
Electronic Journal of Qualitative Theory of Differential Equations

2012, No. 45, 1-23; http://www.math.u-szeged.hu/ejqtde/

Asymptotic behavior of positive solutions

of odd order Emden-Fowler type differential equations
in the framework of regular variation
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is studied in the framework of regular variation, under the assumptions that 0 < γ < 1
and q(t) : [a,∞) → (0,∞) is regularly varying function. It is shown that complete
and accurate information can be acquired about the existence of all possible positive
solutions and their asymptotic behavior at infinity.

Keywords: odd-order differential equation, intermediate solution, regularly varying
function, slowly varying function, asymptotic behavior of solutions

MSC 2010: 34C11, 26A12

1 Introduction

The objective of this paper is to make a detailed study of the existence and the asymptotic
behavior of positive solutions of the nonlinear odd-order differential equation

(A) x(2n+1)(t) + q(t)|x(t)|γsgn x(t) = 0,

where γ is a constant such that 0 < γ < 1 and q : [a,∞) → (0,∞) is a continuous function.
Equation (A) is often referred to as sublinear differential equation in this case, while equation (A)
for which γ > 1 is called superlinear differential equation.

∗Corresponding author.
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A solution x(t) of (A) existing in an infinite interval of the form [Tx,∞) is said to be proper if

sup{|x(t)| : t ≥ T} > 0 for any T ≥ Tx.

A proper solution is called oscillatory if it has an infinite sequence of zeros clustering at infinity
and nonoscillatory otherwise. Thus, a nonoscillatory solution is eventually positive or eventually
negative.

Sublinear equation (A) may have both oscillatory and nonoscillatory solutions on [t0,∞) for
some t0 > a.

Theorem A. Any proper solution x(t) of sublinear equation (A) is either oscillatory or satisfies

(1.1)
∣

∣x(i)(t)
∣

∣ ↓ 0 as t → ∞, i = 0, 1, . . . , 2n,

if and only if

(1.2)

∫ ∞

a

t(2n−1)γq(t)dt = ∞ .

Our main interest is in nonoscillatory solutions of equation (A). If x(t) satisfies (A), then so
does −x(t), and so in studying nonoscillatory solutions of (A) it suffices to restrict our attention
to its (eventually) positive solutions. Let P denote the set of eventually positive solutions of
equation (A), while Pk, 0 ≤ k ≤ 2n + 1 denote the set of all x ∈ P satisfying

(1.3)







x(i)(t) > 0, t ≥ Tx, 0 ≤ i ≤ k;

(−1)i−kx(i)(t) > 0, t ≥ Tx, k ≤ i ≤ 2n + 1.

By the well-known Kiguradze’s lemma (see [5]) every positive solution x(t) ∈ P falls into one
and only one class Pk with k such that k ∈ {0, 2, . . . , 2n}. In other words, the set P has the
decomposition

(1.4) P = P0 ∪ P2 ∪ . . . ∪ P2n .

Since x(i)(t), i ∈ {0, 1, · · · , 2n}, are eventually monotone, they tend to finite or infinite limits as
t → ∞, i.e.

lim
t→∞

x(i)(t) = ωj ∈ [0,∞] ⇐⇒ lim
t→∞

x(t)

ti
= const ∈ [0,∞], i ∈ {0, 1, · · · , 2n}.

If x ∈ Pk, then the set of its asymptotic values {ωi : i = 0, 1, 2, . . . , 2n} falls into one of the
following three cases:

(1.5)















ω0 = ω1 = · · · = ωk−1 = ∞, ωk ∈ (0,∞), ωk+1 = ωk+2 = · · · = ω2n = 0;

ω0 = ω1 = · · · = ωk−1 = ∞, ωk = ωk+1 = · · · = ω2n = 0;

ω0 = ω1 = · · · = ωk−2 = ∞, ωk−1 ∈ (0,∞), ωk = ωk+1 = · · · = ω2n = 0,

for k ∈ {2, 4, . . . , 2n}, or into one of the following two cases:

(1.6)

{

ω0 = ω1 = · · · = ω2n = 0;

ω0 ∈ (0,∞), ω1 = ω2 = · · · = ω2n = 0 ,
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in case k = 0.
For simplicity of notation we introduce the symbols ∼ and ≺ to denote the asymptotic equiv-

alence and the asymptotic dominance of two positive functions f(t) and g(t):

f(t) ∼ g(t), t → ∞ ⇐⇒ lim
t→∞

f(t)

g(t)
= 1,

f(t) ≺ g(t), t → ∞ ⇐⇒ g(t) ≻ f(t), t → ∞ ⇐⇒ lim
t→∞

g(t)

f(t)
= ∞ ,

and the classes of positive solutions:

P(Ij) =

{

x ∈ P : lim
t→∞

x(t)

tj
= const > 0

}

=
{

x ∈ P : x(t) ∼ cjt
j, t → ∞, cj > 0

}

, j ∈ {0, 1, · · · , 2n}

P(IIk) =

{

x ∈ P : lim
t→∞

x(t)

tk−1
= ∞ and lim

t→∞

x(t)

tk
= 0

}

=
{

x ∈ P : tk−1 ≺ x(t) ≺ tk, t → ∞
}

, k ∈ {2, 4, · · · , 2n} ,

P(II0) =
{

x ∈ P : lim
t→∞

x(t) = 0
}

=
{

x ∈ P : x(t) ≺ 1, t → ∞
}

,

All solutions of types P(Ij), j ∈ {0, 1, · · · , 2n} are collectively called primitive solutions, solutions
of types P(IIk), j ∈ {1, 2, · · · , 2n} will be referred to as intermediate solutions of (A), while
solutions of type P(II0) are called decaying solutions. Thus,

P0 = P(I0) ∪ P(II0),

Pk = P(Ik−1) ∪ P(IIk) ∪ P(Ik) for every k ∈ {2, 4, · · · , 2n},

which due to (1.4) means that we have the following classification of positive solutions of equation
(A) according to their asymptotic behavior at infinity:

P = P(I) ∪ P(II), where P(I) =
2n
⋃

j=0

P(Ij), P(II) =
n
⋃

i=0

P(II2i) .

Sharp criteria for the existence of solutions belonging to P(Ij), j ∈ {0, 1, · · · , 2n} and P(IIk),
k ∈ {2, 4, . . . , 2n} can be given explicitly (for the proof see Kiguradze, Chanturia [6, Theorem
16.9], Kusano, Naito [13] and Tanaka [14]).

Theorem 1.1 Equation (A) has a positive solution x(t) ∈ P(Ij), j ∈ {0, 1, · · · , 2n} if and only
if

(1.7) Qj =

∫ ∞

a

t2n−j(1−γ)q(t)dt < ∞.

Theorem 1.2 Sublinear equation (A) has a positive solution x(t) ∈ P(IIk), k ∈ {2, 4, . . . , 2n} if
and only if

(1.8) Qk =

∫ ∞

a

t2n−k(1−γ)q(t)dt < ∞
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and

(1.9) Qk−1 =

∫ ∞

a

t2n−(k−1)(1−γ)q(t)dt = ∞.

Therefore, the following questions naturally arise:

(i) If (1.2) holds, does (A) really possess decaying positive solutions? If so, what can be said
about the exact asymptotic decay of such solutions?

(ii) Is it possible to determine the accurate asymptotic behavior at infinity of intermediate
solutions of equation (A)?

