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1. Introduction

In this paper, we consider the Cauchy initial value problem (IVP for short) of fractional

impulsive differential equations with delay of the form















Dαx(t) = f(t, xt), t 6= tk, t ∈ [0, T ];

∆x(tk) = Ik(x(tk)), k = 1, 2, . . . , p;

x(t) = φ(t), t ∈ [−τ, 0],

(1.1)

where Dα is the Caputo’s fractional derivative of order 0 < α < 1, 0 = t0 < t1 < t2 < · · · <

tp < tp+1 = T , f ∈ C([0, T ] × R, R) and Ik ∈ C(R, R) are given functions satisfying some

assumptions that will be specified later. ∆x(tk) = x(t+k )−x(t−k ), x(t+k ) and x(t−k ) represent

the right and left limits of x(t) at t = tk respectively, and they satisfy that x(t−k ) = x(tk). If
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x ∈ C([−τ, T ], R), then for any t ∈ [0, T ], define xt by xt(θ) = x(t + θ) for θ ∈ [−τ, 0], here

xt represents the history of the state from time t− τ to the present time t. φ ∈ C([−τ, 0], R)

and φ(0) = 0.

Recently, differential equations of fractional order have been proved to be valid tools

in the modeling of many phenomena in various fields of engineering and science such as

physics, electrochemistry, electromagnetics, control theory, viscoelasticity, porous media and

so forth. On the other hand, fractional differential equations also serve as an excellent tool

for the description of memory and hereditary properties of various materials and processes.

With these advantages, the models of fractional order become more and more practical and

realistic than the classical models of integer order, such effects in the latter are not taken

into account. As a result, the subject of fractional differential equations is gaining much

attention and importance. For more details on this theory and on its applications, we refer

to the recent monographs of Miller and Ross [19], Kilbas et al. [13, 23], Oldham and Spanier

[20], Hilfer [12], Metzler et al. [17], the researches of Agrawal et al. [2, 22], and the papers

of [1, 3-11, 16, 27-30].

There are significant developments in the theory of impulses especially in the area of

impulsive differential equations with fixed moments (see e.g., [15] and [24]), which pro-

vided a natural description of observed evolution processes, regarding as important tools

for better understanding several real word phenomena in applied sciences. In [3, 7], Ben-

chohra et al. established sufficient conditions for the existence of solutions for a class of

initial value problems for impulsive fractional differential equations involving the Caputo

fractional derivative of order 0 < q < 1 and 1 < q < 2, respectively. The authors of [8, 27,

28] studied the three-point boundary value problem, the anti-periodic boundary value prob-

lem and the mixed boundary conditions of fractional differential equations with impulses

involving Caputo derivative, respectively, by means of Banach’s fixed point theorem and

Schauder’s fixed point theorem (see [14, 26, 31, 32]).

It is well known that the control systems subject to delay have been extensively studied

and the delay differential equations are large and important class of dynamic systems, which

often arise in either natural or technological control problems. Time delay, always existing

in real systems, usually results in oscillations around the discontinuity surface ([18, 21, 25]).

Zhou et al. [30] studied Cauchy initial value problem of fractional neutral functional differ-

ential equations with infinite delay, obtaining various criteria on existence and uniqueness.

Benchohra [6] and Deng [9] discussed the solutions for the same fractional differential equa-

tions with infinite delay by using different methods, respectively. Bahakhani [5] considered
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the nonlinear fractional differential equations with delay in two-dimensional case, and Zhang

et al. [29] investigated the fractional equations with infinite delay and nonlocal conditions.

To the best of our knowledge, there are few papers that consider the fractional differ-

ential equations with both impulses and delays ([1, 16, 29]). In consequence, motivated by

the works mentioned above, the aim of this paper is to discuss the existence and uniqueness

of solutions of fractional differential equations with delay and impulses in (1.1). By using

the idea of successive approximations, our main results can be seen as a generalization of

the work in [2].

The organization of this paper is as follows. In Section 2, we present some required

definitions, notations, and a lemma that will be used to prove our main results. In Section 3,

the existence and uniqueness of the solution for the problem (1.1) are obtained in Theorem

3.1. And finally, an example is given to illustrate the effectiveness and feasibility of our

main results in Section 4.

2. Preliminaries

In this section, we recall some definitions and propositions of fractional calculus and

solution operator ([13,19]).

Definition 2.1. The fractional (arbitrary) order integral of the function h ∈ L1([a, b], R+)

of order α ∈ R
+ is defined by

Iα
a h(t) =

∫ t

a

(t − s)α−1

Γ(α)
h(s)ds, (2.1)

where Γ is the gamma function.

