Rate of approach to the steady state for a diffusion-convection equation on annular domains*

Liping Zhu ${ }^{\dagger}$ and Zhengce Zhang ${ }^{\ddagger}$

Abstract

In this paper, we study the asymptotic behavior of global solutions of the equation $u_{t}=\Delta u+e^{|\nabla u|}$ in the annulus $B_{r, R}, u(x, t)=0$ on ∂B_{r} and $u(x, t)=M \geq 0$ on ∂B_{R}. It is proved that there exists a constant $M_{c}>0$ such that the problem admits a unique steady state if and only if $M \leq M_{c}$. When $M<M_{c}$, the global solution converges in $C^{1}\left(\overline{B_{r, R}}\right)$ to the unique regular steady state. When $M=M_{c}$, the global solution converges in $C\left(\overline{B_{r, R}}\right)$ to the unique singular steady state, and the blowup rate in infinite time is obtained.

Keywords: Convergence, Steady state, Gradient blowup.

1 Introduction and main results

In this paper we consider the problem

$$
\begin{cases}u_{t}=\Delta u+e^{|\nabla u|}, & x \in B_{r, R}, t>0, \tag{1.1}\\ u(x, t)=0, & x \in \partial B_{r}, t>0, \\ u(x, t)=M, & x \in \partial B_{R}, t>0, \\ u(x, 0)=u_{0}(x), & x \in B_{r, R} .\end{cases}
$$

Here $r>0, B_{r, R}=\left\{x \in \mathbb{R}^{N} ; r<|x|<R\right\}, \partial B_{r}=\left\{x \in \mathbb{R}^{N} ;|x|=r\right\}, M \geq 0$, and $u_{0}(x) \in X$, where $X=\left\{v \in C^{1}\left(\overline{B_{r, R}}\right) ;\left.v\right|_{\partial B_{r}}=0,\left.v\right|_{\partial B_{R}}=M\right\}$, endowed with the C^{1} norm. Problem (1.1) admits a unique maximal classical solution

[^0]$u(x, t)$, whose existence time will be denoted by $T=T\left(u_{0}\right)>0$, such that $u \in C^{2,1}\left(\overline{B_{r, R}} \times(0, T)\right) \cap C^{1,0}\left(\overline{B_{r, R}} \times[0, T)\right)$.

The differential equation in (1.1) possesses both mathematical and physical interest. This equation arises in the viscosity approximation of Hamilton-Jacobi type equations from stochastic control theory [2] and in some physical models of surface growth [4].

On the other hand, it can serve as a typical model-case in the theory of parabolic PDEs. Indeed, it is the one of the simplest examples (along with Burger's equation) of a parabolic equation with a nonlinearity depending on the first-order spatial derivatives of u.

A basic fact about (1.1) is that the solutions satisfy a maximum principle:

$$
\begin{equation*}
\frac{\min }{\overline{B_{r, R}}} u_{0} \leq u(x, t) \leq \frac{\max }{B_{r, R}} u_{0}, \quad x \in \overline{B_{r, R}}, \quad 0 \leq t<T \tag{1.2}
\end{equation*}
$$

Since Problem (1.1) is well-posed in C^{1} locally in time, only three possibilities can occur:
(I) u exists globally and is bounded in C^{1} :

$$
T=\infty \quad \text { and } \quad \sup _{t \geq 0}\|\nabla u(t)\|_{\infty}<\infty
$$

(II) u blows up in finite time in C^{1} norm (finite time gradient blowup):

$$
T<\infty \quad \text { and } \quad \lim _{t \rightarrow T}\|\nabla u(t)\|_{\infty}=\infty
$$

(III) u exists globally but is unbounded in C^{1} (infinite time gradient blowup):

$$
T=\infty \quad \text { and } \quad \limsup _{t \rightarrow \infty}\|\nabla u(t)\|_{\infty}=\infty
$$

For $M=0$ and $\left\|u_{0}\right\|_{C^{1}}$ sufficiently small, it is known that (I) occurs and u converges to the unique steady state $S_{0} \equiv 0$. On the contrary, if u_{0} suitably large, (II) occurs (see [5] and [8]).

For $M>0$, the situation is slightly more complicated. There exists a critical value M_{c} (see Section 2 below for its existence) such that (1.1) has a unique, regular and radial $\left(S_{M}(x)=S_{M}(\rho)\right.$ with $\left.\rho=|x|\right)$ steady state S_{M} if $M<M_{c}$ and no steady state if $M>M_{c}$. For the critical case $M=M_{c}$, there still exists a radial steady state $S_{M_{c}}$, but it is singular, satisfying $S_{M_{c}} \in C([r, R]) \cap C^{\infty}((r, R])$ with $S_{M_{c}, \rho}=\infty$.