The recent development of the study of second order differential equations by means of regular
variation (in the sense of Karamata) as demonstrated in the papers [3], [4], [7], [8], [11], [12] seem
to suggest the possibility of investigating the higher-order problems in the framework of regularly
varying functions, more specifically, by limiting ourselves to equation (A) with regularly varying
coefficient q(t). The objective of this paper is to show that theory of regular variation can provide
us with full information about the existence and asymptotic behavior of positive solutions of the
odd order differential equation (A) with regularly varying coefficient q(t).

Recently, Evtukhov and Samoilenko in [2] studied the differential equation

(1.10) x(m) = α0q(t)ϕ(x),

where α0 ∈ {−1, 1}, q : [a, ω) → (0,+∞) is a continuous function, −∞ < a < ω ≤ +∞
and ϕ : ∆Y0 → (0,+∞) is a continuous regularly varying function of index γ 6= 1 as y → Y0,
Y0 ∈ {−∞, 0,+∞} and ∆Y0 is a one sided neoghborhood of Y0. They gave sharp conditions for the
existence of Pω(Y0, λ0)−solutions possessing certain asymptotic behavior, where −∞ ≤ λ0 ≤ +∞.
Such solutions are defined on an interval [t0, ω) ⊂ (a, ω) and satisfy conditions

lim
t↑ω

y(t) = Y0, lim
t↑ω

y(k)(t) ∈ {−∞, 0,+∞}, (k = 1, 2, . . . , n − 1),

lim
t↑ω

[y(n−1)(t)]2

y(n)(t)y(n−2)(t)
= λ0 .(1.11)

The condition imposed on the function q(t) in main results of [2] means actually that it is either
of regular or rapid variation. However, this fact is neither used nor mentioned by Evtukhov
and Samoilenko, which makes their method of proofs different from ours and the statements on
solutions somewhat weaker than ours. Some comments along this line is given in the last section
of our paper.

2 Basic properties of regularly varying functions

The class of regularly varying functions was introduced in 1930 by J. Karamata by the following:

Definition 2.1 A measurable function f : [0,∞) → (0,∞) is said to be regularly varying of index
ρ ∈ R if

(2.1) lim
t→∞

f(λt)

f(t)
= λρ for all λ > 0.
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We denote by RV(ρ) the set of all regularly varying functions of index ρ. If in particular ρ = 0,
we often use SV instead of RV(0) and refer to members of SV as slowly varying functions. It is
clear that an RV(ρ)-function f(t) is expressed as f(t) = tρL(t) with L(t) ∈ SV, and so the class
SV of slowly varying functions is of fundamental importance in the theory of regular variation.

Definition 2.2 A function f(t) ∈ RV(ρ) is called a trivial regularly varying function of index ρ
if it is expressed in the form f(t) = tρL(t) with L(t) ∈ SV satisfying

lim
t→∞

L(t) = const > 0.

Otherwise f(t) is called a nontrivial regularly varying function of index ρ. The symbol tr-RV(ρ)
(or ntr-RV(ρ)) denotes the set of all trivial RV(ρ)-functions (or the set of all nontrivial RV(ρ)-
functions).

Typical examples of slowly varying functions are all functions tending to positive constants as
t → ∞,

N
∏

n=1

(logn t)αn , αn ∈ R, and exp

{

N
∏

n=1

(logn t)βn

}

, βn ∈ (0, 1),

where logn t denotes the n-th iteration of the logarithm.

The following result concerns operations which preserve slow variation.

Proposition 2.1 Let L(t), L1(t), L2(t) be slowly varying. Then, (L(t))α for any α ∈ R,
L1(t) + L2(t), L1(t)L2(t) and L1(L2(t)) (if L2(t) → ∞ as t → ∞) are slowly varying.

A slowly varying function may grow to infinity or decay to 0 as t → ∞. But its order of growth
or decay is severely limited as is shown in the following

Proposition 2.2 If L(t) ∈ SV, then for any ε > 0,

lim
t→∞

tεL(t) = ∞, lim
t→∞

t−εL(t) = 0.

The following result, termed Karamata’s integration theorem, will play a central role in estab-
lishing our main results in Sections 3.

Proposition 2.3 Let L(t) ∈ SV. Then,

(i) if α > −1,
∫ t

a

sαL(s)ds ∼
1

α + 1
tα+1L(t), t → ∞;

(ii) if α < −1,
∫ ∞

t

sαL(s)ds ∼ −
1

α + 1
tα+1L(t), t → ∞;

(iii) if α = −1,

l(t) =

∫ t

a

L(s)

s
ds ∈ SV and lim

t→∞

L(t)

l(t)
= 0,

and

m(t) =

∫ ∞

t

L(s)

s
ds ∈ SV and lim

t→∞

L(t)

m(t)
= 0 .
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The reader is referred to Bingham, Goldie and Teugels [1] for the most complete exposition
of theory of regular variation and its applications and to Marić [16] for the comprehensive survey
of results up to 2000 on the asymptotic analysis of second order linear and nonlinear ordinary
differential equations in the framework of regular variation.

3 Intermediate regularly varying solutions of (A)

We first study intermediate regularly varying solutions of equation (A) with regularly varying
coefficient q(t). Thus, in what follows the function q(t) is assumed to be regularly varying of
index σ expressed as

(3.1) q(t) = tσl(t), l(t) ∈ SV ,

and k is assumed to be even integer such that 2 ≤ k ≤ 2n. Let x(t) ∈ P(IIk) be a regularly
varying solution of (A). In view of (1.3) there exists positive constants c1, c2 and T > a such that

c1t
k−1 ≤ x(t) ≤ c2t

k, t ≥ T .

Thus, if the regularity index of x(t) is ρ, i.e. x(t) = tρξ(t), ξ(t) ∈ SV, then clearly ρ ∈ [k − 1, k]
and ξ(t) → ∞ or ξ(t) → 0 as t → ∞ according as ρ = k − 1 or ρ = k. Therefore, the class of
regularly varying solutions of type P(IIk), if non-empty, is divided into three types of subclasses
composed of regularly varying solutions belonging respectively to

(3.2) ntr-RV(k − 1), RV(ρ) with ρ ∈ (k − 1, k), ntr-RV(k) .

It will be shown that the class of regularly varying solutions of type P(IIk) of equation (A)
coincides with only one of the three subsets in (3.2), depending on the regularity index of q(t),
and that all members belonging to that subset has one and the same asymptotic behavior at
infinity.

Moreover, since x(t) ∈ P(IIk) ⊂ Pk, in view of (1.5), we may integrate (A) (2n+1−k)−times
from t to ∞ and then k−times from t0 to t, to get

(3.3) x(t) =

k−1
∑

j=0

x(j)(t0)
(t − t0)

j

j!
+

∫ t

t0

(t − s)k−1

(k − 1)!

∫ ∞

s

(r − s)2n−k

(2n − k)!
q(r)x(r)γdrds, t ≥ t0.

Using that x(t)/tk → 0, t → ∞, from (3.3) we obtain the integral asymptotic relation

(3.4)

∫ t

a

(t − s)k−1

(k − 1)!