Definition 2.2. For a function h given on the interval [a, b], the αth Riemann-Liouville

fractional order derivative of h, is defined by

(Dα
a+h)(t) =

1

Γ(n − α)

(

d

dt

)n ∫ t

a

(t − s)n−α−1h(s)ds, (2.2)

where n = [α] + 1.

Definition 2.3. For a function h given on the interval [a, b], the Caputo fractional order

derivative of h, is defined by

(cDα
a+h)(t) =

1

Γ(n − α)

∫ t

a

(t − s)n−α−1h(n)(s)ds, (2.3)

where n = [α] + 1.

Remark 2.1. The Caputo fractional derivative operator cDt is a left inverse of integral
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operator Iα
t but in general is not a right inverse,

cDα
t (Iα

t u(t)) = u(t), (2.4)

and the following holds

It(
cDα

t u(t)) = u(t) −
n−1
∑

k=0

(t − a)k

k!
u(k)(a), t ∈ [a, b]. (2.5)

For the sake of the readers’ convenience, we introduce the following notations.

Let J = [0, T ], J0 = [0, t1], Ji = [ti, ti+1], i = 1, 2, . . . , p − 1, Jp = [tp, T ], and J ′ =

J\{t1, t2, . . . , tp}. We denote PC(J) = {u : [0, T ] → R|u ∈ C(J ′, R), u(t+k ) and u(t−k ) exist

and u(t−
k
) = u(tk), k = 1, 2, . . . , p}. Obviously, PC(J) is a Banach space with the norm

||u|| = sup
t∈J

|u(t)|.

Lemma 2.1. Assume that h ∈ C([0, T ], R), T > 0. A function x ∈ PC(J) is a solution of

the initial value problem














Dαx(t) = h(t), t 6= tk, t ∈ [0, T ];

∆x(tk) = Ik(x(tk)), k = 1, 2, . . . , p;

x(t) = φ(t), t ∈ [−τ, 0]

(2.6)

if and only if x satisfies the following integral equation

x(t) =



























φ(t), t ∈ [−τ, 0];

1
Γ(α)

∫ t

tk
(t − s)α−1h(s)ds +

k
∑

j=1
Ij(x(tj))

+
k−1
∑

i=0

1
Γ(α)

∫ ti+1

ti
(ti+1 − s)α−1h(s)ds, t ∈ (tk, tk+1], k = 0, 1, . . . , p.

(2.7)

Proof. Assume that x satisfies the problem (2.6). One can see, from Remark 2.1 and

φ(0) = 0, that

x(t) =
1

Γ(α)

∫ t

0
(t − s)α−1h(s)ds, for t ∈ J0 = [t0, t1].

In view of x(t+1 ) − x(t−1 ) = I1(x(t1)), we obtain that

x(t+1 ) = I1(x(t1)) +
1

Γ(α)

∫ t1

0
(t1 − s)α−1h(s)ds.

It follows that for t ∈ (t1, t2],

x(t) = x(t+1 ) +
1

Γ(α)

∫ t

t1

(t − s)α−1h(s)ds

=
1

Γ(α)

∫ t

t1

(t − s)α−1h(s)ds +
1

Γ(α)

∫ t1

0
(t1 − s)α−1h(s)ds + I1(x(t1)).
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In consequence, we can see, by means of x(t+2 ) = x(t−2 ) + I2(x(t2)), that

x(t+2 ) =
1

∑

i=0

1

Γ(α)

∫ ti+1

ti

(ti+1 − s)α−1h(s)ds +
2

∑

j=1

Ij(x(tj)),

which implies that for t ∈ (t2, t3],

x(t) =
1

Γ(α)

∫ t

t2

(t − s)α−1h(s)ds +

1
∑

i=0

1

Γ(α)

∫ ti+1

ti

(ti+1 − s)α−1h(s)ds +

2
∑

j=1

Ij(x(tj)).

Repeating the above process, the solution x(t) for t ∈ (tk, tk+1] can be written as

x(t) =
1

Γ(α)

∫ t

tk

(t − s)α−1h(s)ds +

k−1
∑

i=0

1

Γ(α)

∫ ti+1

ti

(ti+1 − s)α−1h(s)ds +

k
∑

j=1

Ij(x(tj)).