For one dimensional case (see [8]), it was proved among other things that, if $M>M_{c}$, then all solutions of (1.1) satisfy (II), and if $0<M<M_{c}$, then both
(I) and (II) can occur. Moreover, in [9], it was shown that if $0 \leq M<M_{c}$, then all global solutions of (1.1) are bounded in C^{1}, and they converge to S_{M} in C^{1}. If (II) occurs, with the assumption on the initial data so that the solution is monotonically increasing both in time and in space, Zhang and Hu in [8] studied the blowup estimate and obtained that the blowup rate is close to $\ln \frac{1}{T-t}$ but not exactly equal to $\ln \frac{1}{T-t}$, which is very interesting because the blowup estimate can not be predicted by the usual self-similar transformations. For $N(>1)$ dimensional and zero-Dirichlet problem, in [10], Zhang and Li considered the gradient estimate near the boundary and the blowup rate of the radial case.

The purpose of this paper is to extend the results of [5, 8, 9, 10] to Problem (1.1), i.e., if $M=M_{c}$ and $u_{0} \leq S_{M_{c}}$, then (III) occurs and, u converges in $C\left(\overline{B_{r, R}}\right)$ exponentially to $S_{M_{c}}$, as well as $u_{\rho}(r, t)$ grows up exponentially to infinity. Therefore, we provide a classification of large time behavior of the solutions of (1.1) for arbitrary spatial dimension. Our main results are as follows:

Theorem 1.1 (1) If $0 \leq M<M_{c}$, then all global solutions of (1.1) converges in $C\left(\overline{B_{r, R}}\right)$ to S_{M}. Moreover, if $u_{0} \leq S_{M}$, then the solution of (1.1) is global in time and converges in $C^{1}\left(\overline{B_{r, R}}\right)$ to S_{M}, and we have the uniform exponential convergence

$$
\lim _{t \rightarrow \infty} \frac{\ln |U(\cdot)-u(\cdot, t)|}{t}=-\lambda_{1}
$$

where λ_{1} is the first eigenvalue of (3.2) (see Section 3 below).
(2) If $M=M_{c}$, then all global solutions of (1.1) converge in $C\left(\overline{B_{r, R}}\right)$ to S_{M}. Moreover, if $u_{0} \leq S_{M}$, then the solution of (1.1) is global in time and converges in $C^{1}\left(\overline{B_{r, R}}\right)$ to S_{M}, and we have the uniform exponential convergence

$$
\lim _{t \rightarrow \infty} \frac{\ln |U(\cdot)-u(\cdot, t)|}{t}=-\lambda_{1}
$$

as well as the blowup estimate

$$
\lim _{t \rightarrow \infty} \frac{u_{\nu}(x, t)}{t}=\lambda_{1}, x \in \partial B_{r}
$$

where λ_{1} is the first eigenvalue of (4.1) (see Section 4 below).

2 Stationary states and global existence

From the maximum principle, if Problem (1.1) admits a steady state $S_{M}(x)$, then it is unique and radial, and if $M_{1}>M_{2}$, then $S_{M_{1}}>S_{M_{2}}$ in $(r, R]$. So the stationary state satisfies

$$
\left\{\begin{array}{l}
-S_{M, \rho \rho}-\frac{N-1}{\rho} S_{M, \rho}=e^{S_{M, \rho}}, \quad r<\rho<R \tag{2.1}\\
S_{M}(r)=0, S_{M}(R)=M
\end{array}\right.
$$

For $M>0$, from the existence theory of ODEs, we know that $S_{M, \rho}>0$ in $(r, R]$. Then $S_{M, \rho}$ satisfies $e^{S_{M, \rho}} \leq-S_{M, \rho \rho} \leq c e^{S_{M, \rho}}$ in $(r, R]$, where $c>1$ is some constant. We consider a special case where $S_{M, \rho}(r)=\infty$, so we have

$$
\ln \frac{1}{c(\rho-r)} \leq S_{M, \rho}(\rho) \leq \ln \frac{1}{\rho-r},
$$

from which we get

$$
\begin{equation*}
(\rho-r)\left(1+\ln \frac{1}{c(\rho-r)}\right) \leq S_{M}(\rho) \leq(\rho-r)\left(1+\ln \frac{1}{\rho-r}\right) \tag{2.2}
\end{equation*}
$$

So we can deduce that there exists $M_{c}>0$ such that if $M>M_{c}$, then Problem (1.1) does not admit a steady state, if $0<M<M_{c}$, then Problem (1.1) admits a unique regular steady state $S_{M} \in C^{2}([r, R])$, and if $M=M_{c}$, then Problem (1.1) still admits a steady state $S_{M_{c}} \in C([r, R]) \cap C^{2}((r, R])$, which is singular in the sense that it has infinite derivative on the boundary ∂B_{r}.