∫ ∞

s

(r − s)2n−k

(2n − k)!
q(r)x(r)γdrds ∼ x(t), t → ∞,

which can be concerned as an ”approximation” of (3.3) at infinity. Common way of determining
the desired intermediate solution of (A) would be solving the integral equation (3.3) with the
help of fixed point technique. A closed convex subset X of C[t0,∞), which should be chosen in a
such way that appropriate integral operator F is a continuous self-map on X and send it into a
relatively compact subset of C[t0,∞), will be here found by means of regularly varying functions
of index ρ ∈ [k − 1, k] which satisfy the integral asymptotic relation (3.4).
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Let us interpret the conditions (1.8) and (1.9) in the language of regular variation. Since

∫ ∞

a

t2n−k(1−γ)q(t)dt =

∫ ∞

a

t2n−k(1−γ)+σl(t)dt

it is easy to see that

∫ ∞

a

t2n−k(1−γ)q(t)dt < ∞

⇐⇒ (i) σ < k(1 − γ) − 2n − 1, or

(ii) σ = k(1 − γ) − 2n − 1 and

∫ ∞

a

l(t)

t
dt =

∫ ∞

a

t2n−k(1−γ)q(t)dt < ∞.

Similarly,

∫ ∞

a

t2n−(k−1)(1−γ)q(t)dt = ∞

⇐⇒ (i) σ > (k − 1)(1 − γ) − 2n − 1, or

(ii) σ = (k − 1)(1 − γ) − 2n − 1 and

∫ ∞

a

l(t)

t
dt =

∫ ∞

a

t2n−(k−1)(1−γ)q(t)dt = ∞.

This observation, with the statement of Theorem 1.2, suggests us to carry out the study of
intermediate solutions belonging to the class P(IIk) by distinguishing the cases:

σ = (k − 1)(1 − γ) − 2n − 1 and Qk−1 = ∞,(3.5)

σ ∈
(

(k − 1)(1 − γ) − 2n − 1, k(1 − γ) − 2n − 1
)

,(3.6)

σ = k(1 − γ) − 2n − 1 and Qk < ∞.(3.7)

Actually, we verify that the above conditions, respectively, are necessary and sufficient for the
existence of three types of regularly varying solutions of (A) listed in (3.2) with precise asymptotic
behavior at infinity and that the regularity index ρ of such solution is uniquely determined by γ, n
and the regularity index σ of q(t).

For the proof of our main results we make use of the following lemma - general L’Hospital’s
rule (see [15]):

Lemma 3.1 Let f, g ∈ C1[T,∞) and

lim
t→∞

g(t) = ∞ and g′(t) > 0 for all large t

or
lim
t→∞

f(t) = lim
t→∞

g(t) = 0 and g′(t) < 0 for all large t .

Then

lim inf
t→∞

f ′(t)

g′(t)
≤ lim inf

t→∞

f(t)

g(t)
≤ lim sup

t→∞

f(t)

g(t)
≤ lim sup

t→∞

f ′(t)

g′(t)
.
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We first show two preparatory results.

Lemma 3.2 If q(t) ∈ RV(σ) and x(t) = tρξ(t), l(t) ∈ SV is a solution of (A) such that

tk−1 ≺ x(t) ≺ tk, t → ∞

for some k ∈ {2, 4, . . . , 2n}, then one of the following three statements holds:

(i) σ + ργ = k − 2n − 1, x(t) ∈ RV(k) and

(3.8) x(t) ∼
tk

(2n − k)! · k!

∫ ∞

t

s−1l(s)ξ(s)γds, t → ∞.

(ii) k − 2n − 2 < σ + ργ < k − 2n − 1, x(t) ∈ RV
(

σ + ργ + 2n + 1
)

and

(3.9) x(t) ∼
tσ+ργ+2n+1l(t)ξ(t)γ

PkQk

, t → ∞

where

Pk =

2n+1−k
∏

i=1

[−(σ + ργ + i)], Qk =

k
∏

i=1

(σ + ργ + 2n + 1 − k + i) .

(iii) σ + ργ = k − 2n − 2, x(t) ∈ RV(k − 1) and

(3.10) x(t) ∼
tk−1

(2n + 1 − k)! · (k − 1)!

∫ t

t0

s−1l(s)ξ(s)γds, t → ∞.

Proof. Since x(t) ∈ P(IIk) ⊂ Pk, due to (1.5), wi = x(i)(∞) = 0 for i ∈ {k, k + 1, . . . , 2n}, so
that function q(t)x(t)γ = tσ+ργ l(t)ξ(t)γ is 2n + 1 − k times integrable on [t0,∞), implying that
σ + ργ ≤ k − 2n − 1. Note that integration of (A) 2n + 1 − k times on [t,∞) gives

(3.11) x(k)(t) =

∫ ∞

t

(s − t)2n−k

(2n − k)!
sσ+ργ l(s)ξ(s)γds, t ≥ t0 .

We distinguish the following four cases:

(i) σ + ργ = k − 2n − 1,
(ii) k − 2n − 2 < σ + ργ < k − 2n − 1,
(iii) σ + ργ = k − 2n − 2 and
(iv) σ + ργ < k − 2n − 2.

(i) Let σ + ργ = k − 2n − 1. If k = 2n, then by (3.11) and Proposition 2.3 (iii)

(3.12) x(2n)(t) =

∫ ∞

t

s−1l(s)ξ(s)γds ∈ SV, t ≥ t0.

Integrating (3.12) 2n times on [t0, t] and applying Karamata’s integration theorem (Proposition
2.3 (i)) we obtain

(3.13) x(t) ∼
t2n

(2n)!

∫ ∞

t

s−1l(s)ξ(s)γds ∈ RV(2n), t → ∞.
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If k ∈ {2, 4, . . . , 2n − 2}, integration of (A) 2n − k times on [t,∞) gives

(3.14) −x(k+1)(t) ∼
t−1l(t)ξ(t)γ

(2n − k)!
, t → ∞,

which integrating once more on [t,∞) with the application of Karamata’s integration theorem
(Proposition 2.3 (ii)) yields

(3.15) x(k)(t) ∼
1

(2n − k)!

∫ ∞

t

s−1l(s)ξ(s)γds ∈ SV .

Further integration of (3.15) k times on [t0, t] gives (3.8). Noting that (3.8) with k = 2n is identical
to (3.13), we prove that in this case for any k ∈ {2, 4, . . . , 2n} regularly varying solution x(t) of
(A) satisfies (3.8).

(ii) Let k−2n−2 < σ+ργ < k−2n−1. Applying Karamata’s integration theorem (Proposition
2.3 (ii)) k times on the right-hand side of (3.11) we have

(3.16) x(k)(t) ∼
tσ+ργ+2n+1−kl(t)ξ(t)γ

Pk

, t → ∞.

Since σ +ργ +2n+1−k > −1 we may integrate (3.16) k times from t0 to t. Repeated application
of Proposition 2.3 (i) then shows that x(t) satisfies (3.9). Thus, by (3.9) x(t) ∈ RV(σ+ργ+2n+1),
where σ + ργ + 2n + 1 ∈ (k − 1, k).

(iii) Let σ + ργ = k − 2n − 2. Then, (3.16) becomes

x(k)(t) ∼
t−1l(t)ξ(t)γ

(2n + 1 − k)!
, t → ∞ ,

and integrating this k times on [t0, t] we see via Karamata’s integration theorem that x(t) satisfies
(3.10).

(iv) Let σ + ργ < k − 2n − 2. This case is impossible because since σ + ργ + 2n + 1− k < −1
the right-hand side of (3.16) is integrable on [t0,∞), contradicting the fact that x(k−1)(∞) = ∞.
⊠

Lemma 3.3 Suppose that q(t) ∈ RV(σ). Let k ∈ {2, 4, . . . , 2n} and let constant ρ be defined by

(3.17) ρ =
σ + 2n + 1

1 − γ
.