Conversely, if x is a solution of (2.7), one can obtain, by a direct computation, that

Dαx(t) = h(t), t 6= tk, t ∈ [0, T ], and ∆x(tk) = x(t+
k
) − x(t−

k
) = Ik(x(tk)), where

x(t+k ) =

k−1
∑

i=0

1

Γ(α)

∫ ti+1

ti

(ti+1 − s)α−1h(s)ds +

k
∑

j=1

Ij(x(tj)),

and

x(t−
k
) =

1

Γ(α)

∫ tk

tk−1

(tk − s)α−1h(s)ds +
k−2
∑

i=0

1

Γ(α)

∫ ti+1

ti

(ti+1 − s)α−1h(s)ds +
k−1
∑

j=1

Ij(x(tj)).

This completes the proof. �

3. Main results

Firstly, set C0 = {y|y ∈ C([0, T ], R), y(0) = 0}. For each y ∈ C0, we denote by y the

function defined by

y(t) = y(t), 0 ≤ t ≤ T, and y(t) = 0, −τ ≤ t ≤ 0. (3.1)

If x is a solution of (1.1), then x(·) can be decomposed as x(t) = y(t)+ϕ(t) for −τ ≤ t ≤ T ,

which implies that xt = yt + ϕt for 0 ≤ t ≤ T , where

ϕ(t) = 0, 0 ≤ t ≤ T, and ϕ(t) = φ(t), −τ ≤ t ≤ 0. (3.2)

EJQTDE, 2012 No. 37, p. 5



Therefore, the problem (1.1) can be transformed into the following fixed point problem

of the operator F : C0 → R,

Fy(t) =
1

Γ(α)

∫ t

tk

(t − s)α−1f(s, ys + ϕs)ds

+

k−1
∑

i=0

1

Γ(α)

∫ ti+1

ti

(ti+1 − s)α−1f(s, ys + ϕs)ds

+

k
∑

j=1

Ij(y(tj)), t ∈ (tk, tk+1], k = 0, 1, . . . , p. (3.3)

Now, let us present our main result.

Theorem 3.1. For the functions f ∈ C([0, T ]×R, R) and Ik : R → R, assume the following

conditions hold.

(H1) there exists a continuous function a : [0, T ] → R
+ satisfying

|f(t, ut) − f(t, vt)| ≤ a(t) sup
s∈[0,t]

|u(s) − v(s)|, u, v ∈ R, t ∈ [0, T ];

(H2) there exists a constant Lk > 0 such that |Ik(u) − Ik(v)| ≤ Lk|u − v|, k = 1, 2, . . . , p ;

(H3)
p+1
∑

i=1

aiT
α

Γ(α+1) +
p
∑

j=1
Lj < 1, where ak = sup

t∈(tk ,tk+1)
a(t);

(H4) there exists a constant M > 0 such that |f(t, ϕt)| ≤ M, where ϕ is defined in (3.2).

Then the problem (1.1) has a unique solution on J.

Proof. To complete the proof, we shall use the method of successive approximations. Define

a sequence of functions yn : [0, T ] → R, n = 0, 1, 2, . . . as follows:

y0(t) = 0, yn(t) = Fyn−1(t). (3.4)

Since y0(t) = 0, it is easy to see from (3.1) that (y0)s = 0 for s ∈ [0, T ]. Thus we have

|y1(t) − y0(t)| ≤
1

Γ(α)

∫ t

tk

(t − s)α−1|f(s, ϕs)|ds +
k

∑

j=1

Ij(0)

+
k−1
∑

i=0

1

Γ(α)

∫ ti+1

ti

(ti+1 − s)α−1|f(s, ϕs)|ds

≤
M(t − tk)

α

Γ(α + 1)
+

k
∑

i=1

M(ti − ti−1)
α

Γ(α + 1)
+

k
∑

j=1

|Ij(0)|

≤

p+1
∑

i=1

M(ti − ti−1)
α

Γ(α + 1)
+

p
∑

j=1

|Ij(0)| := N0, k = 1, 2, . . . , p,
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it follows that ||y1 − y0|| ≤ N0. Furthermore,

|yn(t) − yn−1(t)|

≤
1

Γ(α)

∫ t

tk

(t − s)α−1
∣

∣f(s, (yn−1)s + ϕs) − f(s, (yn−2)s + ϕs)
∣

∣ ds

+

k−1
∑

i=0

1

Γ(α)

∫ ti+1

ti

(ti+1 − s)α−1
∣

∣f(s, (yn−1)s + ϕs) − f(s, (yn−2)s + ϕs)
∣

∣ ds

+

k
∑

j=1

∣

∣Ij(yn−1(tj)) − Ij(yn−2(tj))
∣

∣

≤
1

Γ(α)

∫ t

tk

(t − s)α−1a(s) sup
r∈[0,s]

∣

∣yn−1(r) − yn−2(r)
∣

∣ ds

+

k−1
∑

i=0

1

Γ(α)