Theorem 2.1 Assume that $M \geq 0$. If u is a global solution of Problem (1.1), then
(1) Problem (1.1) admits a steady state S_{M} satisfying (2.1);
(2) $u(\cdot, t) \rightarrow S_{M}(\cdot)$ in $C\left(\overline{B_{r, R}}\right)$ as $t \rightarrow \infty$.

Proof. (1) Let $\chi(\rho)$ be the solution of

$$
\begin{equation*}
-\Delta \chi=1, \quad r<\rho<R ; \quad \chi(r)=0, \quad \chi(R)=M \tag{2.3}
\end{equation*}
$$

and $\kappa(\rho)$ be the solution of

$$
\begin{equation*}
-\Delta \kappa=1, \quad r<\rho<R ; \quad \kappa(r)=\kappa(R)=0 \tag{2.4}
\end{equation*}
$$

Set $\underline{u}_{0}=-\chi-\mu \kappa$, then since $u_{0} \in C^{1}\left(\overline{B_{r, R}}\right)$, we have $\underline{u}_{0} \leq u_{0}$ in $B_{r, R}$ if $\mu>0$ is suitably large, which implies that $\underline{u} \leq u$ in $B_{r, R} \times(0, \infty)$. Moreover, $\Delta \underline{u}_{0}+e^{\left|\nabla \underline{u}_{0}\right|} \geq \mu+1>0$. So by the maximum principle, we have $\underline{u}_{t} \geq 0$ in $B_{r, R}$ for all $t>0$. As a consequence, there exists a function $S_{M} \in \overline{\overline{B_{r, R}}}$ such that for all $x \in B_{r, R}, \underline{u}(x, t) \rightarrow S_{M}(x)$ as $t \rightarrow \infty$. Similar to the proof of [7, Theorem 3.2] or [10, Theorem 3.1], we have

$$
|\nabla \underline{u}| \leq C \ln \frac{1}{\delta(x)} \quad \text { in } B_{r, R} \times(0, \infty)
$$

where $\delta(x)=\operatorname{dist}\left(x, \partial B_{r, R}\right)$. Parabolic estimates imply that for any small $\varepsilon>0$, for some $0<\alpha<1$, there holds

$$
\|\underline{u}\|_{C^{2+\alpha, 1+\alpha / 2}\left(\overline{B_{r+\varepsilon, R-\varepsilon}} \times[t, t+1]\right)} \leq C(\varepsilon), t>0 .
$$

By the diagonal procedure, there exists a sequence $t_{n} \rightarrow \infty$ such that $\underline{u}_{n}=$ $\underline{u}\left(x, t_{n}+t\right)$ converges in $C_{l o c}^{2,1}\left(\overline{B_{r, R}} \times[0,1]\right)$ to $S_{M}(x)$. So $S_{M}(x) \in C^{2}\left(B_{r, R}\right) \cap$ $C\left(\overline{B_{r, R}}\right)$ is the unique steady state of Problem (1.1).
(2) Define $w(t)=u(t)-S_{M}, \phi(t)=\|w(t)\|_{\infty}$. It follows from [7] that $\phi(t)$ is non-increasing for all $t>0$. Set

$$
l=\lim _{t \rightarrow \infty} \phi(t) \in[0, \infty) .
$$

We know that

$$
\begin{equation*}
|\nabla u| \leq C \ln \frac{1}{\delta(x)}, \quad|u(x, t)| \leq \widehat{C} \delta(x)\left(\ln \frac{1}{\delta(x)}+1\right)+\widetilde{C} \quad \text { in } B_{r, R} \times[0, \infty) \tag{2.5}
\end{equation*}
$$