(i) If (3.5) holds, the function Xk(t) ∈ RV(k − 1) defined on [a,∞) by

(3.18) Xk(t) = tk−1

[

1 − γ

(2n + 1 − k)! · (k − 1)!

∫ t

a

s2n−(k−1)(1−γ)q(s)ds

]
1

1−γ

,

satisfies the asymptotic relation (3.4).

(ii) If (3.6) holds, the function Yk(t) ∈ RV(ρ) defined on [a,∞) by

(3.19) Yk(t) =

[

t2n+1q(t)

L(ρ, k)

]
1

1−γ
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where

(3.20) L(ρ, k) =
k−1
∏

i=0

(ρ − i) ·
2n
∏

i=k

(i − ρ) .

satisfies the asymptotic relation (3.4).

(iii) If (3.7) holds, the function Zk(t) ∈ RV(k) defined on [a,∞) by

(3.21) Zk(t) = tk
[

1 − γ

(2n − k)! · k!

∫ ∞

t

s2n−k(1−γ)q(s)ds

]
1

1−γ

,

satisfies the asymptotic relation (3.4).

Proof. (A) Let (3.5) holds. Then, using that Xk(t) = tk−1ξk(t) ∈ RV(k − 1) where

ξk(t) =

[

1 − γ

(2n + 1 − k)! · (k − 1)!

∫ t

a

s2n−(k−1)(1−γ)q(s)ds

]
1

1−γ

∈ SV

and q(t)Xk(t)
γ = tk−2−2nl(t)ξk(t)

γ ∈ RV(k − 2 − 2n), by Proposition 2.3 (ii), we have

∫ ∞

t

(s − t)2n−k

(2n − k)!
q(s)Xk(s)

γds =

∫ ∞

t

(s − t)2n−k

(2n − k)!
sk−2−2nl(s)ξk(s)

γds

∼
t−1l(t)ξk(t)

γ

(2n + 1 − k)!
, t → ∞ .(3.22)

Integration of (3.22) on [a, t] then implies

(3.23)

∫ t

a

∫ ∞

s

(r − s)2n−k

(2n − k)!
q(r)Xk(r)

γdrds ∼

∫ t

a

s−1l(s)ξk(s)
γ

(2n + 1 − k)!
ds ∈ SV ,

so Karamata’s integration theorem applied to (3.23) k − 1 times gives

∫ t

a

(t − s)k−1

(k − 1)!

∫ ∞

s

(r − s)2n−k

(2n − k)!
q(r)Xk(r)

γdrds ∼

∫ t

a

(t − s)k−2

(k − 2)!

∫ s

a

r−1l(r)ξk(r)
γ

(2n + 1 − k)!
drds

∼
tk−1

(k − 1)!

∫ t

a

s−1l(s)ξk(s)
γ

(2n + 1 − k)!
ds, t → ∞ .(3.24)

Since by straightforward computations we get

(3.25)

∫ t

a

s−1l(s)ξk(s)
γ

(2n + 1 − k)!
ds =

1

(2n + 1 − k)!

∫ t

a

s2n−(k−1)(1−γ)q(s)ξk(s)
γds = (k − 1)! ξk(t) ,

asymptotic relation (3.4) for Xk(t) follows instantly by combining (3.24) and (3.25).

(B) Let σ ∈
(

(k − 1)(1 − γ) − 2n − 1, k(1 − γ) − 2n − 1
)

. Using that

Yk(t) =
[

L(ρ, k)−1 t2n+1q(t)
]

1
1−γ

= tρ
[

L(ρ, k)−1l(t)
]

1
1−γ
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and
q(t)Yk(t)

γ = tσ+ργ
(

L(ρ, k)
)−

γ

1−γ l(t)
1

1−γ = tρ−2n−1
(

L(ρ, k)
)−

γ

1−γ l(t)
1

1−γ ,

we obtain for t → ∞

∫ ∞

t

(s − t)2n−k

(2n − k)!
q(s)Yk(s)

γds ∼

(

2n
∏

i=k

(i − ρ)

)−1

tρ−k
(

L(ρ, k)
)−

γ

1−γ l(t)
1

1−γ

Nothing that ρ − k > −1 and integrating the above k times on [a, t] then gives

∫ t

a

(t − s)k−1

(k − 1)!

∫ ∞

s

(r − s)2n−k

(2n − k)!
q(r)Yk(r)

γdrds

∼

(

2n
∏

i=k

(i − ρ)

)−1
(

L(ρ, k)
)−

γ

1−γ

∫ t

a

(t − s)k−1

(k − 1)!
sρ−kl(s)

1
1−γ ds

∼

(

2n
∏

i=k

(i − ρ) ·
k−1
∏

i=0

(ρ − i)

)−1
(

L(ρ, k)
)−

γ

1−γ tρl(t)
1

1−γ = Yk(t), t → ∞ .

(C) Let (3.7) hold. Then, Zk(t) ∈ RV(k) is expressed as

Zk(t) = tkηk(t), ηk(t) =

[

1 − γ

(2n − k)! · k!

∫ ∞

t

s2n−k(1−γ)q(s)ds

]
1

1−γ

∈ SV

and q(t)Zk(t)
γ = tk−2n−1l(t)ηk(t)

γ ∈ RV(k − 2n − 1). Applying Karamata’s integration theorem
we have

∫ ∞

t

(s − t)2n−k

(2n − k)!
q(s)Zk(s)

γds =

∫ ∞

t

(s − t)2n−k

(2n − k)!
sk−2n−1l(s)ηk(s)

γds

∼

∫ ∞

t

s−1l(s)ηk(s)
γ

(2n − k)!
ds ∈ SV , t → ∞ .(3.26)

Using that t−1l(t) = t2n−k(1−γ)q(t) and the definition of ηk(t) we calculate
∫ ∞

t

s−1l(s)ηk(s)
γ

(2n − k)!
ds

=

∫ ∞

t

s2n−k(1−γ) q(s)

(2n − k)!

[

1 − γ

(2n − k)! · k!

∫ ∞

t

s2n−k(1−γ)q(s)ds

]
γ

1−γ

ds(3.27)

= k!

[

1 − γ

(2n − k − 1)! · k!

∫ ∞

t

s2n−k(1−γ)q(s)ds

]
1

1−γ

= k!ηk(t) .

Integration of (3.26) k times on [a, t], with the help of Proposition 2.3 (i) and (3.27), gives

∫ t

a

(t − s)k−1

(k − 1)!

∫ ∞

s

(r − s)2n−k

(2n − k)!
q(r)Zk(r)

γdrds ∼
tk

k!

∫ ∞

t

s−1l(s)ηk(s)
γ

(2n − k)!
ds

∼ tk ηk(t) = Zk(t), t → ∞ . �

Now, we state and prove the main results of this section establishing necessary and sufficient
condition for the existence of regularly varying solution belonging to the classes listed in (3.2).
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Theorem 3.1 Suppose that q(t) ∈ RV(σ). Equation (A) possesses nontrivial RV(k−1)−solutions
if and only if (3.5) holds, in which case the asymptotic behavior of any such solution x(t) is
governed by the unique formula

(3.28) x(t) ∼ tk−1

[

1 − γ

(2n + 1 − k)! · (k − 1)!

∫ t

a

s2n−(k−1)(1−γ)q(s)ds

]
1

1−γ

, t → ∞.