∫ ti+1

ti

(ti+1 − s)α−1a(s) sup
r∈[0,s]

∣

∣yn−1(r) − yn−2(r)
∣

∣ ds

+

k
∑

j=1

Lj

∣

∣yn−1(tj) − yn−2(tj)
∣

∣

≤

(

ak

(t − tk)
α

Γ(α + 1)
+

k
∑

i=1

ai

(ti − ti−1)
α

Γ(α + 1)
+

k
∑

j=1

Lj

)

· ||yn−1 − yn−2||

≤

(p+1
∑

i=1

ai

Tα

Γ(α + 1)
+

p
∑

j=1

Lj

)

· ||yn−1 − yn−2||

:= N ||yn−1 − yn−2||, (3.5)

which implies that ||yn−yn−1|| ≤ N ||yn−1−yn−2|| with N < 1. Note that for any m > n > 0,

we have

||ym − yn|| ≤ ||yn+1 − yn|| + ||yn+2 − yn+1|| + · · · + ||ym − ym−1||

≤ (Nn + Nn+1 + · · · + Nm−1) · ||y1 − y0||

≤
Nn

1 − N
||y1 − y0||. (3.6)

For sufficiently large numbers m,n, it follows from the above inequalities with N < 1 that

||ym − yn|| → 0. Thus, {yn(t)} is a Cauchy sequence in PC(J). Since PC(J) is a complete

Banach space, then ||yn − y|| → 0 (n → ∞) for some y ∈ PC(J), which means that yn(t) is

uniformly convergent to y(t) with respect to t.

In what follows, we shall show that y(t) is a solution of the equation (1.1). Observe
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that

∣

∣

∣

∣

1

Γ(α)

∫ t

tk

(t − s)α−1f(s, (yn)s + ϕs)ds −
1

Γ(α)

∫ t

tk

(t − s)α−1f(s, ys + ϕs)ds

∣

∣

∣

∣

≤
1

Γ(α)

∫ t

tk

(t − s)α−1 |f(s, (yn)s + ϕs) − f(s, ys + ϕs)| ds

≤
1

Γ(α)

∫ t

tk

a(t)(t − s)α−1 sup
r∈[0,s]

|yn(r) − y(r)| ds

=
1

Γ(α)

∫ t

tk

a(t)(t − s)α−1 sup
r∈[0,s]

|yn(r) − y(r)| ds.

Since yn(t) → y(t) as n → +∞, for any ǫ > 0, there exists a sufficiently large number n0 > 0

such that for all n > n0, we have

|yn(r) − y(r)| < min{
Γ(α + 1)

p
∑

i=0
aiTα

ǫ,
1

p
∑

j=1
Lj

ǫ}.

Therefore,

∣

∣

∣

∣

1

Γ(α)

∫ t

tk

(t − s)α−1f(s, (yn)s + ϕs)ds −
1

Γ(α)

∫ t

tk

(t − s)α−1f(s, ys + ϕs)ds

∣

∣

∣

∣

< ǫ, (3.7)

∣

∣

∣

∣

k−1
∑

i=0

1

Γ(α)

∫ ti+1

ti

(ti+1 − s)α−1f(s, (yn)s + ϕs)ds

−
k−1
∑

i=0

1

Γ(α)

∫ ti+1

ti

(ti+1 − s)α−1f(s, ys + ϕs)ds

∣

∣

∣

∣

≤

k−1
∑

i=0

1

Γ(α)

∫ ti+1

ti

(ti+1 − s)α−1 |f(s, (yn)s + ϕs) − f(s, ys + ϕs)| ds

≤

k−1
∑

i=0

a(ti)
(ti − ti−1)

α

Γ(α + 1)
sup

r∈[0,s]
|yn(r) − y(r)| ds < ǫ, (3.8)

and

∣

∣

∣

∣

k
∑

j=1

|Ij(yn(tj)) −

k
∑

j=1

|Ij(y(tj))

∣

∣

∣

∣

≤

k
∑

j=1

Lj |yn(tj) − y(tj)|

=

k
∑

j=1

Lj |yn(tj) − y(tj)| < ǫ. (3.9)
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In consequence, we can see that for a sufficiently large number n > n0,

|y(t) − Fy(t)|

≤ |y(t) − yn+1(t)| + |yn+1(t) − Fyn(t)| + |Fyn(t) − Fy(t)|

≤ |y(t) − yn+1(t)| +

∣

∣

∣

∣

yn+1(t) −

[

1

Γ(α)

∫ t

tk

(t − s)α−1f(s, (yn)s + ϕs)ds

+

k−1
∑

i=0

1

Γ(α)