Choose a sequence $t_{n} \rightarrow \infty$ and set $u_{n}\left(\cdot, t_{n}+\cdot\right)$ and $f_{n}(\cdot, \cdot)=f\left(\cdot, t_{n}+\cdot\right)$, where $f(x, t)=e^{|\nabla u|}$. Then the functions u_{n} then satisfy $\partial_{t} u_{n}-\Delta u_{n}=f_{n}(x, t)$ in $Q:=B_{r, R} \times(0, \infty)$, with the sequence $f_{n}(\cdot, t)$ and $u_{n}(\cdot, t)$ bounded in $L_{l o c}^{\infty}(Q)$ for $t>0$. Theorem 1.1 in [7] implies that ∇u_{n} is bounded in $C_{l o c}^{\beta, \beta / 2}(Q)$ for some $0<\beta<1$. Using local parabolic Schauder estimates, we obtain that u_{n} is bounded in $C_{l o c}^{2+\gamma, 1+\gamma / 2}(Q)$ for some $0<\gamma<1$. Therefore, u_{n} converges in $C_{l o c}^{2,1}(Q)$ to a function $z \in C^{2,1}(Q)$, which solves

$$
z_{t}-\Delta z=e^{|\nabla z|} \quad \text { in } Q
$$

Moreover, (2.5) implies that $\{u(\tau) ; \tau \geq 0\}$ is relatively compact in $C(\bar{Q})$. For each fixed $t \geq 0$, we may thus find a subsequence n_{k} such that $u_{n_{k}}(t)$ converges to $z(t)$ in $C(\bar{Q})$. It follows that

$$
z(t) \in C(\bar{Q}) \text { and }\left\|z(t)-S_{M}\right\|_{\infty}=\lim _{k \rightarrow \infty}\left\|u\left(t_{n_{k}}+t\right)-S_{M}\right\|_{\infty}=l, t \geq 0
$$

Setting $\widetilde{w}(t):=z(t)-S_{M}$, then $\widetilde{w}(t)$ satisfies

$$
\widetilde{w}_{t}-\Delta \widetilde{w}=\widetilde{b}(x, t) \cdot \nabla \widetilde{w} \quad \text { in } \quad Q,
$$

where $\widetilde{b}(x, t)=\int_{0}^{1} e^{\left|\nabla S_{M}+s \nabla \widetilde{w}\right|} \frac{\nabla S_{M}+s \nabla \widetilde{w}}{\nabla S_{M}+s \nabla \widetilde{w} \mid} d s \in C(Q)$. Assume for contradiction that $l>0$. Since $\widetilde{w}(\cdot, 2) \in C_{0}\left(\overline{B_{r, R}}\right)$, there exists $x_{0} \in B_{r, R}$, such that $\left|\widetilde{w}\left(x_{0}, 2\right)\right|=\|\widetilde{w}(2)\|_{\infty}=l=\|\widetilde{w}\|_{L^{\infty}\left(B_{r, R}\right)}$. For each $\rho<\delta\left(x_{0}\right)$, since $\widetilde{b} \in L^{\infty}\left(B\left(x_{0}, \rho\right) \times(1,2)\right)$, we may apply the strong maximum principle to deduce that $|\widetilde{w}|=l$ in $B\left(x_{0}, \rho\right) \times[1,2]$. But by letting $\rho \rightarrow \delta\left(x_{0}\right)$, this contradicts $\widetilde{w}(\cdot, 2) \in C_{0}\left(\overline{B_{r, R}}\right)$. Therefore, $l=0$. Since the sequence t_{n} was arbitrary, we conclude that $\lim _{t \rightarrow \infty}\left\|u(t)-S_{M}\right\|_{\infty}=0$, and the assertion (2) is proved.

3 Subcritical case $M<M_{c}$

In this section, we assume that $u_{0} \leq S_{M}$ in $B_{r, R}$. By the maximum principle, we have $-\chi-\mu \kappa \leq u \leq S_{M}$ for $t<T$, where μ is a suitably large constant. Similar to the proof of [7, Theorem 3.2] or [10, Theorem 3.1], we can get that ∇u blows up only on the boundary. So u exists globally and ∇u is uniformly
bounded in $B_{r, R} \times[0, \infty)$. So standard arguments imply that $u(\cdot, t) \rightarrow S_{M}(\cdot)$ as $t \rightarrow \infty$.

We consider the eigenvalue problem

$$
\left\{\begin{array}{l}
-\varphi_{\rho \rho}-\frac{N-1}{\rho} \varphi_{\rho}-e^{S_{M, \rho}} \varphi_{\rho}=\lambda \varphi, \quad r<\rho<R \tag{3.1}\\
\varphi(r)=\varphi(R)=0
\end{array}\right.
$$

By (2.1), we get

$$
e^{S_{M, \rho}}=-S_{M, \rho \rho}-\frac{N-1}{\rho} S_{M, \rho}
$$

So Equation (3.1) can be written as

$$
-\varphi_{\rho \rho}+\left(S_{M, \rho \rho}+\frac{N-1}{\rho} S_{M, \rho}-\frac{N-1}{\rho}\right) \varphi_{\rho}=\lambda \varphi
$$