Theorem 3.2 Let ρ and L(ρ, k) be constants defined, respectively, by (3.17) and (3.20) and sup-
pose that q(t) ∈ RV(σ). Equation (A) possesses regularly varying solutions of index ρ ∈ (k − 1, k)
if and only if (3.6) holds, and the asymptotic behavior of any such solution x(t) is governed by
the unique formula

(3.29) x(t) ∼

[

t2n+1q(t)

L(ρ, k)

]
1

1−γ

, t → ∞.

Theorem 3.3 Suppose that q(t) ∈ RV(σ). Equation (A) possesses nontrivial RV(k)−solutions if
and only if (3.7) holds, in which case the asymptotic behavior of any such solution x(t) is governed
by the unique formula

(3.30) x(t) ∼ tk
[

1 − γ

(2n − k)! · k!

∫ ∞

t

s2n−k(1−γ)q(s)ds

]
1

1−γ

, t → ∞.

Proof of the ”only if” part of Theorem 3.1: Suppose that x(t) ∈ ntr − RV(k − 1).
Then, ρ = k − 1 and x(t) = tk−1ξ(t), ξ(t) ∈ SV such that ξ(t) → ∞ as t → ∞. It is clear that
only case (iii) of Lemma 3.2 is admissible for x(t). Therefore, σ = (k − 1)(1 − γ) − 2n − 1 and
x(t) satisfies (3.10) for all k ∈ {2, 4, . . . , 2n}, which is equivalent to

(3.31) ξ(t) ∼
1

(2n + 1 − k)! · (k − 1)!

∫ t

t0

s−1l(s)ξ(s)γds, t → ∞.

The right-hand side of (3.31), denoted by η(t), satisfies the differential asymptotic relation

(3.32) η(t)−γη′(t) ∼
t−1l(t)

(2n + 1 − k)! · (k − 1)!
=

t2n−(k−1)(1−γ)q(t)

(2n + 1 − k)! · (k − 1)!
, t → ∞.

From (3.32), since η(t) → ∞, t → ∞, we conclude that Qk−1 = ∞ and

η(t) ∼

[

1 − γ

(2n + 1 − k)! · (k − 1)!

∫ t

t0

s2n−(k−1)(1−γ)q(s)ds

]
1

1−γ

∼

[

1 − γ

(2n + 1 − k)! · (k − 1)!

∫ t

a

s2n−(k−1)(1−γ)q(s)ds

]
1

1−γ

, t → ∞,

showing the truth of asymptotic formula (3.28) for x(t).

Proof of the ”only if” part of Theorem 3.2: Suppose that x(t) ∈ RV(ρ) for some
ρ ∈ (k−1, k) is the solution of (A). Then, clearly only the statement (ii) of Lemma 3.2 could hold.
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Thus, we must have ρ = σ + ργ + 2n + 1, which implies that ρ is given by (3.17). This combined
with ρ ∈ (k − 1, k) determines the range of σ to be

σ ∈ ((k − 1)(1 − γ) − 2n − 1, k(1 − γ) − 2n − 1).

Using (3.17) we have PkQk = L(ρ, k) , and (3.9) can be rewritten as

x(t) ∼
t2n+1q(t)x(t)γ

L(ρ, k)
, t → ∞,

so that asymptotic formula for x(t) is be given by (3.29).

Proof of the ”only if” part of Theorem 3.3: Suppose that x(t) ∈ ntr − RV(k).
Then, ρ = k and x(t) = tkξ(t), ξ(t) ∈ SV such that ξ(t) → 0 as t → ∞. For such x(t) only
case (i) in Lemma 3.2 is possible and x(t) must satisfy the asymptotic relation (3.8) for each
k ∈ {2, 4, . . . , 2n}. This means that σ = k(1 − γ) − 2n − 1 and from (3.8) we have

(3.33) ξ(t) ∼
1

(2n − k)! · k!

∫ ∞

t

s−1l(s)ξ(s)γds, t → ∞.

Let η(t) denote the right-hand side of (3.33). Then, (3.33) is transformed into the differential
asymptotic relation

(3.34) −η(t)−γη′(t) ∼
t−1l(t)

(2n − k)! · k!
=

t2n−k(1−γ)q(t)

(2n − k)! · k!
, t → ∞.

Noting that η(t) → 0, t → ∞, we see from (3.34) that Qk < ∞ and integration of (3.34) on [t,∞)
gives

η(t) ∼

[

1 − γ

(2n − k)! · k!

∫ ∞

t

s2n−k(1−γ)q(s)ds

]
1

1−γ

, t → ∞,

which implies the validity of (3.30).

Proof of the ”if” part of Theorems 3.1, 3.2 and 3.3: Suppose that either (3.5) or
(3.6) or (3.7) holds for q(t) ∈ RV(σ) and let ρ, L(ρ, k) be defined by (3.17), (3.20). We perform
simultaneous proof of all three theorems, so to simplify notation we introduce the function Φk(t)
on [a,∞) by

Φk(t) =























































tk−1

[

1 − γ

(2n + 1 − k)! · (k − 1)!

∫ t

a

s2n−(k−1)(1−γ)q(s)ds

]
1

1−γ

, if (3.5) holds;

[

t2n+1q(t)

L(ρ, k)

]
1

1−γ

, if (3.6) holds;

tk
[

1 − γ

(2n − k)! · k!

∫ ∞

t

s2n−k(1−γ)q(s)ds

]
1

1−γ

, if (3.7) holds .

By Lemma 3.3 the function Φk(t) satisfies (3.4). Thus, there exists T1 > a such that

(3.35)

∫ t

T1

(t − s)k−1

(k − 1)!

∫ ∞

s

(r − s)2n−k−1

(2n − k − 1)!
q(r)Φk(r)

γdrds ≤ 2Φk(t), t ≥ T1.
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Let such a T1 be fixed. From (3.4) we have

∫ t

T1

(t − s)k−1

(k − 1)!

∫ ∞

s

(r − s)2n−k−1

(2n − k − 1)!
q(r)Φk(r)

γdrds ∼ Φk(t), t → ∞,

so that there exists T2 > T1 such that

(3.36)

∫ t

T1

(t − s)k−1

(k − 1)!

∫ ∞

s

(r − s)2n−k−1

(2n − k − 1)!
q(r)Φk(r)

γdrds ≥
Φk(t)

2
, t ≥ T2.

Let T2 > T1 be a fixed constant such that (3.36) hold, m ∈ (0, 1) be a fixed positive constant such
that

(3.37) m1−γ ≤
1

2
,

and choose a constant M > 1 such that

(3.38) M1−γ ≥ 4 and M ≥ 2m
Φk(T2)

Φk(T1)
.

We define the set X to be the set of continuous functions x(t) on [T1,∞) satisfying

(3.39)

{

mΦk(T2) ≤ x(t) ≤ MΦk(t), for T1 ≤ t ≤ T2 ,
mΦk(t) ≤ x(t) ≤ MΦk(t), for t ≥ T2 .

It is clear that X is a closed convex subset of the locally convex space C[T1,∞) equipped with the
topology of uniform convergence on compact subintervals of [T1,∞). We now define the integral
operator

(3.40) Fx(t) = mΦk(T2) +

∫ t

T1

(t − s)k−1

(k − 1)!

∫ ∞

s

(r − s)2n−k−1

(2n − k − 1)!
q(r)x(r)γdrds, t ≥ T1

and let it act on the set X defined above. It can be shown that F is a self-map on X and sends
X continuously on a relatively compact subset of C[T1,∞).