∫ ti+1

ti

(ti+1 − s)α−1f(s, (yn)s + ϕs)ds +

k
∑

j=1

Ij(yn(tj))

]
∣

∣

∣

∣

+

∣

∣

∣

∣

1

Γ(α)

∫ t

tk

(t − s)α−1f(s, ys + ϕs)ds −
1

Γ(α)

∫ t

tk

(t − s)α−1f(s, (yn)s + ϕs)ds

∣

∣

∣

∣

+

∣

∣

∣

∣

k−1
∑

i=0

1

Γ(α)

∫ ti+1

ti

(ti+1 − s)α−1f(s, ys + ϕs)ds

−

k−1
∑

i=0

1

Γ(α)

∫ ti+1

ti

(ti+1 − s)α−1f(s, (yn)s + ϕs)ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

k
∑

j=1

Ij(yn(tj)) −

k
∑

j=1

Ij(y(tj))

∣

∣

∣

∣

∣

∣

.

Thus, in view of the convergence of the two previous and (3.7)-(3.9), one obtains that

|y(t) − Fy(t)| → 0, which implies that y is a solution of (1.1).

Finally, we prove the uniqueness of the solution. Assume that y, z : [0, T ] → R are two

solutions of (1.1). Note that

|y(t) − z(t)|

≤
1

Γ(α)

∫ t

tk

(t − s)α−1a(s) sup
r∈[0,s]

|y(r) − z(r)|ds

+
k−1
∑

i=0

1

Γ(α)

∫ ti+1

ti

(ti+1 − s)α−1a(s) sup
r∈[0,s]

|y(r) − z(r)|ds +
k

∑

j=1

Lj|y(tj) − z(tj)|

≤

(p+1
∑

i=1

aiT
α

Γ(α + 1)
+

p
∑

j=1

Lj

)

· ||y − z||.

According to the condition (H3), the uniqueness of the problem (1.1) follows immediately,

which completes the proof. �

Remark 3.1. Notice that by setting τ = 0, which means that the time delay vanished,

and in the case of ai = aj , Li = Lj(i ≤ j, i, j = 1, 2, . . . , p), then Theorem 3.1 reduces to

Theorem 4.3 of Agarwal [2]. In consequence, we extend the results in [2] in many aspects.
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4. An example

Consider the following fractional impulsive differential equations with time delay



















Dαx(t) = e−t|xt|
(9+et)(1+|xt|)

, t ∈ [0, 1], t 6= 1
2 , 0 < α < 1;

∆x(1
2) =

|x( 1

2

−
)|

3+|x( 1

2

−
)|
,

x(t) = φ(t) = e−t−1
2 , −τ ≤ t ≤ 0,

(4.1)

where 0 < α < 1, Γ(α+1) > 3
10 , τ is a nonnegative constant. xt(θ) = x(t+θ) for −τ ≤ θ ≤ 0

and 0 ≤ t ≤ 1.

Set

f(t, x) =
e−tx

(9 + et)(1 + x)
, I(x) =

x

3 + x
, for (t, x) ∈ [0, 1] × [0,+∞).

Now, we can see that

|f(t, ut) − f(t, vt)| =
e−t

(9 + et)

∣

∣

∣

∣

|ut| − |vt|

∣

∣

∣

∣

(1 + |ut|)(1 + |vt|)

≤
e−t

(9 + et)
|ut − vt|

≤ a(t) sup
s∈[0,t]

|u(s) − v(s)|,

where a(t) = e−t

(9+et) and a = sup
t∈[0,1]

a(t) = 1
10 , so the condition (H1) is satisfied.

On the other hand, we get that

|I(u) − I(v)| =
3|u − v|

(3 + u)(3 + v)
≤

1

3
|u − v|, u, v > 0,

which satisfies the condition (H2) of Theorem 3.1 with L = 1
3 .

By a direct computation, one obtains that

p+1
∑

i=1

aiT
α

Γ(α + 1)
+

p
∑

j=1

Lj =
2

10

1

Γ(α + 1)
+

1

3
< 1

and

|f(t, xt)| =
e−t

(9 + et)

|xt|

(1 + |xt|)
≤

e−t

9 + et
≤

1

10
, t ∈ [0, 1].

As a result, the equations in (4.1) satisfy all the hypotheses in Theorem 3.1, which guarantees

that (4.1) has a unique solution.

Remark 4.1 In the case of τ = 0 with the time delay vanishing, one deduces the slightly
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generalized form of the equations of (130)-(132) in [2]. However, the method for verifying

the existence and uniqueness introduced by the author of [2] is not valid here to consider

the equations with time delay.
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