It is equivalent to

$$
\begin{equation*}
-\left(a(\rho) \varphi_{\rho}\right)_{\rho}=\lambda a(\rho) \varphi, \quad r<\rho<R ; \quad \varphi(r)=\varphi(R)=0 \tag{3.2}
\end{equation*}
$$

where $a(\rho)$ satisfies

$$
\frac{a^{\prime}(\rho)}{a(\rho)}=-S_{M, \rho \rho}-\frac{N-1}{\rho} S_{M, \rho}+\frac{N-1}{\rho} .
$$

Let $\varphi(\rho)$ be the first eigenfunction and λ_{1} be the corresponding eigenvalue.
Let \underline{u} be the (global) solution of (1.1) with $-\chi-\mu \kappa$ as the initial data for some $\mu>0$ such that $-\chi-\mu \kappa \leq u_{0}$. By the comparison principle, we get $\underline{u} \leq u$. Therefore $S_{M}-u \leq \underline{v}:=S_{M}-\underline{u}$. Since \underline{u} is radially symmetric, then, by Taylor's expansion up to second order, we obtain

$$
\begin{align*}
\underline{v}_{t}-\underline{v}_{\rho \rho}-\frac{N-1}{\rho} \underline{v}_{\rho} & =e^{S_{M, \rho}}-e^{\underline{u}_{\rho}} \\
& =e^{S_{M, \rho}}-e^{S_{M, \rho}-\underline{v}_{\rho}} \\
& =e^{S_{M, \rho}} \underline{v}_{\rho}-F\left(x, \underline{v}_{\rho}\right) \tag{3.3}
\end{align*}
$$

where $F\left(x, \underline{v}_{\rho}\right)=\frac{1}{2} e^{S_{M, \rho}-\theta\left(x, \underline{v}_{\rho}\right)\left(S_{M, \rho}-\underline{v}_{\rho}\right)} \underline{v}_{\rho}^{2}, \theta \in(0,1)$. So we have

$$
\underline{v}_{t}-\underline{v}_{\rho \rho}-\frac{N-1}{\rho} \underline{v}_{\rho} \leq e^{S_{M, \rho}} \underline{v}_{\rho}
$$

Let $\varphi(\rho)$ be the first eigenfunction of (3.2) and choose a constant $C>0$ such that $u_{0}+\chi+\mu \kappa \leq C \varphi$. We observe that $C e^{-\lambda_{1} t} \varphi$ is a super-solution of (3.3). Then by the comparison principle, we get $S_{M}-u \leq \underline{v} \leq C e^{-\lambda_{1} t} \varphi$. By the strong maximum principle, we get $u\left(\cdot, t_{0}\right)<S_{M}(\cdot)$ and $-u_{\nu}\left(\cdot, t_{0}\right)<-S_{M, \nu}(\cdot)$ on the boundary of $B_{r, R}$. Without loss of generality we assume that $t_{0}=0$. So there is a radially symmetric function $\vartheta(\rho)$ such that $u_{0}<\vartheta<S_{M}$. Let \bar{u} be the
solution of (1.1) with ϑ as the initial data. Then by comparison principle, we have $u \leq \bar{u} \leq S_{M}$. Let $\bar{v}=S_{M}-\bar{u}$, by the Taylor's expansion up to the second order, we also get (3.3) with replaced \underline{v} by \bar{v}. Since $|F| \leq C_{1}\left|\underline{v_{\rho}}\right|^{2}$ for some constant C_{1} independent of \bar{v} due to \bar{v}_{ρ} is uniformly bounded in $\overline{B_{r, R}} \times[0, \infty)$, we obtain

$$
\bar{v}_{t}-\bar{v}_{\rho \rho}-\frac{N-1}{\rho} \bar{v}_{\rho} \geq e^{S_{M, \rho}} \bar{v}_{\rho}-C_{1}\left|\bar{v}_{\rho}\right|^{2} .
$$

Let $z=1-e^{-C_{1} \bar{v}}$, then

$$
z_{t}-z_{\rho \rho}-\frac{N-1}{\rho} z_{\rho} \geq e^{S_{M, \rho}} z_{\rho}
$$

So $S_{M}-u \geq \bar{v} \geq C_{1}^{-1} z \geq c e^{-\lambda_{1} t} \varphi$ if $c>0$ is suitably small. Thus we have

$$
\begin{equation*}
c e^{-\lambda_{1} t} \varphi \leq S_{M}-u \leq C e^{-\lambda_{1} t} \varphi, \quad x \in B_{r, R}, t>0 \tag{3.4}
\end{equation*}
$$

which implies Theorem 2.1 (1).