(a) F(X ) ⊂ X : Let x(t) ∈ X . Using (3.38), (3.39) and (3.40) we get

Fx(t) ≤ mΦk(T2) +
Mγ

2

∫ t

T1

(t − s)k−1

(k − 1)!

∫ ∞

s

(r − s)2n−k−1

(2n − k − 1)!
q(r)Φk(r)

γdrds

≤
M

2
Φk(T1) +

M

2
Φk(t) ≤

M

2
Φk(t) +

M

2
Φk(t) = M Φk(t), t ≥ T1 .

On the other hand, using (3.37), (3.39) and (3.40) we have

Fx(t) ≥ m Φk(T2) for T1 ≤ t ≤ T2 ,

and

Fx(t) ≥ mγ

∫ t

T1

(t − s)k−1

(k − 1)!

∫ ∞

s

(r − s)2n−k−1

(2n − k − 1)!
q(r)Φk(r)

γdrds

≥ mγ Φk(t)

2
≥ m Φk(t), t ≥ T2 .
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This shows that Fx(t) ∈ X , that is, F maps X into itself.

(b) F(X ) is relatively compact: The inclusion F(X ) ⊂ X implies that F(X ) is locally uniformly
bounded on [T1,∞). For all x(t) ∈ X , we have from (3.40)

0 ≤ (Fx)′(t) ≤ Mγ

∫ t

T1

(t − s)k−2

(k − 2)!

∫ ∞

s

(r − s)2n−k−1

(2n − k − 1)!
q(r)Φk(r)

γdrds, t ≥ T1.

Thus, it follows that F(X ) is locally equicontinuous on [T1,∞). The relative compactness of the
set X then follows from the Arzela-Ascoli lemma.

(c) F is a continuous map on X : Let {xn(t)} be a sequence in X converging to x(t) ∈ X as
n → ∞ on any compact subinterval of [T1,∞). We need to verify that Fxn(t) → Fx(t) uniformly
on compact subintervals of [T1,∞). From the inequality

|Fxn(t) −Fx(t)| ≤

∫ t

T1

(t − s)k−1

(k − 1)!

∫ ∞

s

(r − s)2n−k−1

(2n − k − 1)!
q(r)|xn(r)γ − x(r)γ |drds

≤
tk

k!

∫ ∞

T1

(s − T1)
2n−k−1

(2n − k − 1)!
q(s)|xn(s)γ − x(s)γ |drds, t ≥ T1.

using that q(t)
∣

∣xn(t)γ −x(t)γ | → 0 as n → ∞ at each point t ∈ [T1,∞) and q(t)
∣

∣xn(t)γ −x(t)γ | ≤
Mγq(t)Φk(t)

γ for t ≥ T1, while q(t)Φk(t)
γ is integrable on [T1,∞), by the application of the

Lebesgue dominated convergence theorem, we conclude that Fxn(t) → Fx(t) uniformly on any
compact subinterval of [T1,∞) as n → ∞, which proves the continuity of F .

Thus all the hypotheses of the Schauder-Tychonoff fixed point thereom are fulfilled for F , and
so there exists an element x(t) ∈ X such that x(t) = Fx(t), t ≥ T1, which satisfies the integral
equation

(3.41) x(t) = m Φk(T2) +

∫ t

T1

(t − s)k−1

(k − 1)!

∫ ∞

s

(r − s)2n−k−1

(2n − k − 1)!
q(r)x(r)γdrds, t ≥ T1 .

Differentiating the above 2n + 1 times we conclude that x(t) is a solution of (A) on [T2,∞)
satisfying

(3.42) m Φk(t) ≤ x(t) ≤ M Φk(t), for t ≥ T2 .

Therefore,

(3.43) 0 < lim inf
t→∞

x(t)

Φk(t)
≤ lim sup

t→∞

x(t)

Φk(t)
< ∞ .

Since the function Φk(t) satisfies (3.4), denoting

(3.44) φk(t) =

∫ t

a

(t − s)k−1

(k − 1)!

∫ ∞

s

(r − s)2n−k

(2n − k)!
q(r)Φk(r)

γdrds,

we have that Φk(t) ∼ φk(t), t → ∞, so that from (4.12)

0 < lim inf
t→∞

x(t)

φk(t)
≤ lim sup

t→∞

x(t)

φk(t)
< ∞ .
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By application of Lemma 3.1 2n + 1 times, using (3.44) we have

L = lim sup
t→∞

x(t)

φk(t)
≤ lim sup

t→∞

x′(t)

φ′
k(t)

≤ . . . ≤ lim sup
t→∞

x(2n+1)(t)

φ
(2n+1)
k (t)

= lim sup
t→∞

q(t)x(t)γ

q(t)Φk(t)γ
=

(

lim sup
t→∞

x(t)

Φk(t)

)γ

=

(

lim sup
t→∞

x(t)

φk(t)

)γ

= Lγ .

Since γ < 1, from above we conclude that

(3.45) 0 < L ≤ 1 .

Similary, we can see that

l = lim inf
t→∞

x(t)

φk(t)

satisfies

(3.46) 1 ≤ l < ∞ .

From (3.45) and (3.46) we obtain that l = L = 1, which means that

x(t) ∼ φk(t) ∼ Φk(t), t → ∞ ,

and ensures that x(t) is a regularly varying solution of (A) with requested regularity index and
the asymptotic behavior (3.28), (3.29), (3.30) corresponding to the case (3.5), (3.6), (3.7). ⊠

4 Decaying regularly varying solutions of (A)

This section is devoted to the study of regularly varying solutions belonging to P(II0), that is
those solutions which decay to 0 as t → ∞. It is assumed that coefficient q(t) is regularly varying
of index σ and expressed as in (3.1). Let x(t) ∈ P(II0) be a regularly varying solution of (A)
expressed as x(t) = tρξ(t), ξ(t) ∈ SV. In view of (1.3) there exists positive constants c and T > a
such that

x(t) ≤ c, t ≥ T ,

so that the regularity index ρ of x(t) clearly satisfies ρ ≤ 0, while if ρ = 0 slowly varying part ξ(t)
must satisfy ξ(t) → 0 as t → ∞. We will prove two theorems stated below which show that the
totality of decaying regularly varying solutions of (A) always consists of only one class:

(4.1) ntr-RV(0) or RV(ρ) for some ρ < 0.

Theorem 4.1 Suppose that q(t) ∈ RV(σ). Equation (A) possesses nontrivial slowly varying
solutions if and only if

(4.2) σ = −2n − 1 and Q0 =

∫ ∞

a

t2nq(t)dt < ∞,

in which case the asymptotic behavior of any such solution x(t) is governed by the unique asymp-
totic formula

(4.3) x(t) ∼

[

1 − γ

(2n)!

∫ ∞

t

s2nq(s)ds

]
1

1−γ

, t → ∞.
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Proof. The ”only if” part: Let x(t) ∈ ntr − SV be a solution of (A) on [t0,∞) belonging to
P(II0). Due to (1.5), wi = x(i)(∞) = 0 for i = 0, 1, . . . , 2n, so we may integrate (A) (2n+1)−times
from t to ∞ to get

(4.4) x(t) =

∫ ∞

t

(s − t)2n

(2n)!
q(s)x(s)γds, t ≥ t0.

