗, x > z, y > z then g(z)− f(z) < g(x)− f(y).

Let Yt(q) := y(t) where q > 0 and y(t) is the solution of the initial value problem

(2.2)

y′(t) =
ay(t)
b+y(t)n

y(0) = q.

Equation (2.2) is separable and thus the solution y(t) satisfies

n ln y(t) +
y(t)n

b
=
ant

b
+ n ln(q) +

qn

b
.

Taking exponential of both sides leads to

y(t)n exp

(
y(t)n

b

)
= exp

(
ant

b

)
qn exp

(
qn

b

)
,

which gives
y(t)n

b
= W

[
exp

(
ant
b

)
qn exp

(
qn

b

)
b

]
where W is the Lambert W (z) function (for the history and properties of this func-
tion, see [8]), i.e. W (z) is the principal solution of W (z)eW (z) = z. Therefore

Yτ (P∗) =

(
bW

[
e

aτn
b
P n
∗
b
e

Pn
∗
b

]) 1
n

.

As y(t) is increasing, for q = P∗ we have the simple estimate y′(t) ≤ ay(t)
b+Pn

∗
which

gives

Yτ (P∗) ≤ P∗ exp

(
τa

b+ P n
∗

)
= P∗e

τf(P∗).

Introduce the notation Pt for the state of solutions, where Pt ∈ C is defined by
the relation Pt(θ) = P (t + θ), θ ∈ [−τ, 0], t ≥ 0. If we want to emphasize the
correspondence of the solution and the state to the initial function ϕ ∈ C, then we
write P ϕ(t) and P ϕ

t .
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Theorem 2.1. For any positive solution P (t) of (1.1) we have the following:

(a)
max
t≥0

P ϕ(t) ≤ max{Yτ (P (0)), Yτ (P∗)},

(b)
lim sup
t→∞

P (t) ≤ Yτ (P∗),

(c)
lim inf
t→∞

P (t) ≥ f−1(g(Yτ (P∗))),

(d)
min
t≥0

P ϕ(t) ≥ min{P (0)e−τc, P∗e
−τc},

(e)
lim inf
t→∞

P (t) ≥ P∗e
−τc.

Proof. Let ∆q := f(P∗ + q) − g(P∗ + q) for q ∈ [−P∗,∞). Then clearly ∆q > 0 if
q < 0, ∆q < 0 if q > 0, and ∆0 = 0. For simplicity, we introduce the notation

P∞ := lim sup
t→∞

P (t) and P∞ := lim inf
t→∞

P (t).

First we show that P∞ ≤ P∗ and P∞ ≥ P∗. Suppose P∞ > P∗. Then there is an
ε > 0 and a T > 0 such that P (t) > P∗ + ε for all t ≥ T . Then by (2.1),

P ′(t) < P (t)
(
f(P∗ + ε)− g(P∗ + ε)

)
= ∆εP (t) < 0

for all t ≥ T + τ . This implies P (t) < P (T + τ)e∆ε(t−T−τ) → 0 as t → ∞, which
contradicts P∞ > P∗ > 0. Similarly, if P∞ < P∗ then there is some ε > 0 such that

P ′(t) > P (t)
(
f(P∗ − ε)− g(P∗ − ε)

)
= ∆−εP (t) > 0

for sufficiently large t, which is a contradiction.
Let I = [t1, t2] be an interval such that P (t) ≥ P∗ for all t ∈ I. We distinguish

two cases: if t2 − t1 ≤ τ , then from P ′(t) ≤ aP (t)
b+P (t)n

we obtain that for θ ∈ [t1, t2],

P (θ) ≤ Yθ−t1(P (t1)) ≤ Yt2−t1(P (t1)) ≤ Yτ (P (t1)).

If t2 − t1 > τ , then for θ ∈ [t1, t1 + τ ] we have P (θ) ≤ Yτ (P (t1)) just like before.
For θ ∈ (t1 + τ, t2], both P (θ) ≥ P∗ and P (θ − τ) ≥ P∗, thus P ′(θ) ≤ 0 for all
θ ∈ [t1 + τ, t2], hence P (θ) ≤ P (t1 + τ) ≤ Yτ (P (t1)) for all θ ∈ [t1 + τ, t2]. We
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conclude that

(2.3) max
θ∈I

P (θ) ≤ Yτ (P (t1)).

Suppose that P (t∗) > P∗ for some t∗ ≥ 0. Then there is a maximal interval Jt∗ such
that t∗ ∈ Jt∗ and P (t) ≥ P∗ for all t ∈ Jt∗ , and from the continuity of solutions
Jt∗ = [t1, t2] with some t1 < t∗ < t2 or Jt∗ = [t1,∞) with some t1. If t1 ≥ 0, then
by the continuity P (t1) = P∗, and from (2.3) we obtain P (t∗) ≤ Yτ (P∗). If t1 < 0,
consider the interval I = Jt∗ ∩ [0,∞), and from (2.3) we obtain P (t∗) ≤ Yτ (P (0)).
Hence we conclude (a).