4 Critical case $M=M_{c}$

In this section, we assume that $u_{0} \leq S_{M_{c}}$ in $B_{r, R}$. We claimed that u exists globally. Assume for contradiction that $T^{*}<\infty$. By the maximum principle, we have $u \geq-\chi-\mu \kappa$ for some μ, so ∇u blows up only on the boundary ∂B_{r} by the similar proof of [7, Theorem 3.2] or [10, Theorem 3.1]. Parabolic estimates imply that u can be extended to a function $u \in C^{2,1}\left(\overline{B_{r+\varepsilon, R}}\right) \times\left(0, T^{*}\right]$ for $0<\varepsilon \ll 1$. Since $u<S_{M_{c}}$ in $B_{r, R}$ for $t>0$, by the maximum principle, we have $u_{\rho}>S_{M_{c}, \rho}$ on ∂B_{R} for $0<t \leq T^{*}$. Fixing $t_{0} \in\left(0, T^{*}\right)$, we can find $M<M_{c}$ close to M_{c} and $0<\varepsilon \ll 1$ such that $u<S_{M}$ on $\partial B_{R-\varepsilon} \times\left[t_{0}, T^{*}\right]$ and $u<S_{M}$ in $\overline{B_{r, R-\varepsilon}}$ at $t=t_{0}$. So we have $u<S_{M}$ in $B_{r, R-\varepsilon} \times\left[t_{0}, T^{*}\right]$, contradicting to the blowup of ∇u at $t=T^{*}$.

Fixing some $t_{0}>0$, we have $u\left(x, t_{0}\right)<S_{M_{c}}(x)$ for $x \in B_{r, R}$. So there exists a radial function $h(\rho)$ such that $u\left(x, t_{0}\right)<h(\rho)<S_{M_{c}}(x)$, therefore $u(x, t) \leq H(\rho, t)$ in $B_{r, R} \times\left[t_{0}, \infty\right)$, where H is the solution of Problem (1.1) with $H\left(\rho, t_{0}\right)=h(\rho)$. Also, since $-\chi(\rho)-\mu \kappa(\rho) \leq u_{0}(x)$ for some μ, we have $K(\rho, t) \leq u(x, t)$ in $B_{r, R} \times\left[t_{0}, \infty\right)$, where K is the solution of Problem (1.1) with $K\left(\rho, t_{0}\right)=-\chi(\rho)-\mu \kappa(\rho)$. So, similarly to Section 3 , it is sufficient to consider the asymptotic behavior of the radial solution of Problem (1.1).

In the following, we use the idea of [6] to study the asymptotic behavior of the radial solution of Problem (1.1).

We consider the degenerate eigenvalue problem

$$
\begin{equation*}
-\left(a(\rho) \varphi_{\rho}\right)_{\rho}=\lambda a(\rho) \varphi, \quad r<\rho<R ; \quad \varphi(r)=\varphi(R)=0 \tag{4.1}
\end{equation*}
$$

and its regularized problem

$$
\begin{equation*}
-\left(a(\rho) \varphi_{\varepsilon, \rho}\right)_{\rho}=\lambda_{\varepsilon} a(\rho) \varphi_{\varepsilon}, \quad r+\varepsilon<\rho<R ; \quad \varphi_{\varepsilon}(r+\varepsilon)=\varphi_{\varepsilon}(R)=0 \tag{4.2}
\end{equation*}
$$

Denote by λ_{ε} the first eigenvalue of (4.2) and by φ_{ε} the corresponding eigenfunction. Let $\lambda_{1}=\inf \left\{\int_{r}^{R} a(\rho)\left(v_{\rho}\right)^{2} d \rho ; v \in J, \int_{r}^{R} a(\rho) v^{2} d \rho=1\right\}$, where $J=\{v \in$ $\left.H_{l o c}^{1}((r, R]) ; \int_{r}^{R} a(\rho)\left(v_{\rho}\right)^{2} d \rho<\infty, v(R)=0\right\}$. Then from the similar proof of Proposition 5.1 in [6], we know that λ_{1} is well defined, $0<\lambda_{1}=\lim _{\varepsilon \rightarrow 0} \lambda_{\varepsilon}<\infty$, and there exists $0<\varphi \in J \cap C^{2}((r, R])$ which solves (4.1) with $\lambda=\lambda_{1}$.