This means that function q(t)x(t)γ = tσl(t)x(t)γ is 2n + 1 times integrable on [t0,∞), so that σ
must satisfy σ ≤ −2n − 1. If σ < −2n − 1, then repeated application of Karamata’s integration
theorem yields

x(t) ∼
tσ+2n+1l(t)x(t)γ

Sk

∈ RV(σ + 3), Sk =

2n+1
∏

j=1

[−(σ + i)]

which means that x(t) is regularly varying of index σ + 2n + 1 < 0, contradicting the assumption
that x(t) ∈ ntr − SV. Thus, σ = −2n − 1 and using Proposition 2.3 (ii) and (iii) we obtain from
(4.4)

(4.5) x(t) ∼
1

(2n)!

∫ ∞

t

s−1l(s)x(s)γds, t → ∞.

Let y(t) denote the right-hand side of (4.5), which is transformed into differential relation

(4.6) −y(t)γy′(t) ∼
t−1l(t)

(2n)!
=

t2nq(t)

(2n)!
, t → ∞ .

Because in view of (4.5) y(t) → 0, t → ∞, (4.6) is integrable on [t,∞), implying Q0 < ∞ and
establishing the asymptotic formula for y(t)

y(t) ∼

[

1 − γ

(2n)!

∫ ∞

t

s2nq(s)ds

]
1

1−γ

, t → ∞ ,

which ensures the validity of the asymptotic formula (4.3) for x(t).

The ”if” part: Suppose that (4.2) holds and define the function

(4.7) X0(t) =

[

1 − γ

(2n)!

∫ ∞

t

s2nq(s)ds

]
1

1−γ

∈ SV .

We first show that X0(t) satisfies the integral asymptotic relation

(4.8) x(t) ∼

∫ ∞

t

(s − t)2n

(2n)!
q(s)x(s)γds, t → ∞ .

In fact, q(t)X0(t)
γ = t−2n−1l(t)X0(t)

γ , so integration 2n times on [t,∞) gives

∫ ∞

t

(s − t)2n

(2n)!
q(s)X0(s)

γds ∼

∫ ∞

t

s−1l(s)X0(s)
γ

(2n)!
ds

=
1

(2n)!

∫ ∞

t

s2nq(s)X0(s)
γ ds = X0(t), t → ∞.
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Thus, there exists T > a such that

X0(t)

2
≤

∫ ∞

t

(s − t)2n

(2n)!
q(s)X0(s)

γds ≤ 2X0(t), t ≥ T .

Considering the integral operator

(4.9) Gx(t) =

∫ ∞

t

(s − t)2n

(2n)!
q(s)x(s)γds

we may verify that G is a continuous self-map on the set Y consisting of continuous functions x(t)
on [T,∞) satisfying

(4.10) kX0(t) ≤ x(t) ≤ KX0(t), t ≥ T,

where k < 1 and K > 1 are positive constants satisfying

(4.11) k1−γ ≤
1

2
, K1−γ ≥ 2 ,

and that G sends Y into relatively compact subset of C[T,∞). Thus, G has a fixed point x(t) ∈ Y,
which is a solution of (A) satisfying (4.10), implying that

(4.12) 0 < lim inf
t→∞

x(t)

X0(t)
≤ lim sup

t→∞

x(t)

X0(t)
< ∞ .

Denoting

φ0(t) =

∫ ∞

t

(s − t)2n

(2n)!
q(s)X0(s)

γds

and using that X0(t) ∼ φ0(t), t → ∞, we get

0 < lim inf
t→∞

x(t)

φ0(t)
≤ lim sup

t→∞

x(t)

φ0(t)
< ∞ .

Then, proceeding exactly as in the proof of the ”if” part of Theorems 3.1-3.3, with application of
Lemma 3.1, we conclude that x(t) ∼ φ0(t) ∼ X0(t), t → ∞. This completes the proof of Theorem
4.1. ⊠

Theorem 4.2 Suppose that q(t) ∈ RV(σ). Equation (A) possesses regularly varying solutions of
index ρ < 0 if and only if

(4.13) σ < −2n − 1,

in which case ρ is determined by (3.17) and the asymptotic behavior of any such solution x(t) is
governed by the unique asymptotic formula

(4.14) x(t) ∼

[

t2n+1q(t)

D(ρ)

]
1

1−γ

, t → ∞,

where

(4.15) D(ρ) =
2n
∏

i=0

(i − ρ) .
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Proof. The ”only if” part: Let x(t) ∈ RV(ρ), ρ < 0 be a solution of (A) on [t0,∞). Integration
of (A) (2n + 1)−times from t to ∞ gives

(4.16) x(t) =

∫ ∞

t

(s − t)2n

(2n)!
q(s)x(s)γds =

∫ ∞

t

(s − t)2n

(2n)!
sσ+ργ l(s)ξ(s)γds, t ≥ t0.

Convergence of the last integral in (4.16) implies σ+ργ ≤ −2n−1. The possibility σ+ργ = −2n−1
is excluded, because otherwise from Proposition 2.3 applied to (4.16) we would have (4.5), which
means that x(t) ∈ SV, contradicting the assumption that x(t) is regularly varying of negative
index. Therefore, σ + ργ < −2n − 1 and repeated application of Karamata’s integration theorem
to the right-hand side of (4.16) yields

(4.17) x(t) ∼
tσ+ργ+2n+1l(t)ξ(t)γ

Tk

, t → ∞, where Tk =

2n+1
∏

j=1

[−(σ + ργ + i)],

which shows that regularity index of x(t) is ρ = σ + ργ + 2n + 1 < 0. Consequently, ρ is given by
(3.17) and σ must satisfy σ < −2n − 1. Using that

tσ+ργ+2n+1l(t)ξ(t)γ = t2n+1q(t)x(t)γ and Tk =

2n+1
∏

j=1

(2n + 1 − i − ρ) =

2n
∏

i=0

(j − ρ) = D(ρ),

(4.17) can be transformed into

x(t) ∼
t2n+1q(t)x(t)γ

D(ρ)
, t → ∞,

which implies the asymptotic relation (4.14).

The ”if” part: Suppose that (4.13) holds and define the function

(4.18) Y0(t) =

[

t2n+1q(t)

D(ρ)

]
1

1−γ

∈ RV(ρ) .

We verify that Y0(t) satisfies the integral asymptotic relation (4.8). Expressing Y0(t) as

Y0(t) = tρl(t)
1

1−γ D(ρ)
− 1

1−γ ,

we have

(4.19) q(t)Y0(t)
γ = tσ+ργ l(t)

1
1−γ D(ρ)−

γ

1−γ = tρ−2n−1l(t)
1

1−γ D(ρ)−
γ

1−γ .

Integration of (4.19) 2n + 1 times on [t,∞) with application of Proposition 2.3-(ii) then implies
the integral asymptotic relation for Y0(t):

∫ ∞

t

(s − t)2n

(2n)!
q(s)Y0(s)

γds ∼ D(ρ)−
γ

1−γ

tρl(t)
1

1−γ

D(ρ)
= Y0(t), t → ∞ .

Then, proceeding exactly as in the proof of the ”if” part of Theorem 4.1, replacing X0(t) with
Y0(t), solution x(t) of equation (A) such that

mY0(t) ≤ x(t) ≤ MY0(t), for large t,

is obtained by the application of the Schauder-Tychonoff theorem, while application of Lemma
3.1 proves, afterwards, that the solution x(t) is regularly varying of index ρ < 0 and enjoys the
precise asymptotic behavior (4.14). ⊠
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5 Overall structure of regularly varying solutions of equation (A)

On the basis of our main results presented in Section 3 and 4, combined with Theorems 1.1,
1.2, the structure of regularly varying solutions of equation (A) with regularly varying coefficient
q(t) ∈ RV(σ) is determined in full detail.