If P (0) ≤ P∗, then (b) immediately follows. If P (0) > P∗, then we consider two
cases. If J0 ∩ [0,∞) = [0, t0] with t0 <∞, then for all t > t0 we have P (t) ≤ Yτ (P∗)

and (b) follows. If J0 ∩ [0,∞) = [0,∞), then P (t) ≥ P∗ for all t ≥ 0. In this case
P (t) is monotone decreasing for t > τ , thus converges to some limit. Since we have
P∞ ≤ P∗, this limit has to be P∗, thus from P∗ ≤ Yτ (P∗), (b) holds.

To show (c), suppose the contrary, that is P∞ < f−1(g(Yτ (P∗))). Since f is
decreasing, we have f(P∞) > g(Yτ (P∗)). By continuity, there is an ϵ > 0 such
that f(P∞ + ϵ) > g(Yτ (P∗)) + ϵ). From P∞ ≤ Yτ (P∗), for this ϵ there is a T such
that P (t) < Yτ (P∗) + ϵ for t > T , which implies g(P (t − τ)) < g(Yτ (P∗) + ϵ) for
t > T + τ . Note that P∞ < f−1(g(Yτ (P∗))) ≤ P∗ ≤ P∞ implies that there must
exist a t > T + τ such that P (t) < P∞ + ϵ and P ′(t) < 0. But for such a t,
P ′(t) = P (t)(f(P (t))− g(P (t− τ))) > 0, which is a contradiction.

To prove (d) we use f(x) > 0 and g(x) < c to find the estimate P ′(t) > −cP (t).
Then we can proceed completely similarly to (a): if P (t) < P∗ on some interval, it
can decrease only for time τ before P ′(t) becomes positive. The proof is analogous
to (a) hence the details are omitted. Similarly, from (d) we can conclude (e) the
same way as we proved (b) from (a). The proof is complete. �

Remark 2.2. The theorem shows the permanence of (1.1). It depends on the par-
ticular parameter values that the estimate for P∞ in (c) or in (e) gives a sharper
result. Some comparison is shown in Section 4.

Remark 2.3. At the cost of some elaborative calculations, one can sharpen the
estimates for P∞ and P∞ iteratively by proceeding as follows: suppose we already
established P∞ ≤ q1 := Yτ (P∗). Then we can replace the estimate P ′(t) > −cP (t)
in point (c) by P ′(t) ≥ −g(q1)P (t) for sufficiently large t to obtain P∞ ≥ p1 :=
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P∗e
−τg(q1). Next we use this p1 to improve P ′(t) ≤ P (t)f(P (t)) in point (a) by

P ′(t) ≤ P (t)f(P (t)) − g(p1) to find a q2 with P∞ ≤ q2 < q1. This leads to P∞ ≥
p2 := P∗e

−τg(q2) > p1 and so on.

3. Convergence to the positive equilibrium

Theorem 3.1. If there is an H ∈ (0, P∗) with

(3.1) H > max{Yτ (P∗)− P∗,min{P∗ − f−1(g(Yτ (P∗))), P∗ − P∗e
−τc}}

such that for all h ∈ (0, H) the inequalities

(3.2) f(P∗ + h) < g(P∗ − h) and g(P∗ + h) < f(P∗ − h)

hold, then all positive solutions of (1.1) converge to P∗.

Proof. Consider an H that satisfies (3.1). Then by Theorem 2.1, P∞ < P∗ +H and
P∞ > P∗ −H, so there is a T such that P (t) ∈ (P∗ −H,P∗ +H) for all t > T . We
define the functional V : C → R by V (ϕ) = maxθ∈[−τ,0] |ϕ(θ) − P∗|. Then clearly
V (Pt) ∈ [0, H) for t > T + τ .

We show that under condition (3.2), V (Pt) is a nonincreasing function of t for
t > T + τ . Suppose the opposite, then there is some σ > T + τ such that V (Pσ) =

P (σ)− P∗ and P ′(σ) ≥ 0 or V (Pσ) = P∗ − P (σ) and P ′(σ) ≤ 0. Consider the first
possibility, then P (σ) = P∗+V (Pσ), moreover P (σ−τ) ≥ P∗−V (Pσ) which implies
g(P (σ − τ)) ≥ g(P∗ − V (Pσ)). From condition (3.2) we obtain

(3.3) P ′(σ) ≤ P (σ) (f(P∗ + V (Pσ))− g(P∗ − V (Pσ)) < 0

which is a contradiction. The other case is analogous.
Consider any given positive ϕ ∈ C. Since V (P ϕ

t ) ≥ 0, and V (P ϕ
t ) is nonincreasing

for t > T + τ , it converges to some nonnegative limit c. Define the limit set ω(ϕ) of
the solution P ϕ

t as usual:

ω(ϕ) := {ψ ∈ C : there is a sequence tn such that tn → ∞ and P ϕ
tn → ψ as n→ ∞}

The set
G = {ϕ ∈ C : ϕ(s) ∈ [P∗ −H,P∗ +H], s ∈ [−τ, 0],

is closed, and contains the ω-limit set of any positive initial function. By the conti-
nuity of the functional V , it holds that V (ψ) = c for any ψ ∈ ω(ϕ). Since ω(ϕ) is
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positively invariant ([9, Chapter 5.2]), we obtain V (Pψ
t ) ≡ c. Because of the argu-

ment preceding (3.3), it is not possible that |Pψ(t1)−P∗| < c and |Pψ(t2)−P∗| = c

for some t1 < t2, hence V (Pψ
t ) ≡ c implies |Pψ(t) − P∗| ≡ c, which is possible

only if c = 0 and thus ω(ϕ) contains only the constant P∗ function. The proof is
complete. �

Theorem 3.2. If g′(P∗) < −f ′(P∗) then there is a τ∗ > 0 such that all positive
solutions P (t) converge to P∗ for τ < τ∗.

Proof. If g′(P∗) < −f ′(P∗), then there is a δ > 0 such that g′(x) < −f ′(x) for all
x ∈ (P∗−δ, P∗+δ). Given that Yτ (P∗) → P∗, f−1(g(Yτ (P∗))) → P∗ and P∗e

−τc → P∗

as τ → 0, there is a τ ∗ such that for τ < τ ∗, we have

δ > max{Yτ (P∗)− P∗,min{P∗ − f−1(g(Yτ (P∗))), P∗ − P∗e
−τc}}.

Thus (3.1) and (3.2) hold for τ < τ ∗ and H = δ, and we can apply Theorem 3.1. �

Remark 3.3. Since f ′(x) = − anxn−1

(b+xn)2
and g′(x) = cdmxm−1

(d+xm)2
, evaluating these deriva-

tives at P∗ and using f(P∗) = g(P∗), some elementary calculations show that g′(P∗) <

−f ′(P∗) is equivalent to adm < cnP n+m
∗ . In the special case a = c and b = d we

have P∗ = 1 and this inequality simplifies to bm < n.

Remark 3.4. The linear variational equation of (1.1) around the equilibrium P∗ is

z′(t) = P∗f
′(P∗)z(t)− P∗g

′(P∗)z(t− τ).

and there is a τ ∗ > 0 such that P∗ is unstable for τ > τ ∗. Since f ′(P∗) < 0 and
−g′(P∗) < 0, by applying Theorem 4.7 from [9] we find that if g′(P∗) < −f ′(P∗) then
P∗ is locally asymptotically stable, while if g′(P∗) > −f ′(P∗) then there is a τ0 > 0

such that P∗ is stable only for τ < τ0, and become unstable for τ > τ0.

4. Examples

We already noted that it depends on the parameters whether the estimate (c) or
(e) is better for P∞ in Theorem 2.1. It may depend also on the delay, as a particular
case depicted in Figure 4.1.

The price can either converge or periodically oscillate, as illustrated in Figure 4.2.
Recently, Ch. Qian showed in Theorem 2 of [7] that all positive solutions of (1.1)
converge to P∗ if cm

4d
τ < 1. His method is different from what we use in the proof of
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Figure 4.1. Bounds for P∞ as a function of τ in the case a = 0.2, b =
0.3, c = d = 0.6,m = 10, n = 2. Solid curve is f−1(g(Yτ (P∗))), dashed
curve is P∗e

−τc.
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Figure 4.2. Graphs of f and g in various situations.
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Figure 4.3. Examples of price oscillation and price convergence.
Horizontal lines indicate the estimates for P∞, P∞ from Theorem
2.1 and P∗. The parameter values are (a): a = c = 2, b = d = 3,m =
20, n = 2, τ = 0.5, (b): a = b = c = d = 3,m = 10, n = 2, τ = 0.315.

Theorem 3.1. We finish this paper by showing that Theorem 3.1 includes situations
where cm

4d
τ > 1, therefore it improves the previous global stability result. Notice

that the condition cm
4d
τ < 1 is independent from n, while increasing n will help to
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satisfy the conditions of Theorem 3.1 for global convergence (since by increasing
n, the function f converges to a step function) even when cm

4d
τ > 1. Consider the

following particular example: let a = b = c = d = 1, n = 100, m = 2. Then
P∗ = 1, and cm

4d
τ ≥ 1 whenever τ ≥ 2. See Figure 4.3 (b) for the graphs of f and

g in this case. Then one can easily calculate (it is clear from the graphs as well)
that (3.2) is satisfied, for example for H = 0.9. However, we have P∞ ≥ e−2 > 0.13

and P∞ ≤ Y2(1) < 1.2 therefore (3.1) also holds and Theorem 3.1 applies, and by
continuity the same hold for some τ > 2 as well. Thus, Theorem 3.1 covers global
convergence results which are not included in [7].

Furthermore, Theorem 2.1 provides useful information on the asymptotic bounds
of the fluctuating price in situations when it does not converge.
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