Set $v=S_{M_{c}}-u$, then

$$
\begin{align*}
v_{t}-\Delta v & =e^{\left|\nabla S_{M_{c}}\right|}-e^{|\nabla u|} \\
& =e^{\left|\nabla S_{M_{c}}\right|} \frac{\nabla S_{M_{c}}}{\left|\nabla S_{M_{c}}\right|} \cdot \nabla v-F(x, \nabla v) \tag{4.3}
\end{align*}
$$

where $F(x, \nabla v)=\frac{1}{2} e^{\left|\nabla S_{M_{c}}-\theta(x, \nabla v) \nabla v\right|}|\nabla v|^{2}, \theta \in(0,1)$. So we have

$$
v_{t}-\Delta v \leq e^{\left|\nabla S_{M_{c}}\right|} \frac{\nabla S_{M_{c}}}{\left|\nabla S_{M_{c}}\right|} \cdot \nabla v \quad \text { in }(r, R) \times(0, \infty) .
$$

So

$$
\begin{equation*}
S_{M_{c}}-u=v \leq C e^{-\lambda_{1} t} \varphi \tag{4.4}
\end{equation*}
$$

if C is suitably large. Since $|F| \leq C_{\varepsilon}|\nabla v|^{2}$ in $[r+\varepsilon, R] \times(0, \infty)$, we also have

$$
v_{t}-\Delta v \geq e^{\left|\nabla S_{M_{c}}\right|} \frac{\nabla S_{M_{c}}}{\left|\nabla S_{M_{c}}\right|} \cdot \nabla v-C_{\varepsilon}|\nabla v|^{2} \quad \text { in }[r+\varepsilon, R] \times(0, \infty) .
$$

Let $z=1-e^{-C_{\varepsilon} v}$, then

$$
z_{t}-\Delta z \geq e^{\left|\nabla S_{M_{c}}\right|} \frac{\nabla S_{M_{c}}}{\left|\nabla S_{M_{c}}\right|} \cdot \nabla v
$$

So

$$
\begin{equation*}
S_{M_{c}}-u=v \geq C_{\varepsilon}^{-1} z \geq c e^{-\lambda_{\varepsilon} t} \varphi_{\varepsilon} \tag{4.5}
\end{equation*}
$$

in $[r+\varepsilon, R]$, where $c>0$ is suitably small. The first assertion of Theorem 2.1 (2) is proved.

We consider the radial problem

$$
\left\{\begin{array}{l}
u_{t}-u_{\rho \rho}-\frac{N-1}{\rho} u_{\rho}=e^{\left|u_{\rho}\right|}, \quad r<\rho<R, \tag{4.6}\\
u(r, t)=0, u(R, t)=M_{c}, \quad t>0
\end{array}\right.
$$

Let $v(\rho, t)$ be the solution of (4.3) with $v_{0}(\rho)=-\chi(\rho)-\mu \kappa(\rho)(\mu>0)$, then $v(\rho, t)$ is nondecreasing in time by the maximum principle. Therefore $v_{\rho}(r, t)$ is also nondecreasing in time. So we have $\lim _{t \rightarrow \infty} v_{\rho}(r, t)=\infty$. For any radial function $u_{0} \in X$ one can find μ suitable large such that $u_{0}>v_{0}$, so we have

$$
\lim _{t \rightarrow \infty} u_{\rho}(r, t)=\infty
$$

EJQTDE, 2012 No. 39, p. 8

For $M<M_{c}$, as in [3], let $N_{M}(t)$ be the number of intersections of $u(\rho, t)$ and S_{M}. It is known that $N_{M}(t)$ is non-increasing. It is obvious that there exists M_{0} close enough to M_{c} such that $N_{M}(1)=1$ if $M_{0} \leq M<M_{c}$. Denote by $S_{M(t)}$ the solution of (2.1) with $S_{M, \rho}(r)=u_{\rho}(r, t)$. By $\lim _{t \rightarrow \infty} u_{\rho}(r, t)=\infty$, there exists $t_{0}>1$ such that $M(t)>M_{0}$ for all $t>t_{0}$. By Hopf's lemma, if $N_{M}(t)=1$, then $u_{\rho}(r, t)<S_{M, \rho}(r)$. Therefore, $N_{M(t)}(t)=0$. So $N_{M(t)}(s)=$ 0 for $s>t$ since $N_{M}(t)$ is non-increasing. Thus we have by Hopf's lemma $u_{\rho}(r, s)>S_{M(t), \rho}(r)=u_{\rho}(r, t)$ for $s>t$, i.e., $u_{\rho}(r, t)$ is strictly increasing in time for $t>t_{0}$.