Denote with R the set of all regularly varying solutions of (A), and define the subsets

R(ρ) = R∩ RV(ρ), tr −R(ρ) = R∩ tr-RV(ρ), ntr −R(ρ) = R ∩ ntr-RV(ρ).

Using notation γm = m(1 − γ) − 2n − 1, m ∈ {0, 1, 2, . . . , 2n}, to make the full analysis we
separately consider case σ < γ0 = −2n − 1 together with central cases

σ ∈ (γ0, γ1) ∪ (γ2, γ3) ∪ . . . ∪ (γ2n−2, γ2n−1) or σ ∈ (γ1, γ2) ∪ (γ3, γ4) ∪ . . . ∪ (γ2n−1, γ2n),

and border cases
σ ∈ {γ0, γ2, . . . , γ2n} or σ ∈ {γ1, γ3, . . . , γ2n−1} .

Structure of regularly varying solutions of equation (A):

(1) If σ < γ0, then

R =
2n
⋃

j=0

tr −R(j) ∪R

(

σ + 2n + 1

1 − γ

)

;

(2) If σ = γ0 and Q0 < ∞, then

R =

2n
⋃

j=0

tr −R(j) ∪ ntr −R(0);

(3) If σ = γ0 and Q0 = ∞, then

R =

2n
⋃

j=1

tr −R(j);

(4) If σ = γm for some m ∈ {1, 3, . . . , 2n − 1} and Qm < ∞, then

R =
2n
⋃

j=m

tr −R(j);

(5) If σ = γm for some m ∈ {1, 3, . . . , 2n − 1} and Qm = ∞, then

R =

2n
⋃

j=m+1

tr −R(j) ∪ ntr −R(m);
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(6) If σ ∈ (γm−1, γm) for some m ∈ {2, 4, . . . , 2n − 2}, then

R =

2n
⋃

j=m

tr −R(j) ∪R

(

σ + 2n + 1

1 − γ

)

;

(7) If σ ∈ (γm, γm+1) for some m ∈ {0, 2, . . . , 2n − 2}, then

R =
2n
⋃

j=m+1

tr −R(j);

(8) If σ = γm for some m ∈ {2, 4, . . . , 2n} and Qm < ∞, then

R =

2n
⋃

j=m

tr −R(j) ∪ ntr −R(m);

(9) If σ = γm for some m ∈ {2, 4, . . . , 2n − 2} and Qm = ∞, then

R =
2n
⋃

j=m+1

tr −R(j);

(10) If σ = γ2n and Q2n = ∞, then R = ∅;

(11) If σ > γ2n = −1 − 2nγ, then R = ∅.

In connection with Theorem A stated in the Introduction a question is raised as to the existence
of decaying positive solutions for the sublinear equation (A) in the case condition (1.2) is satisfied.
Suppose that q(t) ∈ RV(σ) satisfies condition . Then, since σ ≥ −(2n − 1)γ − 1 > γ2n, from
the above observations it follows that equation (A) admits no regularly varying solutions. We are
tempted to conjecture that Theorem A could be paraphrased to assert that all solutions of (A)
are oscillatory if and only if (1.2) holds.

We close this section by comparing our results with ones in [2]. We will carry out a comparison
based on the fact that in this paper, less general case of equation (1.10) is considered, with α0 = −1,
m = 2n+1, ϕ(x) = |x|γsgn x, ω = +∞, Y0 = +∞ or Y0 = 0 (for similar results for α0 = 1, m = 2n
see [9, 10]) . Although not specifically emphasized in [2], Evtukhov and Samoilenko actually
restricted their attention on the equation (1.10) with regularly varying coefficient and focused their
attention only on its regularly varying solutions. Namely, all conditions imposed in [2] on function
q(t) in (1.10) (see (3.3), (3.7) and second conditions in (3.14), (3.18)), means, due to converse half of
Karamata’s theorem (see [1, Theorem 1.6.1]), that q(t) is of regular variation. That fact is neither
mentioned nor used by Evtukhov and Samoilenko. Moreover, while they clearly emphasized
that P+∞(Y0, λ0)−solutions with λ0 ∈ R \ {0, 1/2, 2/3, . . . , (n − 2)/(n − 1), 1} and λ0 = +∞ are
functions of regularly variation, such an assertion for P+∞(Y0, (n− i− 1)/(n− i))−solutions with
i ∈ {1, 2, . . . , n − 1} is missing. Also, by virtue of the representations of such solutions obtained
in [2] such a conclusion is almost impossible to make. But, using the fact that q(t) is of regular
variation, it becomes quite clear each P+∞(Y0, λ0)−solution, with λ0 6= 1, is regularly varying,
while assuming that q(t) is of rapid variation, P+∞(Y0, 1)−solutions are rapidly varying.
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Moreover, we claim that the converse is also true, due to the fact that q(t) ∈ RV(σ). Denote
with P(Y0, λ0) the set of all P+∞(Y0, λ0)−solutions of (A). Then, assuming that y(t) ∈ RV(ρ),
from equation (A) we may conclude that y(n)(t) ∈ RV(σ+ργ), which by application of Karamata’s
integration theorem implies that

y(n−1)(t) ∈ RV(σ + ργ + 1) ⇒ lim
t→∞

t
y(n)(t)

y(n−1)(t)
= σ + ργ + 1,

y(n−2)(t) ∈ RV(σ + ργ + 2) ⇒ lim
t→∞

t
y(n−1)(t)

y(n−2)(t)
= σ + ργ + 2 .

Therefore, the last condition (1.11) in a definition of P+∞(Y0, λ0)−solution becomes

σ + ργ + 2

σ + ργ + 1
= lim

t→∞

t y(n−1)(t)

y(n−2)(t)

t y(n)(t)

y(n−1)(t)

= lim
t→∞

[y(n−1)(t)]2

y(n)(t)y(n−2)(t)
,

so that

y(t) ∈ P

(

Y0,
σ + ργ + 2

σ + ργ + 1

)

i.e R(ρ) ⊆ P

(

Y0,
σ + ργ + 2

σ + ργ + 1

)

.

More specifically, it is not difficult to see that, in fact

R(ρ) = P

(

Y0,
2n − 1 − ρ

2n − ρ

)

for ρ ∈ (−∞, 2n) \ {0, 1, 2, . . . , 2n − 1}, Y0 =

{

0, if ρ < 0
+∞, if ρ > 0

,

R(0) = P

(

0,
2n − 1

2n

)

,

R(k) = P

(

+∞,
2n + 1 − k

2n − k

)

for k ∈ {1, 2, . . . , 2n − 1},

R(2n) = P (+∞,+∞) ,

which makes our results closely connected with ones in [2]. However, extensive use of theory of
regular variation, particularly Karamata’s integration theorem, combined with fixed point tech-
niques, gives us the opportunity to fully describe the overall structure of regularly varying solutions
of (A) on the basis of behavior and the regularity index of the regularly varying coefficient q(t)
and to formulate asymptotic formula for such solutions more precisely and accurate than in [2].
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[7] T. Kusano, J. Manojlović, Asymptotic behavior of positive solutions of sublinear differential
equations of Emden-Fowler type, Computers and Mathematics with Applications, 62 (2011),
551-565, DOI: 10.1016/j.camwa.2011.05.019
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