By (4.4), we have

$$
u(\rho, t) \geq S_{M_{c}}(\rho)-C e^{-\lambda_{1} t}
$$

and by (2.2)

$$
\frac{u(\rho, t)}{\rho-r} \geq\left(1+\ln \frac{1}{c(\rho-r)}\right)-C(\rho-r)^{-1} e^{-\lambda_{1} t}
$$

Using the method in [9] or [1], we can prove that $u_{\rho \rho}<0$ for $t \gg 1$ and $r<\rho<r+\varepsilon$. Therefore, taking $\rho-r=C e^{-\lambda_{1} t}$, we have

$$
\begin{equation*}
u_{\rho}(r, t) \geq \frac{u(\rho, t)}{\rho-r} \geq C t \quad \text { for } t \text { large. } \tag{4.7}
\end{equation*}
$$

On the other hand, for t large, $u(\rho, t)>S_{M(t)}(\rho)$, therefore

$$
\begin{aligned}
S_{M_{c}}(\rho)-u(\rho, t) \leq & S_{M_{c}}(\rho)-S_{M(t)}(\rho) \\
\leq & U_{M_{c}}(\rho)-U_{M(t)}(\rho) \\
= & (\rho-r)\left(1+\ln \frac{1}{\rho-r}\right) \\
& +\left(\rho-r+e^{-\alpha(t)}\right) \ln \left(\rho-r+e^{-\alpha(t)}\right)-(\rho-r)+\alpha(t) e^{-\alpha(t)} \\
\leq & C e^{-\alpha(t)},
\end{aligned}
$$

where $U_{M}(\rho)$ is the solution of $U_{\rho \rho}+e^{\left|U_{\rho}\right|}=0$ in (r, R) and $U(r)=0, U(R)=M$, and $\alpha(t)=u_{\rho}(r, t)$. By (4.5), we have

$$
e^{-\alpha(t)} \geq\left\|S_{M_{c}}-u(t)\right\|_{\infty} \geq c e^{-\lambda_{\varepsilon} t}
$$

therefore we get

$$
\begin{equation*}
u_{\rho}(r, t) \leq C \lambda_{\varepsilon} t \quad \text { for } t \text { large. } \tag{4.8}
\end{equation*}
$$

From (4.7) and (4.8), the second part of Theorem 2.1 (2) follows.

References

[1] J. M. Arrieta, A. R. Bernal and Ph. Souplet, Boundedness of global solutions for nonlinear parabolic equations involving gradient blowup phenomena, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 3 (2004), 1-15.
[2] P. L. Lions, Generalized solutions of Hamilton-Jacobi equations, Pitman Research Notes in Math. 62, 1982.
[3] Y. X. Li, Stabilization towards the steady state for a viscous HamiltonJacobi equation, Comm. Pure Appl. Anal., 8 (2009), 1917-1924.
[4] M. Kardar, G. Parisi and Y-C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett., 56 (1986), 889-892.
[5] Ph. Souplet, Gradient blow-up for multidimensional nonlinear parabolic equations with general boundary conditions, Differential Integral Equations, 15 (2002), 237-256.
[6] Ph. Souplet and J. L. Vázquez, Stabilization towards a singular steady state with gradient blow-up for a diffusion convection problem, Discrete and Continuous Dynamical Systems, 14(1) (2006), 221-234.
[7] Ph. Souplet and Q. S. Zhang, Global solutions of inhomogeneous HamitonJacobi equations, J. Anal. Math., 99 (2006), 355-396.
[8] Z. C. Zhang and B. Hu, Rate estimates of gradient blowup for a heat equation with exponential nonlinearity, Nonlinear Analysis, TMA, 72(12) (2010), 4594-4601.
[9] Z. C. Zhang and Y. Y. Li, Boundedness of global solutions for a heat equation with exponential gradient source, Abstract and Applied Analysis, Volume 2012, 10 pages, 2012.
[10] Z. C. Zhang and Y. Y. Li, Gradient blowup solutions of a semilinear parabolic equation with exponential source, Comm. Pure Appl. Anal., 2012, in press.
(Received February 9, 2012)

[^0]: *This work was supported by the Fundamental Research Funds for the Central Universities of China and by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.
 ${ }^{\dagger}$ College of Science, Xi'an University of Architecture \& Technology, Xi'an, 710054, P. R. China, E-mail: ny.zlp@stu.xjtu.edu.cn.
 ${ }^{\ddagger}$ Corresponding author, School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, 710049, P. R. China, E-mail: zhangzc@mail.xjtu.edu.cn.

